REGULAR PAPER DOI: 10.1007/s40684-018-0008-7 ISSN 2288-6206 (Print) / 2198-0810 (Online)

Modified Power Prediction Model Based on Infinitesimal Cutting Force during Face Milling Process

Xiaona Luan¹², Song Zhang^{1,2#}, and Gang Li^{1,2}

1 School of Mechanical Engineering, Shandong University, Jinan, 250061, China 2 Key Laboratory of High-Efficiency and Clean Mechanical Manufacture (Minisrty of Education), Shandong University, Jinan, 250061, China # Corresponding Author / E-mail: zhangsong@sdu.edu.cn, TEL: +86-88392746

KEYWORDS: Infinitesimal cutting force, Metal removal process, Power prediction model

Nowadays soaring energy price, increasing environmental concerns, and stringent legislations make energy saving very emergency and helpful both for enterprises and environment. To deal with these issues, this paper presents a generalized mathematical power prediction model of face milling process used in manufacturing. An attempt was made to develop a relatively precise and direct power consumption model to help researchers make power optimization much easier and more practical than before. First, an infinitesimal cutting force model was proposed based on theoretical and experimental foundations. Secondly, relationship between power consumption and cutting force components was revealed, and power consumption based on infinitesimal cutting forces during metal removal process was developed. Finally, the proposed model was experimentally verified by comparing predicted and measured power consumption. Both average and instantaneous values of power consumption were used to analyze prediction error of the model. This proposed model can be used to evaluate and optimize cutting power consumption once cutting parameters were decided based on minimal energy demand. Results showed that the mean errors of maximum power and mean power were 0.076% and 0.208%, respectively. Otherwise, this proposed model will drive the field of power consumption simulation development.

Manuscript received: July 29, 2016 / Revised: May 8, 2017 / Accepted: June 13, 2017

NOMENCLATURE

- $dA =$ Cutting area of infinitesimal cutting edge (mm²)
- $db = Width of cutting edge element (mm)$
- d_z = Thickness of infinitesimal cutting edge (mm)
- dF_c = Cutting force component normal to the tool rake (N)
- dF_t = Cutting force component tangential to the elementary cutting edge (N)
- dF_n = Radial cutting force component (N)
- F_v = Cutting force component along cutting speed v_c (N)
- f_z = Feed per tooth of the milling parameters (mm/tooth)
- K_{tc} , K_{nc} , K_{cc} = Cutting force coefficients (N/mm²)
- K_{te} , K_{ne} , K_{ce} = Edge force coefficients (N/mm)
- $P_{\text{a-f}}$ = Additional power loss of feed drive system in cutting state (W)
- P_{a-n} = Additional power loss of main drive system in cutting state (W)
- P_c = Total cutting power consumption of experiment (W)
- P_{c-idle} = Spindle motor's power consumption of the auxiliary components in cutting state (W)
- P_{idle} = Spindle motor's power consumption of the auxiliary components in idling state (W)
- P_{servo} = Feed motion power consumption in cutting state (W)
- P_{spindle} = Total spindle rotational power in cutting state (W)
- P_{remove} = Total power consumption of material removing process (W)
- $P_{\rm u}$ = Unload power of servo motor in feed motion system in stand-by state (W)
- $r =$ The radius of face miller (mm)
- t_0 = Chip thickness (mm)
- v_c = Cutting speed (m/min)
- v_f = Feeding speed (m/min)
- η = Additional load loss coefficient of spindle system
- $\varphi(t)$ = The instantaneous cutting angle (°)
- $\varphi_{\rm st}$ = Cutter entry angle (°)
- $\varphi_{\rm ex}$ = Cutter exit angle (°)

1. Introduction

Traditionally, machining processes are usually optimized in order to minimize production cost. Given the increasing concern on environmental issues, especially energy consumption and the associated carbon footprints, it is possible to minimize environmental impacts of machining process by selecting cutting parameters. An accurate power prediction model which combines cutting parameters with the power consumption will accelerate the pace of this research.

In the past decades, significant research and development efforts have been made to 'green manufacturing' operations.¹ Machining processes are among the most important manufacturing activities, widely used in automotive, aerospace, and defense industries. Similar to other major manufacturing activities, machining processes carry significant environmental impacts and occupational health risks.² For a typical machining process, in addition to the workpiece, which is converted to an intermediate or finished part after machining, electricity consumption occupied a large portion of the inputs.Electricity consumption is equal to power multiplied by time, so power consumption becomes an important factor to optimize the machining process for a minimal energy consumption objective.

1 - ch th r i ch and and and a r i ch and a ch 3 Previous research about empirical power consumption model were almost based on experiments which always cost much time and material, or from the aspect of machining system which can't provide high prediction accuracy and is complicated with many factors.⁴ Jang, 4 D. et al.^{5,7} developed a specific cutting energy model to optimize ^{5,7} developed a specific cutting energy model to optimize points

conditions. Previous research²³ proved that it is necessary to

e power consumption during a typical machining operation

all, there are usually three cutting conditions. Previous research^{2,5} proved that it is necessary to ^{2,3} proved that it is necessary to
g a typical machining operation
plify power consumption model.
trs, i.e., basic power, idle power,
rial removal process is the actual
There are good theoretical
energy, but they are di divide the power consumption during a typical machining operation into some specific components to simplify power consumption model. In general, there are usually three parts, i.e., basic power, idle power, and cutting power. The power of material removal process is the actual power used to remove material. There are good theoretical computations available for cutting energy, but they are difficult to perform due to the difficulties in the calculation of all the parameters involved in the theoretical formulas.

Figures 1, 1991
1, 1991
1, 1991
1, 1991
1, 1991
1, 1991
1, 1991 On the basis of machining theory, many researchers put forward various power consumption models. Li and Kara studied the relationship of P and MRR (material removal rate),⁸ which was formulated as follows:

$$
P = A \cdot MRR + B \tag{1}
$$

c r e F ti Eq. (1) showed that P depended linearly on MRR , but it ignored the effect of different cutting parameters' combination at constant MRR. Two years later, Li et al. put up an improved power consumption model based on Eq. (1) , which was expressed thus:

$$
P=A \cdot MRR + B \cdot n + C \tag{2}
$$

 $\frac{1}{2}$ This improved model of Eq. (2) considered the effect of spindle speed to power consumption but still didn't analyze the effect of different cutting parameters' combination at constant MRR. Recently, Liu, N. et al. gave a cutting power model based on cutting force: 10

by power model based on cutting force:

\n
$$
P = A + B \cdot P_{\text{cutting}} \tag{3}
$$

Eq. (3) revealed that different combinations of cutting parameters at constant MRR would result different power consumption. But in the reference, calculation of $\overline{P_{\text{cutting}}}$ (average cutting power at the tool tip) was larger than P_{gap} (power gap contradicted with the working principle of a machine tool. And it didn't explain why this phenomenon occurred.

 $_{\text{top}}$ (cover gap between normal cut at air cut) which
the working principle of a machine tool. And it didn't
phenomenon occurred.
The vorking principle of a machine tool. And it didn't
phenomenon occurred.
And peripher Face milling and peripheral milling are two major classes of milling process. Face milling is used to cut flat surfaces (faces) into the workpiece, or to cut flat-bottomed cavities. In peripheral milling, the cutting action occurs primarily along the circumference of the cutter, so that the cross section of the milled surface ends up receiving the shape of the cutter. In this condition the blades of the cutter can be seen as scooping out material from the work piece. Face milling is widely used in the field of large-area material removing and rough machining. Infinitesimal cutting force model is proved to be more accurate than empirical formula model for a specific geometric cutter.¹¹ A few case studies are presented to investigate cutting force model of milling cutter with straight cutting edges, $\frac{1}{2}$ ball end milling cutter, $\frac{13,14}{2}$ and cylindrical milling cutter.^{15,16} Investigation of face milling force based on infinitesimal cutting force has been carried out by only a few researchers.¹⁷ Research of face milling forces were almost concentrated on its effect on surface roughness, optimization of cutting parameters and tool wear.^{18,19} Research of using infinitesimal cutting forces theory to build up power prediction model has just started.¹⁰

An accurate power prediction model is needed to monitor the machining process to obtain minimum energy consumption and process efficiency. This research will help to elucidate the optimization and sustainability of machining processes and to underpin the reduction of electrical energy demand and carbon footprints. The purpose of this research was to propose an improved power prediction model during metal removal process based on infinitesimal cutting force. This model was function of cutting parameters for a specific couple of cutterworkpiece. Thus, once cutting parameters were decided, power consumption was acquired.

