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Abstract
Purpose of Review Sleep plays a pivotal role in regulating numerous physiological functions, including cardiovascular 
activity, glucose regulation, lipid management, and hormone secretion. This review explores the impact of insufficient and 
irregular sleep, as well as specific sleep disorders, on cardiometabolic risk. We aim to illuminate the potential mechanisms 
underlying these associations.
Recent Findings A substantial body of evidence links sleep duration (both short and long), sleep regularity, and disorders 
such as obstructive sleep apnea, insomnia, and restless leg syndrome with the development of obesity, hypertension, hyper-
lipidemia, inflammation, diabetes, cardiovascular complications, and related mortality.
Summary Despite the significant volume of research highlighting the interplay between sleep disturbances and cardiometa-
bolic disorders, our understanding of this intricate relationship remains somewhat incomplete. Future research is essential 
to deepen our understanding and identify therapeutic strategies and interventions that can mitigate the detrimental effects 
of sleep disorders on cardiometabolic health.
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TNF  tumor necrosis factor
T2D  type 2 diabetes

Introduction

Sleep plays a major role in regulating and maintaining 
human body functions, including cardiovascular func-
tion, blood glucose, lipids, and hormone secretion [1••, 
2•]. Therefore, much of the recent research has focused 
on the impact of sleep on the maintenance of cardiometa-
bolic health since cardiometabolic disorders stand as the 
primary cause of morbidity and mortality on a global scale 
[3••]. Cardiometabolic risks (CMR) constitute a group of 
interlinked factors such as hypertension, high blood sugar, 
dyslipidemia, and obesity [4]. Recent research suggests that 
incorporating sleep health as an additional metric in car-
diovascular health (CVH) scores can enhance the predic-
tion of cardiovascular disease (CVD) risk in adults [5••]. 
Observational studies suggest that even minor sleep changes 
at a population level correlate with changes in CVD risk 
factors. In view of this evidence, sleep duration was added 
as an eighth metric to the definition of cardiovascular health 
[6••]. In 2022, the American Heart Association expanded its 
“Life’s Simple 7” prevention targets by adding sleep health, 
renaming it “Life’s Essential 8 [6].” This inclusion empha-
sizes the holistic approach to cardiovascular health, covering 
areas like diet, physical activity, and now sleep, to benefit 
individuals of all ages.

This review explores topics like the consequences of insuf-
ficient and irregular sleep and other sleep disorders, such as 
obstructive sleep apnea (OSA), insomnia, and restless leg syn-
drome, on cardiometabolic disorders.

Search Methodology

We undertook an exhaustive literature search using PubMed 
and Google Scholar, prioritizing studies from the last 5 years 
(until mid-October 2023). Key older studies were also consid-
ered for a holistic perspective. Keywords like “sleep duration,” 
“insomnia,” “obstructive sleep apnea,” and “cardiometabolic 
disorders” guided our search. Additionally, we manually 
checked references of pertinent articles to ensure comprehen-
sive coverage. After identifying potential papers, we assessed 
titles and abstracts for relevance. Only those aligning with 
our focus were read in-depth and critically evaluated for final 
inclusion in our review.

Sleep Duration and Cardiometabolic Health

There is a U-shaped relationship between sleep duration and 
adverse cardiometabolic health outcomes, including mor-
tality [7], with the lowest risk observed in individuals who 

maintain a sleep duration of 7 to 8 h and increased risk with 
deviation from that range [7, 8•, 9••].

The current literature suggests that sleep patterns, 
mainly those related to sleep duration, can disrupt circa-
dian rhythms, which can cause metabolic and endocrine 
dysfunction, increasing cardiovascular risks [5••, 10•]. In 
a recent study by Cui et al., researchers found a J-shaped 
association between sleep duration and the onset of CVD, 
especially in those aged 50 and above [11••]. Specifically, 
individuals sleeping more than 9 h faced a higher risk of 
CVDs, with the association being most pronounced among 
those with chronic health conditions.

Reduced sleep duration might affect hemodynamic con-
trol and cardiovascular regulation in healthy individuals, 
possibly through increasing inflammation and changes in 
endothelial function, which play a major role CVD risk 
[5••, 10•]. Proinflammatory processes and markers that pro-
mote atherosclerotic plaque development, like TNFα, IL-1, 
IL-6, IL-17, CRP, cellular adhesion molecules, and visfatin, 
have demonstrated a possible link with sleep deprivation in 
laboratory studies [12•].

Impact of Sleep Duration on Obesity and Appetite 
Regulation

Recent data indicate that both short and long sleep durations 
have been associated with an increased risk of obesity [13••, 
14, 15]. This can be explained by physiological changes, 
such as reduced energy expenditure, glucose regulation 
disruption, and changes in appetite-regulating hormones 
(Fig. 1) [16•, 17•, 18, 19]. Moreover, lifestyle choices can 
lead to increased calorie intake, since sleep-deprived indi-
viduals are more likely to indulge in unhealthy eating habits 
[18].