¹¹ A few case

¹¹ A few case

² milling cutter

and cylindrical

ce based on

only a few

st concentrated

parameters and

reces theory to

b monitor the

on and process

imization and

e reduction of

urpose of thi ¹² ball end milling cutter,^{13,14} and cylindrical
gation of face milling cutter,^{13,14} and cylindrical
heas been carried out by only a few cast
be has been carried out by only a few cast
cac milling forces were almost ^{15,16} Investigation of face milling force based on
uting force has been carried out by only a few simples
tessearch of face milling forces were almost concentrated
surface roughness, optimization of cutting parameters a ¹⁷ Research of face milling forces were almost concentrated
on surface roughness, optimization of cutting parameters and
¹⁶¹ research of using infinitesimal cutting forces theory to
wer prediction model has just start ^{18,19} Research of using infinitesimal cutting forces theory to
ower prediction model has just started.¹⁰
ower prediction model is needed to monitor the
grocess to obtain minimum energy consumption and process
This res readent and the set of t The work presented in this paper was motivated by the following observations. First, characteristics of cutting forces during metal removal process were analyzed based on the classic theory of machining. And then the infinitesimal cutting force model was built up from the aspect of mechanical dynamics. Secondly, power consumption during metal removal process P_c was divided into three parts to model respectively: spindle Example was divided into three parts to model respectively: spindle power P_{while} , feed motion power P_{error} and idle power P_{while} all modeled based on the proposed infinitesimal cutting force allly, experiment-I a rotational power P_{spindle} , feed motion power P_{srvo} and idle power $P_{\text{c-idle}}$. spindle, feed motion power P_{zero} and idle power $P_{\text{c-idle}}$
leled based on the proposed infinitesimal cutting force
eriment-I and experiment-II were conducted to calculate
the proposed model and verify accuracy of the They were all modeled based on the proposed infinitesimal cutting force model. Finally, experiment-I and experiment-II were conducted to calculate the coefficients of the proposed model and verify accuracy of the power prediction model. Comparison of the predicted data and experimental data showed that the accuracy of proposed power prediction model was reached to 99.924%. The main conclusions of this study were summarized in section "Conclusion".

2. Modeling of Cutting Forces Based on Infinitesimal Method

During a cutting process, cutting forces are very complicated and have relationship with cutter geometry, cutting conditions, and

Fig. 1 Schematic diagram of face milling process

Fig. 2 Cutting force components in face milling operation

workpiece material. In this section, a face cutting force model will be presented for an inserted milling cutter under dry condition. Some assumptions will be used, which are:

(1) the cutting force component normal to the tool rank is proportional to the cutting area.²⁰

(2) the radial cutting force component is proportional to the tangential cutting force.²¹

(3) the change of chip thickness is uniform and can be expressed by cutting parameters and geometrical parameters of face milling cutter. 21

(4) the inserts have zero nose radius and zero approach angle on the inserts, and the axial components of the cutting forces become zero.

2.1 Geometrical Model of Face Milling

e
2001
2002
2002
2002
2002 $\frac{1}{2}$
 $\frac{1}{2}$ 21 2016
2018
2019
2019 Fig. 1 geometrically showed a face milling operation (down milling) and coordinate system of axes. As shown in Fig. 2, the chip thickness became from thick to thin during the down milling process,²² which can be calculated form Eq. (4) : ²² which can be calculated form Eq. (4):
 $t_0 = t_1 \sin \alpha = f_z \sin \varphi(t) \cdot \sin \alpha$

$$
t_0 = t_1 \sin \alpha = f_z \sin \varphi(t) \cdot \sin \alpha \tag{4}
$$

Fig. 3 Cutting force model for a milling tooth element

where, $\varphi(t)$ is the instantaneous cutting angle, which is a function of cutting parameters and geometrical relationship of cutter and workpiece.

$$
\varphi(t) = \frac{\pi}{2} + \arcsin((r - ac)/r)
$$
 (5)

where r is dynamic radius of face miller, a_e is radial depth of cut.

It must be noted that the cutting forces are produced only when the cutting tool is in the cutting zone, that is $\varphi_{st} \leq \varphi(t) \leq \varphi_{ex}$, where φ and φ_{ex} are the cutter entry and exit angles, respectively.

2.2. Mechanistic Force Model

The instantaneous dynamic radius on every cutting position affects the cutting forces directly since the simulated forces are proportional to chip thickness, and the chip thickness is a function of dynamic radii and feedrate. As shown in Fig. 3, dynamic radii caused by cutter run out and tilt are as follows:

$$
r(t) = \frac{D}{2} + r_0 = \frac{D}{2} + l\cos\alpha - d_z \cot\alpha + t_0
$$
 (6)

where, l is length of cutting edge. dz is thickness of infinitesimal cutting edge, and $dz = a_n/N$, D is radius of face milling cutter.

e is radial depth of cut.

re produced only when
 $p_{st} \leq \varphi(t) \leq \varphi_{ex}$, where

, respectively.

ery cutting position affe

d forces are proportional

function of dynamic radii caused by cutter r

radii caused by cutter storiding communication (security and all security of all se t_{ex} are the cutter entry and exit angles, respectively.
 Aechanistic Force Model

e instantaneous dynamic radius on every cutting po

tting forces directly since the simulated forces are pr

hickness, and the chip thi r_0 in V_{15} oc ze course F_1 F_1 F_1 F_2 F_3 F_4 F_5 F_6 (F_6) d (F_7) ${}_{p}N_{b}$ *D* is radius of face milling cutter.
process with inserted milling cutter, the zero. For a point on the (f^{th}) cutting
es corresponding to an infinitesimal e
e cutting force component normal to the
the ele During face milling process with inserted milling cutter, the helix angle is considered to be zero. For a point on the (jth) cutting edge, th) cutting edge, tesimal element
trmal to the tool
d F_t , and radial
(7)
and edge force
itesimal cutting differential cutting forces corresponding to an infinitesimal element thickness (d_z) , which are cutting force component normal to the tool z), which are cutting force component normal to the tool
ngential to the elementary cutting edge dF₁, and radial
e component dF_n, can be given as:²⁴
 $dF_x(j) = K_x dA + K_x ds$ (7)
 $dF_x(j) = K_x dA + K_x ds$ (7)
cripts (c) and (e) repre rake dF_c , tangential to the elementary cutting edge dF_t , and radial cutting force component dF_n , can be given as:²⁴

$$
\begin{aligned}\n\text{where } \mathbf{r}_c \text{ is the } \mathbf{r}_c \text{ is the } \mathbf{r}_c \text{ is the constant.}\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{where component } \mathbf{d}F_n, \text{ can be given as:} \n\begin{cases}\n\mathbf{d}F_1(\mathbf{i}) &= K_{\rm e} \mathbf{d}A + K_{\rm e} \mathbf{d}s \\
\mathbf{d}F_{\rm e}(\mathbf{i}) &= K_{\rm e} \mathbf{d}A + K_{\rm e} \mathbf{d}s \\
\mathbf{d}F_{\rm e}(\mathbf{i}) &= K_{\rm e} \mathbf{d}A + K_{\rm e} \mathbf{d}s\n\end{cases}\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{subscripts (c) and (e) represent cutting force and edge force} \\
\text{ents, respectively. } \mathbf{d}A \text{ is cutting area of infinitesimal cutting}\n\end{aligned}
$$

where, subscripts (c) and (e) represent cutting force and edge force coefficients, respectively. dA is cutting area of infinitesimal cutting

edge in mm², which can be expressed $dA=$ t edge in mm, while ds is the length of it in mm. From Fig. 3, $db = dz$ sinα. Then cutting force components are expressed as follows:

$$
\begin{cases}\ndF_{\iota}(j) = (K_{\iota_{\rm c}} \frac{t_{\iota}}{\sin \alpha} + K_{\iota_{\rm c}} \frac{1}{\sin \alpha})dz \\
dF_{\iota}(j) = (K_{\iota_{\rm c}} \frac{t_{\iota}}{\sin \alpha} + K_{\iota_{\rm c}} \frac{1}{\sin \alpha})dz \\
dF_{\iota}(j) = (K_{\iota_{\rm c}} \frac{t_{\iota}}{\sin \alpha} + K_{\iota_{\rm c}} \frac{1}{\sin \alpha})dz\n\end{cases}
$$
\n(8)

In Fig. 3, three coordinate systems are defined to realize the change of cutting forces from cutting-tool system to workpiece system. Once the infinitesimal component forces dF_t , dF_t , dF_c on the cutting edge are determined, cutting forces in the coordinate system of $ox'y'z'$ can be expressed through the following transformation:

$$
\begin{bmatrix} dF_{x_{(j)}} \\ dF_{y_{(j)}} \\ dF_{z_{(j)}} \end{bmatrix} = M_1 \begin{bmatrix} dF_{y_{(j)}} \\ dF_{y_{(j)}} \\ dF_{z_{(j)}} \end{bmatrix}
$$
 (9)

where, $M_{\parallel} = \begin{vmatrix} 0 & 0 & -1 \end{vmatrix}$, and transition matrix of ox' y' z' to $\begin{bmatrix} \sin \alpha & -\cos \alpha & 0 \end{bmatrix}$ $\cos \alpha$ $\sin \alpha$ 0 $M =$

 αxyz is as follows,

 $\mathcal{L}_2 = \begin{bmatrix} 0 & -\cos\varphi(t) & 0 \end{bmatrix}.$ $\lceil -\cos \varphi(t) \rceil$ 0 0 \lceil 0 1 $M₂$ $=\begin{vmatrix} 0 & -\cos \varphi(t) & 0 \end{vmatrix}$ $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

and then transition matrix of $\alpha x_P y_P z_P \rightarrow \alpha x y z$ is equal to M_2 multiplied by $M_1, M=M_2 M_1.$

Finally, cutting force components in machine tool coordinate system is acquired by the following transformation:

$$
\begin{bmatrix}\ndF_{x(j)} \\
dF_{y(j)} \\
dF_{z(j)}\n\end{bmatrix} = M \cdot \begin{bmatrix}\ndF_{y(j)} \\
dF_{u(j)} \\
dF_{v(j)}\n\end{bmatrix}
$$
\n(10)

where, $M = \begin{vmatrix} \sin \alpha \cos \varphi(t) & -\cos \alpha \sin \varphi(t) & \cos \varphi(t) \end{vmatrix}$. $\lceil -\sin \alpha \cos \varphi(t) \quad \cos \alpha \cos \varphi(t) \quad \sin \varphi(t) \quad \rceil$ $sin\alpha cos\omega(t)$ -cos $\alpha sin\omega(t)$ cos $\omega(t)$ $\cos \alpha$ $\sin \alpha$ 0 $cos\alpha cos\omega(t)$ $sin\omega(t)$ $\sin \alpha$

The resulting cutting forces for one cutting edge F_x , F_y , and F_z can be calculated from the infinitesimal component forces dF_x , dF_y , and dF_z as shown in Eq. (11).

2 0db. db is width of cutting t, dFn, dFc on the cutting edge are 2 multiplied by 1, M = M2·M1. x, Fy, and Fz can x, dFy, and dFz (11) i i i i i i N N (j) t(j) n(j) c(j) j 1 j 1 N N (j) t(j) n(j) c(j) j 1 j 1 N N (j) t(j) n(j) j 1 j 1 d (-sin cos (t)d -cos cos (t)d +sin (t)d) d (sin sin (t)d -cos sin (t)d +cos (t)d) d (cos d +sin d) x x y y z z F F F F F F F F F F FF F F αϕ αϕ ϕ αϕ αϕ ϕ α α = = = = = = = == == =⎧ ⎪ ⎪ ⎪⎪ ⎨ ⎪ ⎩ ∑ ∑ ∑ ∑ ∑ ∑ ⎪ ⎪ ⎪

2.3 Calculation of Force Coefficients

In mechanistic approach, the total cutting forces are proportional to cutting force coefficients K_{tc} , K_{nc} , K_{cc} and edge force coefficients K_{tc} , to K_{nc} , K_{nc} , K_{cc} and edge force coefficients K_{tc} , ulated by a set of experiments.^{25,26}
nethod of mechanistic evaluating the cutting K_{ne} , K_{ce} , which can be calculated by a set of experiments.^{25,26} ne, K_{ce} , which can be calculated by a set of experiments.^{25,26} Budak, E. et al. gave a method of mechanistic evaluating the

Budak, E. et al. gave a method of mechanistic evaluating the cutting

force coefficients.²¹ Some research indicated that the exponential force ²² Some research indicated that the exponential force

22 Some research indicated that the exponential force

tegrated into liner force model which contains the six

celumistic method of calibrating the milling tools is model could be integrated into liner force model which contains the six coefficients. A mechanistic method of calibrating the milling tools is put forward which is also suitable for face miller.²¹ A set of milling experiments are conducted at different feed rates, but at constant immersion and axial depth of cut. The cutting forces are measured by specific dynamometer.

The instantaneous cutting forces per spindle revolution were collected for many periods and divided by the rotation period to decreases the measurement error. Besides, if there is more than one cutting tooth simultaneously depending on the number of teeth on the cutter (N) and the radial width of cut. In this condition, the cutter pitch angle is given as follows:

$$
\varphi_{\rm p} = 2\pi/N \tag{12}
$$

The average cutting forces are independent of helix angle, owing to that the total material removed per tooth period is constant with or without helix angle. Then the average cutting forces per tooth period can be expressed by integrating the instantaneous cutting force $F_q(\varphi)$ in one revolution and dividing by the pitch angle as follows:

$$
\bar{F}_{\mathbf{q}} = \frac{1}{\varphi_{\mathbf{p}}} \int_{\varphi_{\mathbf{s}}}^{\varphi_{\mathbf{c}\mathbf{s}}} F_{\mathbf{q}}(\varphi) d\varphi \tag{13}
$$

where, $q = x$, y, z.

21 A set of milling

21 A set of milling

5, but at constant

25 are measured by

2 revolution were

rotation period to

is more than one

ber of teeth on the

con, the cutter pitch

(12)

12)

12)

12)

12)

12)

12)

12 $\beta_{\rm F} = 2\pi/N$ (12)

e independent of helix angle, owing to

l per tooth period is constant with or

leverage cutting forces per tooth period

the instantaneous cutting force $F_{\rm q}(\varphi)$ in

the pitch angle as follows: (q(φ) in (13)

e force due to

due to thereas

can be ibuted (14)

om the doff or (15)

asured model (16)

(16)

(16)
 $\frac{iN}{2\pi}$ [2 φ The total cutting forces are separated into two parts. The edge force F_{qe} represents the parasitic part of the forces which are not due to i_{α} , represents the parasitic part of the forces which are not due to

trign, and thus do not depend on the uncut chip thickness, whereas

ce cutting forces F_{φ} , $(q=x, y, z)$ do. The average cutting forces can be

s cutting, and thus do not depend on the uncut chip thickness, whereas the cutting forces F_{qc} ($q=x, y, z$) do. The average cutting forces can be expressed by a linear function of feed rate f_z and an offset contributed by the edge forces as follows:

$$
\overline{F}_{\mathbf{q}} = \overline{F}_{\mathbf{q}\mathbf{c}} \cdot f_z + \overline{F}_{\mathbf{q}\mathbf{e}} \tag{14}
$$

The cutting edge components (F_{qc} , F_{qe}) were estimated from the measured average forces at each feed rate by a mathematical method of linear regression. Experimental data of cutting forces were used for doing this procedure to resolve the $(F_{\text{qc}}, F_{\text{qc}})$.

$$
\vec{F}_x = \vec{F}_{xc} \cdot \vec{f}_z + \vec{F}_{xe}
$$
\n
$$
\vec{F}_y = \vec{F}_{yc} \cdot \vec{f}_z + \vec{F}_{ye}
$$
\n
$$
\vec{F}_z = \vec{F}_{xc} \cdot \vec{f}_z + \vec{F}_{ze}
$$
\n(15)

Linear regression uses the least square method to fit the measured data. Experiments for significance of regression and individual model coefficients were performed to verify goodness of fit for the model.

Finally, the cutting force coefficients for the linear-edge force model are evaluated from Eqs. (15) and (16) as follows:²⁷

ting forces
$$
F_{qc}
$$
 ($q=x, y, z$) do. The average cutting forces can be
sed by a linear function of feed rate f_z and an offset contributed
edge forces as follows:

$$
\overline{F}_q = \overline{F}_{qc} \cdot f_z + \overline{F}_{qc}
$$
(14)
cutting edge components (F_{qc} , F_{qc}) were estimated from the
ed average forces at each feed rate by a mathematical method of
regression. Experimental data of cutting forces were used for
this procedure to resolve the (F_{qc} , F_{qc}).

$$
\overrightarrow{F}_x = \overrightarrow{F}_{xc} \cdot f_z + \overrightarrow{F}_{xc}
$$

$$
\overrightarrow{F}_y = \overrightarrow{F}_{yc} \cdot f_z + \overrightarrow{F}_{yc}
$$
(15)

$$
\overrightarrow{F}_z = \overrightarrow{F}_{xc} \cdot f_z + \overrightarrow{F}_{zc}
$$

ear regression uses the least square method to fit the measured
uperiments for significance of regression and individual model
ients were performed to verify goodness of fit for the model.
ally, the cutting force coefficients for the linear-edge force model
luated from Eqs. (15) and (16) as follows:²⁷

$$
K_w = 4 \frac{\overline{F}_w P + \overline{F}_w Q}{P^2 + Q^2}, K_{nc} = \frac{K_w P - 4 \overline{F}_w}{Q}, K_{nc} = \frac{\overline{F}_w}{T},
$$

$$
K_w = \frac{\overline{F}_w}{S^2 + T^2}, K_{nc} = \frac{K_w S + \overline{F}_{yc}}{Q}, K_{cc} = -\frac{2\pi}{aN} \overrightarrow{F}_{oc}
$$

$$
P = \frac{aN}{2\pi} [\cos 2\varphi]_{e_a}^{e_a}, T = \frac{aN}{2\pi} [\cos \varphi]_{e_a}^{e_a}, S = \frac{aN}{2\pi} [\sin \varphi]_{e_a}^{e_a}, Q = \frac{aN}{2\pi} [2\varphi
$$

where,
$$
P = \frac{aN}{2\pi} [\cos 2\varphi]_{\varphi_{\alpha}}^{\varphi_{\alpha}}
$$
, $T = \frac{aN}{2\pi} [\cos \varphi]_{\varphi_{\alpha}}^{\varphi_{\alpha}}$, $S = \frac{aN}{2\pi} [\sin \varphi]_{\varphi_{\alpha}}^{\varphi_{\alpha}}$, $Q = \frac{aN}{2\pi} [2\varphi]$

 $-\sin 2\varphi\big]_{\varphi_{\rm s}}^{\varphi_{\rm ex}}$, and $(\overline{F}_{\rm qc}, \overline{F}_{\rm qe})$ $(q = x, y, z)$ are components of edge forces.

After the above procedures have all been done, the proposed cutting force model can be expressed by taking the coefficients K_{tc} , K_{nc} , K_{cc} , K_{te} , K_{ne} , and K_{ce} into Eq. (11) combing with Eqs. (8) and (9). This procedure is repeated for different cutter geometry, and also can be used for predicting cutter constants before cutter is manufactured.

3. Modeling of Power Consumption during Face Milling Process

For a typical machining process, power consumption model of a computer numerical control (CNC) system is really complicated and is always simplified and classified into two parts in convenience of modeling: the material removing power consumption P_{remove} which is caused by removing material and the idle power consumption P_{c- idle which is caused by auxiliary equipment during idle process. These power consumption components models were built up respectively.

3.1 Power Characteristics of a Machine Tool during Face Milling Process

In this research, cutting power consumption especially refers to the tool movement with performing the cutting operation. During this duration, expect the material removal, the tool movement, spindle, coolant pump, etc. all consume energy. Considering feasibility and complexity of total cutting power consumption P_c modeling, P_c is divided into two components P_{remove} and $P_{\text{c-idle}}$.

to, K_{nc} , K_{nc} , K_{cc} , K_{cd} the K_n and K_n into Eq. (11) combing with Eqs. (8) and (9). This concerned by a properties properties appear of productions of productions of productions of productions of the product of the production of the product o remove which is
umption P_c ide
process. These
respectively.
Face Milling
ly refers to the
n. During this
ment, spindle,
feasibility and
odeling, P_c is
spiece material
pindle, for is
piece material
n the theory of
he $y.$ ling the this dle, and $\frac{1}{x}$ is a string of the strip in the serve-
in this dle, is a string by $\frac{1}{2}$ in wer the serve-
 $\frac{1}{2}$ in this case $\frac{1}{2}$ in thing ine arge evific Example the modeling, P_c is
workpiece material
ed on the theory of
finished by spindle
n motor and servo
on during material
up spindle rotation
consumption P_{servo} .
 E_F multiplied by
component.
ary components in
ing remove and $P_{e\text{-idle}}$
ing parameters and $P_{e\text{-idle}}$
th cutting forces
removing proce
removing proce
nare driven by
g, power consulculated by adder
ated by cutting for
nated by cutting for
nsumption of and load in m
onents P_{remove} is affected by the cutting parameters and workpiece material EVENTIFY THE CONDURATION TONDURATION THE SURVENTION IN A have some relationship with cutting forces. Based on the theory of finders and the and theory of similar moreor or similar moreor and dynamics, material removing pr which have some relationship with cutting forces. Based on the theory of manufactural dynamics, material removing process is finished by spindle rotation and feed motion, which are driven by main motor and servo motors respectively. Accordingly, power consumption during material removing process P_{remove} can be calculated by adding up spindle rotation power consumption P_{spindle} and servo motors power consumption P_{servo} . P_{spindle} and P_{srvo} can be calculated by cutting force F_i multiplied by cutting speed v_i along the direction of cutting force component.

where can be calculated by adding up spindle rotation P_{spin} and servo motors power consumption P_{servo} .

an be calculated by cutting force F_1 multiplied by gg the direction of cutting force component.

he power spindle and servo motors power consumption P_{servo}
be calculated by cutting force F_i multiplied by
the direction of cutting force component.
power consumption of auxiliary components in
o additional load in machining spindle and $P_{\rm grow}$ can be calculated by cutting force F_1 multiplied by
tuting speed v_i along the direction of cutting force component.
 $P_{\rm c\,tilde{u}l\,k}$ refers to the power consumption of auxiliary components in i along the direction of cutting force component.

to the power consumption of auxiliary component

Due to additional load in machining state,

f auxiliary components $P_{c\text{-idle}}$ is different from

In another word, $P_{c\text{ P_{c-_i d|c}$ refers to the power consumption of auxiliary components in $c_{\text{c-illk}}$ refers to the power consumption of auxiliary components in
g state. Due to additional load in machining state, power
umption of auxiliary components $P_{\text{c-illk}}$ has some relationship with
state P_{tilk} . I cutting state. Due to additional load in machining state, power consumption of auxiliary components P_{c-idle} is different from that in idle state P_{idle} . In another word, $P_{\text{c-idle}}$ has some relationship with cutting parameters and other cutting condition.

The model of power consumption during material removal process P_c can be expressed by the following formula:

$$
P_{\rm c} = P_{\rm remove} + P_{\rm c\cdot idle} = P_{\rm spindle} + P_{\rm servo} + P_{\rm c\cdot idle}
$$
 (17)

e-idle is different from that in
has some relationship with
dition.
ing material removal process
rmula:
 $+ P_{\text{servo}} + P_{\text{c}\text{-idle}}$ (17)
a and $P_{\text{c}\text{-idle}}$ was introduced in
eory of infinitesimal cutting
sumption P_{\text{spindle}} idle. In another word, $P_{c\text{-}till k}$ has some relationship with
meters and other cutting condition.

el of power consumption during material removal process

spressed by the following formula:
 $P_c = P_{\text{remove}} + P_{c\text{-}idle} = P_{\text{$ Example 2013 and the following formula:
 $P_c = P_{\text{remove}} + P_{\text{c-idle}} = P_{\text{spindle}} + P_{\text{serv}}$

The modeling method of P_{spindle} , P_{serv} and P_{rel}

are following sections based on the theory corrections in section 2.

2 **Calc** The modeling method of P_{spindle} , P_{servo} and $P_{\text{c-idle}}$ was introduced in spindle, P_{srvo} and $P_{\text{c-idle}}$ was introduced in
on the theory of infinitesimal cutting
Oower Consumption P_{spindle}
wer for main driving system of machine
r consumption P_{spindle} occupies a large
ected by the s the following sections based on the theory of infinitesimal cutting forces in section 2.

3.2 Calculation of Spindle Power Consumption P_{spindle}

Spindle motor provides power for main driving system of machine tools. Spindle rotational power consumption P_{spindle} occupies a large spindle occupies a large
dle speed for a specific
dle speed for a specific component of P_{remove} and is affected by the spindle speed for a specific remove and is affected by the spindle speed for a specific
remove and is affected by the spindle speed for a specific

Fig. 4 Transient energy flow diagram of feed drive system

couple of cutter-workpiece. Spindle rotational power consumption of tool cutter point $P_{\text{spind }k}$ is equal to peripheral force F_{v} multiplied by cutting speed v_c .³ For an infinitesimal cutting edge, dP expressed as follows:

$$
dP_{\text{spindle}} = dF_{\text{v}} \cdot v_{\text{c}} = dF_{\text{v}} \cdot 2\pi nR \tag{18}
$$

where, F_v is peripheral cutting force in N (cutting system), v_c is cutting speed in m/min, n is rotational speed of spindle in r/min, and R is radius of face milling cutter in mm.

According to the cutting force analysis in section 2.2, the peripheral cutting force F_v is equal to the cutting force component which is tangential to the elementary cutting edge F_t .

3.3 Calculation of Feed Motion Power Consumption P_{servo}

Based on the theory of interaction force, additional power of main motor caused by feed motion is equal to the feed rate v_f multiplied by the cutting force component along its direction F_t . Accordingly, the feed motion power consumption P_{grvo} can be verified by the experimental measured power data of specific servo motor.

For feed drive system, its operation process can be considered as a complete energy flow during manufacturing process. Fig. 4 showed a transient energy flow diagram of feed drive system. P_{input} is the total power input into feed drive system, dEs/dt is a dynamic process of power storage or release, P_{loss} is power loss and P_{servo} is power output for removing material, which used for removing material and is defined as feed motion power in this research.

When $P_{\text{serv}} = 0$, machine tool is in a stand-by state, there is a unload power P_u of servo motor to maintain essential movement, and P_u has no relation with cutting load. Previous research revealed that P_u was a process of first decreasing gradually stable in guide way travel range,so value of P_u should be recorded at stable state.

spindle is equal to peripheral force F_v multiplied by

For an infinitesimal cutting edge, dP_{cipth} was

sy:

SET and cutting force in N (cutting system), v_e is cutting

seral cutting force in N (cutting system), c.c.log p.j n zu ti d (t) ti a c) ti ti oc ① バ c e n t h e st . e n) oc - 2 h h i th i sh h d w s sh h th zh zh y y zh u d zh d zh zh zh zh zh zh spindle was
(18) is cutting
it is cutting
 λ is radius
peripheral
which is
erve
row r of main
tiplied by
ingly, the
lered as a showed a
showed a showed a
showed a showed a
showed a
showed a
showed a
showed a
showed a
sh it, is peripheral cutting force in N (cutting system), v, is cutting
m/min, *n* is rotational speed of spinde in *r*/min, and *R* is radius
m/min, *n* is rotational speed of spinde in *r*/min, and *R* is radius
diling cut ∇_{v} is equal to the cutting force component which is
elementary cutting edge F_v .
of **Feed Motion Power Consumption** P_{wrvo}
theory of interaction force, additional power of main
feed motion is equal to the fe t. F multiplied by
coordingly, the
coordingly, the
irified by the
irified by the
dotor.
considered as a
ig. 4 showed a
ig. 4 showed a
ig. 4 showed a
single is to total
prove output
and is defined
are is a unload
at that P_u the verified by the o motor.

be considered as a s. Fig. 4 showed a h. P_{input} is the total lynamic process of is power output terial and is defined te, there s_{ervo} can be verified by the
specific servo motor.
process can be considered as a
uring process. Fig. 4 showed a
drive system. P_{input} is the total
Es/dt is a dynamic process of
loss and $P_{servervo}$ is power output
emoving m input is the total
mic process of
s power output
l and is defined
aere is a unload
ent, and P_u has
d that P_u was a
travel range,²⁸
achining state.
angnetic are
al power losses
ased on power
if is defined as
it be me loss is power loss and P_{serv} is power output
h used for removing material and is defined
is research.
tool is in a stand-by state, there is a unload
o maintain essential movement, and P_u has
d. Previous research rev servo= 0, machine tool is in a stand-by state, there is a unload
f servo motor to maintain essential movement, and P_u has
with cutting load. Previous research revealed that P_u was a
first decreasing gradually stable i $v_{\rm u}$ of servo motor to maintain essential movement, and $P_{\rm u}$ has
on with cutting load. Previous research revealed that $P_{\rm u}$ was a
of first decreasing gradually stable in guide way travel range,²⁸
of $P_{\rm u}$ Example 28 a state.

Example 28 a state tick are power and as a seasured (19) at along that along e.
Pesser
asser
289 u should be recorded at stable state.

_{rvo} ≠ 0, feed drive system is in

if feed drive system and servo m

different cutting load. Accordingly, the system and servo motor increase

in stand-by state. This additional pa When $P_{\text{serv}} \neq 0$, feed drive system is in a machining state. servo \neq 0, feed drive system is in a machining state.

of feed drive system and servo motor's magnetic are

a different cutting load. Accordingly, the total power losses

drive system and servo motor increases based o Resistance of feed drive system and servo motor's magnetic are changed with different cutting load. Accordingly, the total power losses P' Equivalently use of feed drive system and servo motor increases based on power

d loss P_u in stand-by state. This additional part $P_{a \cdot f}$ is defined as

litional power loss of feed drive system which can't be measured load loss P_u in stand-by state. This additional part P_{a-f} is defined as i_u in stand-by state. This additional part $P_{\text{a-f}}$ is defined as
bower loss of feed drive system which can't be measured
power monitoring system. In cutting state,
 $P_{\text{u}} = P_{\text{u}} + P_{\text{a-f}}$ (19)
ine tool coordinate additional power loss of feed drive system which can't be measured directly by power monitoring system. In cutting state,

$$
P_{u} = P_{u} + P_{a \cdot f}
$$
 (19)

In machine tool coordinate system, cutting force component along

Fig. 5 Power distribution of main drive system

the feed motion direction can be measured directly by a specific dynamometer experimentally; on the other hand, it can be acquired by coordinate transformations in section 2 theoretically. Similarly, P_{servo} is calculated by the cutting force component F_t multiplied by v_f . For an infinitesimal cutting edge, dP_{servo} was expressed as follows:

$$
dP_{servo} = dF_t \cdot v_f \tag{20}
$$

where, dF_t is cutting force component along feed motion direction in N (machine tool coordinate system), v_f is feeding speed in m/min.

3.4 Calculation of Idle Power Consumption P_{c-idle}

In this research, idle power consumption P_{idle} specific refers to power consumption of main drive system in idle state, while $P_{c-1d|k}$ is in cutting state. P_{idle} is similar to the unload power P_{u} of feed motion system, which has no relation with cutting load.

When $P_{\text{remove}} = 0$, spindle is idling. The idle power P_{idle} has relation with spindle speed *n*. In a specific spindle speed, P_{idle} is a process of first decreasing gradually stable, so value of P_{idle} should also be recoded at stable state and then calculated the average.

When $P_{\text{remove}} \neq 0$, spindle is at machining state. Different cutting load will result in different additional power loss $P_{a,n}$ due to various frictions among machine tool components. In another word, power consumption of axially components in machining state P_{c-idle} is a little larger than that of idle state P_{idle} . These theoretical conclusions will be verified by experimental results in following section. Thus,

$$
P_{\text{c-idle}} = P_{\text{idle}} + P_{\text{a-n}} \tag{21}
$$

Servo is

Servo is

(20)

ion in (20)

ion in in.

In:

Is is is notion

alation

in it it

de (21)

movel

m of ormal

tal...¹⁰

in it al The multiplied by v_F . For an sed as follows:

(20)

feed motion direction in

eding speed in m/min.

ion P_{e-ible}

ile state, while P_{e-ible} is power P_u of feed motion

and.

le power P_{idle} has relation

power P_{idle} servo was expressed as follows:

servo was expressed as follows:
 $P_{\text{servo}} = dF_t \cdot v_f$

imponent along feed motion d

ystem), v_f is feeding speed in

ver Consumption $P_{\text{u}}|_{\text{u}}$ specific

wer consumption $P_{\text{u}}|_{\text$ is cutting force component along feed motion direction in
the tool coordinate system), v_f is feeding speed in m/min.
 lation of Idle Power Consumption P_{vdw} research, idle power consumption P_{vdw}

research, r is feeding speed in m/min.
 umption P_{ul} we specific refers

umption P_{ul} specific refers

iem in idle state, while $P_{\text{e-ill}}$

inload power P_{ul} of feed mot

tting load.

The idle power P_{ul} has idle specific refers to

estate, while $P_{c \text{-idle}}$ is

beta estate, while $P_{c \text{-idle}}$ is

beta P_{ul} of feed motion

beta position

beta position

in the second and also be recoded

at the Different cutting

is $P_{a \text{-in}}$ e-idle is
alation
elation
elation
elation
consider in this aspect to the same of the distribution
over a little (21)
novel sm of tal..¹⁰
t al..¹⁰
sinu, N.
stems in this is inu, N. idk is similar to the unload power P_u of feed motion

no relation with cutting load.

0, spindle is idling. The idle power P_{tilc} has relation

dn *n*. In a specific spindle speed, P_{tilc} his a process of

ddual where= 0, spindle is idling. The idle power P_{tilt} has relation
e speed *n*. In a specific spindle speed, P_{tilt} is a process of
sing gradually stable, so value of P_{tilt} should also be recoded
te and then cal idle is a process of
Idd also be recoded
Different cutting
 P_{a-n} due to various
ther word, power
atte P_{c-idle} is a little
onclusions will be
1. Thus, (21)
1. Thus, (21)
wo motor, a novel
ne mechanism of
a_p between no idle should also be recoded
ge.
g state. Different cutting
cless P_{a-n} due to various
In another word, power
ning state P_{c-idle} is a little
etical conclusions will be
section. Thus,
(21)
and servo motor, a novel
ard. T remove ≠ 0, spindle is at machining state. Different cutting
sult in different additional power loss P_{a-n} due to various
nong machine tool components. In another word, power
nof axially components in machining state P ^{a-n} due to various
ther word, power
tte P_{c-idle} is a little
onclusions will be
.. Thus, (21)
vo motor, a novel
e mechanism of
p between normal
by Liu N. et al..¹⁰
pr P_{remove} (this is
 P_{remove} by Liu, N.
auxiliary system Evalue is a little
sions will be
us,
(21)
notor, a novel
echanism of
tween normal
iu N. et al..¹⁰
remove (this is
bove by Liu, N.
liary systems
consumption idle. These theoretical conclusions will be
lts in following section. Thus,
lts in following section. Thus,
 $a_{\text{lib}} = P_{\text{idle}} + P_{\text{a-n}}$ (21)
of main motor and servo motor, a novel
was put forward. The mechanism of
why the Form the above research of main motor and servo motor, a novel conclusion and explanation was put forward. The mechanism of additional power loss revealed why the power gap P_{gap} between normal ^{g_{ap} between normal
d by Liu N. et al..¹⁰
wer P_{remove} (this is
n P_{remove} by Liu, N.
y auxiliary systems
ower consumption} cut P_c and air cut P_{idle} is not equal to P_{remove} proposed by Liu N. et al..¹⁰ P_{gap} is larger than the material removal power P_{remove} (this is adict with the viewpoint that P_{gap} is smaller than P_{remove} (this is adict with the viewpoint that P_{gap} is smaller than P_{remove} by Liu, N But P_{gap} is larger than the material removal power P_{remove} (this is g_{ap} is larger than the material removal power P_{remove} (this is
dict with the viewpoint that P_{gap} is smaller than P_{remove} by Liu, N.
), which is clearly observed in Fig. 5.
S., et al. pointed out that power cons contradict with the viewpoint that P_{gap} is smaller than P_{remove} by Liu, N. et al.¹⁰), which is clearly observed in Fig. 5.

g_{ap} is smaller than P_{remove} by Liu, N.
in Fig. 5.
wer consumed by auxiliary systems
to the cutting power consumption
described thus: ¹⁰), which is clearly observed in Fig. 5.
u S., et al. pointed out that power consulis approximately proportional to the cu
ol cutter point P_{spindle} ,²⁹ which described Hu S., et al. pointed out that power consumed by auxiliary systems P_{c-idle} is approximately proportional to the cutting power consumption c -idle is approximately proportional to the cutting power consumption
f tool cutter point $P_{\text{spind } k}$,²⁹ which described thus: of tool cutter point P_{spindle}^2 ,²⁹ which described thus: $\mathop{\rm sp}\nolimits$ ind le $\mathop{\rm s}\nolimits$ $2²⁹$ which described thus:

$$
P_{\rm c\text{-}idle} = \eta P_{\rm spindle} \tag{22}
$$

where, η is the additional load loss coefficient.

3.5 Calculation of Total Cutting Power Consumption P_c

Based on modeling of $P_{c-{\rm id}|c}$, $P_{\rm{solid}|c}$ and $P_{\rm{servo}}$, the cutting power consumption P_c Eq. (17) can be defined thus:

$$
P_{\rm c} = (1 + \eta) P_{\rm{spintle}} + P_{\rm{servo}}
$$
 (23)

Then, the cutting power consumption P_c was calculated by combining Eqs. (8), (18), (20), (22) with (17):

$$
P_{c} = (1 + \eta) \frac{F_{v}v_{c}}{60} + F_{v}v_{f}
$$

= $(1 + \eta) \frac{\sum_{z=1}^{N_{i}} (K_{v} \frac{t_{0}}{\sin \alpha} + K_{v} \frac{1}{\sin \alpha}) dz \cdot 2\pi nR}{60} + F_{v} \cdot \eta_{z}^{2}$ (24)

where, F_t is instantaneous tangential component (cutter coordinate system), v_c is cutting speed, *n* is the spindle speed in r/min.

e-idle, P_{reinolt} and P_{error} the cutting power

be defined thus:
 $(1+\eta)P_{\text{reinolt}} + P_{\text{error}}$ (23)

are consumption P_z was calculated by
 $(0, 22)$ with (17) :
 $\frac{\alpha}{\sin \alpha}$ $\frac{1}{\sin \alpha}$ $\frac{1}{\sqrt{\alpha}}$ $\cdot 2\pi nR$ (24)
 c Eq. (17) can be defined thus:
 $P_c = (1 + \eta)P_{\text{spindle}} + P_{\text{zero}}$

cutting power consumption

(8), (18), (20), (22) with (17)
 $\eta \frac{F_v v_c}{60} + F_v v_f$
 $\sum_{n=1}^N (K_{\text{te}} \frac{t_0}{\sin \alpha} + K_{\text{te}} \frac{1}{\sin \alpha}) dz$
 $\eta \frac{K}{\sin \alpha}$
 $\int \frac{N}{$ examples and the set of the set of the set of cutter (see Fig. f_n , f_n , f_n and an additional load loss achine tool dependent O ACE-V500, η was mental results in the production model al cutting force model, power c is instantaneous tangential component (cutter coordinate

vising speed, *n* is the spindle speed in *frim*.

vising speed, *n* is the spindle speed in *frima*.

vising speed, *n* is the spindle speed in *Fa*, (22) is mach *e*, is cutting speed, *n* is the spindle speed in r/min.

vestigation by Hu S., et al. showed that additional
 rg of the model in Eq. (22) is machine tool

For the model in Eq. (22) is machine tool

if or the machining The investigation by Hu S., et al. showed that additional load loss coefficient η of the model in Eq. (22) is machine tool dependent variable.²⁹ For the machining center DAEWOO ACE-V500, η was ²⁹ For the machining center DAEWOO ACE-V500, η was
hich colul acquire from the experimental results in the
non model. This cutting power consumption prediction model
tup based on the mechanical infinitesimal cutting 0.362 which could acquire from the experimental results in the simulation model. This cutting power consumption prediction model was built up based on the mechanical infinitesimal cutting force model, which can accurately illustrate the real-time power consumption change during cutting process. Besides, this model can predict the power consumption once the cutting parameters were decided and then optimize them to minimize the power consumption.

4. Experimental Details

The coefficients of the cutting forces model were calculated from cutting force data from experiment-I. Then, error analysis and experiments are usually used to modify if the proposed power consumption model could accurately predict the result or not. In this section, a series of machining experiments (experiment-II) were conducted to investigate the accuracy of the proposed model.

4.1 Design of Cutting Parameters

Based on the theory of calculating coefficients in section 2.3, a set of face milling experiments at different feeds per tooth but constant axial depth of cut and immersion have to be conducted in experiment-I. In this research, 14 tests were done to measure cutting forces which were designed as follows: $v_c = 593.76$ m/min, $a_p = 0.5$ mm, $a_e = 1.85$ mm, and $f_z = 0.1$ -0.62 mm/tooth with an interval of 0.04 mm/tooth.

 $c_c = 593.76$ m/min, $a_p = 0.5$ mm, $a_e = 1.85$ mm, and $f_z = 0.1$ -
th with an interval of 0.04 mm/tooth.
the accuracy of the proposed power prediction model,
(experiment-II) were conducted with different
s of cutting paramet To verify the accuracy of the proposed power prediction model, experiments (experiment-II) were conducted with different combinations of cutting parameters, which is listed in Table 1.

4.2 Experimental Setup

In experiment-I and experiment-II, one piece of cutter (Seco F40M)

Table 1 Cutting parameters of verification experiments(experiment-II)

No.	v_c (m/min)	$f_{\rm z}$ (mm/z)	a_p (mm)	a_e (mm)
	187.5	0.38	1.6	1.85
	160.0	0.25	0.9	0.95
	132.5	0.13	1.6	1.85
	105.0	0.50	0.9	2.75
	77.5	0.38	1.6	1.85

(a) Workpiece and cutting tool

(b) Power monitoring system

Fig. 6 Experimental process of face milling

with liner-cutting edges was inserted in cutter head (Seco R220.43- 0063-07W) and used for experiments. The cutter Seco F40M is coated with TiAlN and suitable for cutting alloy cast iron as recommended by the tool manufacturer Seco.

The workpiece was a diesel engine cylinder block part made of alloy cast iron- HTCuCrSn -250, which is different from the traditional HT250 because of the additional elements and the content. The chemical composition is as shown in Table 2. The workpiece used in the face milling experiments were heat-treated and annealed. It is possible to carry out a great number of experiments in a large range of cutting parameters without tool wear. Rectangular blocks of HT250 casting blank were prepared in the dimensions of 100 mm

 \times 50 mm \times 25 mm and the surface materials of workpiece were removed to get rid of the influence to the quality of processing surface.

The face milling experiments were performed on a three-axis vertical machining center DAEWOO ACE-V500 with speed range of spindle 10000 rpm. The rated power of main motor is 15 kW and servo motor's is 3.8 kW.

All the experiments were conducted in down milling process under dry cutting condition. The instantaneous cutting force components in x -, y -, and z- directions, F_x , F_y , and F_z were recorded by using Kistler 9257A x_n , F_y , and F_z were recorded by using Kistler 9257A
6 showed a process of face milling experiments and sinds of the milling experiments and
alis of the milling cutter. Power consumption during
and alis of the millin dynamometer. Fig. 6 showed a process of face milling experiments and the geometrical details of the milling cutter. Power consumption during machining process was calculated from the variable voltage and current which measured by a NI-9220 data acquisition card.³⁰ As shown in Fig. 6(b), the voltage and current were measured from the output of variable-frequency drive module. In all experiments, cutting forces were measured and the six coefficients are calculated through experimental average force data.

5. Results and Discussion

5.1 Results of Coefficients and Verification of Cutting Force Model

According to the procedure introduced in the above section 2.3, coefficients of octagonal cutter were calculated combing with the experimental data as follows:

Obviously, in experiment-I, axial depth of cut was a constant $a_p =$ 0.5 mm and the number of cutting tooth was $N = 1$, while cutting type was down milling, the cutting in and out angle were $\varphi_{ex} = \pi$, $\varphi_{st} = 160.27 \times \pi/180$, respectively. Then taking these data into the expression of P , Q , T , and S in section 2.3, values of them can be get $P = 0.0181, Q = 0.0042, T = -0.0047, S = -0.0269.$

Then, the cutting edge components (F_{qc} , F_{qe}) were calculated by liner regression of the experimental results.

$$
\vec{F}_x = \vec{F}_{xx} \cdot f_z + \vec{F}_{xx} = 139.7942 \cdot f_z + 28.0810
$$
\n
$$
\vec{F}_y = \vec{F}_{yz} \cdot f_z + \vec{F}_{ye} = 141.5380 \cdot f_z + 30.2875
$$
\n
$$
\vec{F}_z = \vec{F}_{xz} \cdot f_z + \vec{F}_{xz} = 93.3600 \cdot f_z + 13.1493
$$
\n(25)

For Assemblance of Ciabove

10 Assemblance of Ciabove

10 Assemblance of the were

10 Assemblance of the were cutting and the specifical t p=
pe π , the set by S)
5)
5)
5)
5)
5)
5)
5)
5)
5)
10 me set be set be set be set be as son he $f_x + 28.0810$
 $f_x + 30.2875$ (25)
 $f_x + 13.1493$

ts in Eq. (25) into Eq. (16),

calculated as follows:
 $K_{cc} = -1.9864 \times 10^4$, $K_w = -2291$, respectively. Taking

mponent cutting forces in

te evaluated coefficients are

t Then taking the cutting edge components in Eq. (25) into Eq. (16), the values of six coefficients were calculated as follows: $K_{\text{tc}} = 2.6203 \times 10^4$, $K_{\text{nc}} = 2.2879 \times 10^4$, $K_{\text{cc}} = -1.9864 \times 10^4$, K_{cc} 1.1052×10^3 , $K_{\text{ne}} = -1.277010^4$, K these coefficients into Eq. (8), three component cutting forces in workpiece system were finally acquired. The evaluated coefficients are valid only for the specific cutter geometry tested.

Finally, simulation of the cutting force model was shown in Fig. 7. To verify the accuracy of the proposed cutting force model, the simulation results were compared with the experimental results.

 $t_{\text{te}} = 2.6203 \times 10^4$
1052 × 10³, K_{ne}
ese coefficients
orkpiece system
alid only for the
Finally, simula
To verify the a
mulation results
The above an
orresponding to t
arricod. The mino
operimental valu T_{nc} = 2.2879 × 10⁴
.277010⁴, K_{ce} = Eq. (8), three
b Eq. (8), three
e finally acquired
eific cutter geom
of the cutting factor of the prop
recompared with call results show
imulation result ifference betwee $\frac{1}{\cos}$ = -1.9864 × 10⁴
291, respectively
aponent cutting
e evaluated coeffices
tested.
model was show
cutting force m
e experimental re
hat the cutting 1
hat the cutting 1
phat is the predicted value
b), Some randor $t_{te} = -$
king s in s are
king s in s are
Fig., the
s.
t was
ation
the correst icy
3 ick s y r n
1 ii ii $n_e = -1.277010^4$
is into Eq. (8)
in were finally ϵ
e specific cutte
lation of the c
accuracy of t
is were compa
malytical result
the simulation
or difference
lue was shown
process, such ϵ_{ee} = -0.3291, respectively. Taking
oree component cutting forces in
ired. The evaluated coefficients are
cometry tested.
In force model was shown in Fig.
proposed cutting force model, the
with the experimental result The above analytical results showed that the cutting time was corresponding to the simulation result in Fig. 7, as well as the rotation period. The minor difference between the predicted value and the experimental value was shown in Fig. 7(b), Some random factors during milling process, such as, tool vibrations, stiffness of the

(a) Cutting forces of two cutting periods (experiment-II-1)

(b) Local amplification of cutting forces (experiment-II-1)

Fig. 7 Comparisons of simulation and experimental results of three cutting force components

Table 3 Comparison between predicted and actual cutting forces of experiments

No.	Predicted		Experimental data			Error F	
	$F_x^*(N)$			$\overline{F_{y}^{*}(N)}$ $F_{z}^{*}(N)$ $F_{x}(N)$ $F_{y}(N)$		$F_{\rm z}(N)$	(%)
	199.64				260.38 105.35 203.58 263.53 106.02		1.25
\mathcal{D}	166.78				213.26 90.82 168.29 215.16 91.59		0.87
3	150.31				231.65 92.49 151.07 234.87 93.11		0.84
4	162.35				196.82 138.75 163.69 196.13 139.46		0.32
5	156.23			205.34 95.38 157.12 206.04		96.34	0.63

transmission system and heterogeneity of workpiece material, can result in that the real cutting forces (experimental results) deviate from the desired values. Besides, the peak of the cutting force by experimental measured was nearly corresponding to the simulation result. To quantitatively evaluate the accuracy of the cutting force model, the mean cutting forces were analyzed for every experimental data which were listed in Table 3. From Table 3, it's obviously that the errors of the cutting force model were all lower than 2% and the mean error was 0.78%, which was in a permitted range. In a word, the theoretical cutting force model could accurately predict the cutting force. ||9||6||5||6||5||6||5||6||5||6||5||6||5||6||5||6||5||6||5||6||5||6||5||6||5||6||5||6||5||6||5||6||5||6||5||6| $\frac{1}{2}$ S $\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{5}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{5}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{5}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{6}$ $\frac{1}{5}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ lion(Clyling Mind and wind a control of singles) in the end at wind a control of singles is - t(i) aliwing is the second of the sec $V_x(N)$ $F_y(N)$ $F_z(N)$

33.58 263.53 106.02

58.29 215.16 91.59

58.29 215.16 91.59

51.07 234.87 93.11

53.69 196.13 139.46

57.12 206.04 96.34

7.12 206.04 96.34

neity of workpiece

(experimental results)

peak of the cu

5.2 Accuracy Analysis of Proposed Power Prediction Model

The coefficients of the power prediction model were calculated by the measured data from experiment-I. And the proposed model was finally expressed as follows:

Fig. 8 Comparisons of the predicted and actual results of power consumption (experiment-II-1)

Table 4 Comparison between predicted powers and actual power readings of experiments

			P_c max P_c^* max Error P_c^*	P_c	\overline{P}_c^*	Error P_c	
	(W)	(W)	$(\%)$	(W)	(W)	$(\%)$	
	4586.1	4581.31	0.10	3619.3	3614.46	0.13	
\mathfrak{D}	3753.3	3749.73	0.09	2931.5	2928.89	0.08	
3	4354.4	4350.36	0.09	2724.9	2712.92	0.43	
4	4241.2	4240.6	0.01	3024.1	3012.29	0.39	
5	4084.1	4080.26	0.09	3015.7	3015.36	0.01	

$$
P = (1 + \eta) \frac{F_t v_c}{60} + F_f v_f
$$

= $(1 + \eta) \frac{\sum_{i=1}^{N_i} \left(K \frac{t_0}{\sin \alpha} + K \frac{1}{\sin \alpha}\right) dz \cdot 2 \pi n R}{60} + F_y \cdot n f_z$ (26)

Taking Eqs. (11) and (16) into (26), the instantaneous predicted and actual cutting power curve were showed in Fig. 8. The vibration signal was de-noised by "sgolay filtering" in Matlab. From Fig. 8, it is obviously that the predicted cutting period and power changed trend were all corresponding to experimental result.

Furthermore, error analysis was conducted to verify accuracy of the proposed model. In experiment-II, measured power values for every experiment were used to determine its average \overline{P}_c . Both mean errors and maximum errors of power consumption were analyzed by following expression and the results were listed in Table 4,

$$
Error = \frac{P_{\rm c}^* - P_{\rm c}}{P_{\rm c}} \tag{27}
$$

where, P_c^* is predicted power consumption value, P power consumption value.

)]
let
r $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$ Exercise to experimental
proposed model
cors of maximum
ors of maximum
respectively. The
m the maximum
ration and other
s ignored in the
liction model has Table 4 showed that prediction errors of the proposed model achieved lower than 0.1% and 0.5%, which were errors of maximum power and mean power, respectively. And mean errors of maximum power and mean power were 0.076% and 0.208%, respectively. The mean power prediction error was a little larger than the maximum power prediction error, which was owing to vibration and other uncertain factors during cutting process but it was ignored in the proposed model. Therefore, the proposed power prediction model has Example 1
 $\frac{1}{586.1}$
 $\frac{1}{753.3}$
 $\frac{354.4}{1241.2}$
 $\frac{241.2}{084.1}$
 \rightarrow = (1+
 \rightarrow 1 +
 \rightarrow 1 = (1+
 \rightarrow 1 +
 \rightarrow 1 = (1+
 \rightarrow 1 +
 \rightarrow 1 + \rightarrow 1 +
 \rightarrow 1 + \rightarrow 1 c_max
(W)
 $\frac{1}{881.31}$
 $\frac{1}{149.73}$
 $\frac{1}{149.73}$
 $\frac{240.6}{80.26}$
 $\frac{240.6}{80.26}$
 $\frac{1}{80.26}$
 $\frac{1}{10}$
 $\frac{1}{10}$ and $\frac{1}{10}$
 $\frac{1}{10}$ and $\frac{1}{10}$
 $\frac{1}{10}$ and $\frac{1}{10}$
 $\frac{1}{10}$ and $\frac{1}{10}$
controlled the controlled of the controlle

high accuracy to predicting the cutting power consumption of the spindle motor during metal removal process.

Besides, a novel phenomenon was observed in the process of power prediction modeling. The additional feed motion power P_{grav} $(P_{\text{servo}} = F_t \times v_f)$ of the spindle motor during cutting process is closely related to that of servo motor $P_{c.f.}$ Further exploration of the relationship between P_{servo} and $P_{\text{c-f}}$ is still under study.

6. Conclusions

sely
the delained and the more delained and the controller and the controller and problem and pp. $\omega_{\rm C}=F_{\rm X}\times y_0$ of the spindle mono during entiting process is closely
sincle to that of servo motor $P_{\rm x,v}$. Further exploration of the
diade to that of servo motor $P_{\rm x,v}$. Further exploration of the
diadeohiy h E-f. Further exploration of the
still under study.

Wed power consumption model

on infinitesimal cutting force

ing metal removal process was

ional power P_{renews} , feed motion

This modeling method reduces

hile impr servo and P_{c-f} is still under study.

Servo and P_{c-f} is still under study.

Servo conses based on infinitesima

sumption during metal remov

S: spindle rotational power $P_{\text{c-m}}$

power $P_{c-\text{tilc}}$. This modeling r This research proposed an improved power consumption model during metal removal process based on infinitesimal cutting force theory. The power consumption during metal removal process was divided into three parts: spindle rotational power P_{remove} , feed motion remove, feed motion
g method reduces
g accuracy of the
nematical models.
neematical models.
research:
notor during metal
nents based on the
study.
arger than the error
complex factors
being the study.
or signal motor revio power P_{grvo} and idle power $P_{\text{c-idle}}$. This modeling method reduces s_{ervo} and idle power $P_{c,34v}$. This modeling method reduces
ty of modeling process, while improving accurates of the
not and a more comparing with previous mathematical models
that data were used to verify accuracy of complexity of modeling process, while improving accuracy of the prediction model comparing with previous mathematical models. Experimental data were used to verify accuracy of the proposed model. Following conclusions were summarized from this research:

(1) Power consumption of the main spindle motor during metal removal process P_c can be divided into three components based on the characteristics of the cutting movement for further study.

i, can be divided into three components based on the
he cutting movement for further rady.

Then a provent (0.208%) is a little larger than the error

or mean power (0.208%) is a little larger than the error

or (0.076% (2) The error of mean power (0.208%) is a little larger than the error of maximum power (0.076%), which is owing to the complex factors of the cutting process. The experimental data have some vibrations, but the prediction data change smoothly.

(3) Feed motion power P_{servo} ($P_{\text{servo}} = F_t \times v_f$) of spindle motor during cutting process is closely related to that of servo motor $P_{\rm c.f.}$

(4) To some extent, the proposed power prediction model will push the development of power consumption simulation field.

ACKNOWLEDGEMENT

This work is supported by National Major Science and Technology Project: High-end CNC Machine Tools and Basic Manufacturing Equipments (Grant No. 2015ZX04003-005), and Taishan Scholars Program of Shandong Province.

REFERENCES

- servo ($P_{\text{serv}} = F_1 \times v_f$) of spindle motor
ly related to that of servo motor $P_{\text{c-f}}$
posed power prediction model will push
sumption simulation field.

F
Mational Major Science and Technology
hine Tools and Basic Man e-f.
Dog
Dog
Dog
Ininin
Ol
L.
Ininin
Inin
Inin 1. Campatelli, G., Scippa, A., Lorenzini, L., and Sato, R., "Optimal Workpiece Orientation to Reduce the Energy Consumption of a Milling Process," Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 1, pp. 5-13, 2015.
- 2. Zhao, F. and Sharma, A., "Environmentally Friendly Machining Machining Process Environmentally Friendly Machining," Handbook of Manufacturing Engineering and Technology, pp. 1127-1154, 2015.
- 3. Liu, F., Xie, J., and Liu, S., "A Method for Predicting the Energy Consumption of the Main Driving System of a Machine Tool in a Machining Process," Journal of Cleaner Production, Vol. 105, pp. 171-177, 2015.
- 4. Velchev, S., Kolev, I., Ivanov, K., and Gechevski, S., "Empirical Models for Specific Energy Consumption and Optimization of Cutting Parameters for Minimizing Energy Consumption during Turning," Journal of Cleaner Production, Vol. 80, pp. 139-149, 2014.
- 5. Jang, D., Jung, J., and Seok, J., "Modeling and Parameter Optimization for Cutting Energy Reduction in MQL Milling Process," Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 1, pp. 5-12, 2016.
- 6. Yoon, H.-S., Lee, J.-Y., Kim, M.-S., and Ahn, S.-H., "Empirical Power-Consumption Model for Material Removal in Three-Axis Milling," Journal of Cleaner Production, Vol. 78, pp. 54-62, 2014.
- 7. Al-Hazza, M. H. F., Adesta, E. Y. T., Ali, A. M., Agusman, D., and Suprianto, M., "Energy Cost Modeling for High Speed Hard Turning," Journal of Applied Sciences, Vol. 11, No. 14, pp. 2578- 2584, 2011.
- 8. Li, W. and Kara, S., "An Empirical Model for Predicting Energy Consumption of Manufacturing Processes: A Case of Turning Process," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 225, No. 9, pp. 1636-1646, 2011.
- 9. Li, L., Yan, J., and Xing, Z., "Energy Requirements Evaluation of Milling Machines Based on Thermal Equilibrium and Empirical Modelling," Journal of Cleaner Production, Vol. 52, pp. 113-121, 2013.
- 10. Liu, N., Zhang, Y., and Lu, W., "A Hybrid Approach to Energy Consumption Modelling Based on Cutting Power: A Milling Case," Journal of Cleaner Production, Vol. 104, pp. 264-272, 2015.
- 11. Liu, X.-W., Cheng, K., Webb, D., and Luo, X.-C., "Prediction of Cutting Force Distribution and Its Influence on Dimensional Accuracy in Peripheral Milling," International Journal of Machine Tools and Manufacture, Vol. 42, No. 7, pp. 791-800, 2002.
- 12. Ehmann, K., Kapoor, S., DeVor, R., and Lazoglu, I., "Machining Process Modeling: A Review," Journal of Manufacturing Science and Engineering, Vol. 119, pp. 655-663, 1997.
- 13. Wei, Z., Wang, M., Zhu, J., and Gu, L., "Cutting Force Prediction in Ball End Milling of Sculptured Surface with Z-Level Contouring Tool Path," International Journal of Machine Tools and Manufacture, Vol. 51, No. 5, pp. 428-432, 2011.
- 14. Abou-El-Hossein, K., Kadirgama, K., Hamdi, M., and Benyounis, K., "Prediction of Cutting Force in End-Milling Operation of Modified AISI P20 Tool Steel," Journal of Materials Processing Technology, Vol. 182, No. 1, pp. 241-247, 2007.
- 15. Sun, Y., Ren, F., Guo, D., and Jia, Z., "Estimation and Experimental Validation of Cutting Forces in Ball-End Milling of Sculptured Surfaces," International Journal of Machine Tools and Manufacture, Vol. 49, No. 15, pp. 1238-1244, 2009.
- 16. Gradišek, J., Kalveram, M., and Weinert, K., "Mechanistic Identification of Specific Force coefficients for a General end Mill," International Journal of Machine Tools and Manufacture, Vol. 44, No. 4, pp. 401-414, 2004.
- 17. Fu, H.-J., DeVor, R., and Kapoor, S., "A Mechanistic Model for the Prediction of the Force System in Face Milling Operations," Journal of Engineering for Industry, Vol. 106, No. 1, pp. 81-88, 1984.
- 18. Korkut, I. and Donertas, M., "The Influence of Feed Rate and Cutting Speed on the Cutting Forces, Surface Roughness and Tool-Chip Contact Length during Face Milling," Materials & Design, Vol. 28, No. 1, pp. 308-312, 2007.
- 19. Baek, D. K., Ko, T. J., and Kim, H. S., "Optimization of Feedrate in a Face Milling Operation Using a Surface Roughness Model," International Journal of Machine Tools and Manufacture, Vol. 41, No. 3, pp. 451-462, 2001.
- 20. Altintas, Y., "Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design," Cambridge University Press, pp. 8-47, 2000.
- 21. Budak, E., Altinta, Y., and Armarego, E., "Prediction of Milling Force Coefficients from Orthogonal Cutting Data," Journal of Manufacturing Science and Engineering, Vol. 118, No. 2, pp. 216- 224, 1996.
- 22. Lamikiz, A., de Lacalle, L. L., Sanchez, J., and Salgado, M., "Cutting Force Estimation in Sculptured Surface Milling," International Journal of Machine Tools and Manufacture, Vol. 44, No. 14, pp. 1511-1526, 2004.
- 23. Bouzakis, K.-D., Aichouh, P., and Efstathiou, K., "Determination of the Chip Geometry, Cutting Force and Roughness in free Form Surfaces Finishing Milling, with Ball End Tools," International Journal of Machine Tools and Manufacture, Vol. 43, No. 5, pp. 499- 514, 2003.
- 24. Karpuschewski, B., Binh, N. T., and Bello, J., "An Emperical Cutting-Force Model in High-Speed-Milling Process with Spherical Cutter," Manufacturing Engineering/ Vyrobne Inzinierstvo, Vol. 6, No. 3, pp. 5-8, 2007.
- 25. Lee, P. and Altintaş, Y., "Prediction of Ball-End Milling Forces from Orthogonal Cutting Data," International Journal of Machine Tools and Manufacture, Vol. 36, No. 9, pp. 1059- 1072, 1996.
- 26. Shirase, K. and Altintaş, Y., "Cutting Force and Dimensional Surface Error Generation in Peripheral Milling with Variable Pitch Helical End Mills," International Journal of Machine Tools and Manufacture, Vol. 36, No. 5, pp. 567-584, 1996.
- 27. Cheng, K., "Machining Dynamics: Fundamentals, Applications and Practices," Springer Science & Business Media, pp. 21-30, 2008.
- 28. Hu, T., "Energy Consumption Characteristics of Feed Drive System in CNC Machine Tools," Chongqing University, pp. 17-30, 2012.
- 29. Hu, S., Liu, F., He, Y., and Peng, B., "Characteristics of Additional Load Losses of Spindle System of Machine Tools," Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 4, No. 7, pp. 1221-1233, 2010.

30. Luan, X., Zhang, S., and Cai, G., "Optimal Cutting Parameters to Reduce Power Consumption in Face Milling of a Cast Iron Alloy for Environmental Sustainability," Sustainable Design and Manufacturing, pp. 135-148, 2016.