Laboratory studies have shown that sleep deprivation is 
associated with a decrease in the secretion of leptin, a hor-
mone that suppresses hunger, and an increase in ghrelin, 
a hormone that stimulates appetite [2•, 20]. This was fur-
ther supported by a recent meta-analysis conducted by Lin 
et al., which showed that individuals with short sleep dura-
tion have a 14% increase in ghrelin levels compared to those 
with normal sleep duration [17•]. This suggests that sleep 
deprivation could potentially lead to increased hunger and 
food intake, contributing to weight gain [17•]. Furthermore, 
a sleep laboratory cohort study assessed 1202 participants 
from the European NoHoW trial, exploring the connection 
between objective sleep duration and obesity, finding that 
sleeping less than 6 h was associated with increased BMI 
and fat mass [21].

Similarly, another recent systematic review showed that 
short sleep duration was associated with an increased risk of 
metabolic syndrome in cohort studies, while long sleep dura-
tion was not associated with new-onset metabolic syndrome. 
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In cross-sectional studies, both short and long sleep dura-
tions were associated with a high prevalence of metabolic 
syndrome[22•].

Moreover, recent research underscores a significant rela-
tionship between sleep duration and obesity in children, with 
a trend indicating that shorter sleep durations are associated 
with an increased risk of obesity [23–27]. This correlation 
appears to be influenced by a variety of factors, including 
age, gender, and cultural background. Notably, studies con-
ducted during the COVID-19 pandemic, as well as research 
involving children from diverse geographical regions around 
the world, have contributed to these findings [25–27]. There-
fore, it is crucial to consider sleep duration and sleep habits 
when addressing childhood obesity and formulating inter-
ventions to promote healthy weight in children.

Sleep Duration and Lipids

CVDs are influenced by cholesterol levels, particularly low 
levels of high-density lipoprotein (HDL) and high levels of 
low-density lipoprotein (LDL), which can be affected by 
age and gender, reflecting the impact of sex hormones on 
cholesterol metabolism [28]. Recent studies have further 
explored the relationship between sleep duration and cho-
lesterol levels.

A study on 5016 Chinese middle-aged and older 
adults from the China Health and Retirement Longi-
tudinal Study showed varying temporal relationships 
between sleep duration and different cholesterol types 
over 4 years of follow-up; individuals with higher tri-
glycerides tended to sleep longer, and those who slept 
more had lower LDL and total cholesterol levels [29]. 
The strength and direction of these relationships are 
potentially inf luenced by factors like age and BMI. 
Specifically, higher HDL was notably linked to more 
sleep in the future for people aged 60 and above or 
those with a BMI exceeding 25. This association was 

not present in younger individuals or those with a lower 
BMI [29]. This report is supported by data showing 
that the effect of sleep duration on cholesterol levels 
in adolescents appears to be less consistent [30, 31]. 
The underlying reasons for these patterns are yet to be 
determined.

Sleep Duration and Glucose Regulation

There is also a close connection between sleep duration 
and glucose homeostasis. Sleep deficiency can disrupt glu-
cose regulation, leading to insulin resistance and increas-
ing the risk of diabetes [13••, 32, 33]. Several studies have 
demonstrated that short sleep duration is associated with 
an increased incidence of diabetes [18, 34]. In a cohort 
study of 384 Mexican adolescents, Chen et al. observed 
that objectively documented shorter sleep duration and 
a later sleep midpoint were linked to increased insulin 
resistance, as indicated by higher HOMA-IR (Homeo-
static Model Assessment of Insulin Resistance) levels [32]. 
Another recent large study from the cohort of the Korean 
Genome and Epidemiology data over a 16-year follow-up 
linked sleep deprivation to increased T2DM risk [35••]. 
Those sleeping ≤5 h/night had a 17% higher diabetes risk 
(HR, 1.17; 95% CI, 1.02 to 1.33). Notably, the risk varied 
with obesity: non-obese, men, and those under 60 faced 
higher risks with ≤5 h of sleep, while obese individuals 
had risks with >7 h of sleep.

Collectively, the above findings were confirmed by a 
recent systematic review and meta-analysis of 10 studies 
with 107,756 participants that examined the link between 
sleep duration and T2DM risk [3••]. It found both short 
(≤5–6 h/night) and long sleep (>8–9 h/night) increased 
T2DM risk, with relative risks of 1.28 and 1.48, respec-
tively. This supports a U-shaped relationship between 
sleep length and diabetes risk.

Fig. 1  This figure illustrates 
the complex interplay between 
sleep duration, leptin and ghre-
lin secretion changes, increased 
calorie consumption, endothe-
lial dysfunction, and circadian 
rhythm disruptions. These 
factors collectively contribute 
to an increased inflammatory 
response, highlighting the 
importance of adequate sleep 
for maintaining optimal cardio-
metabolic health
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Sleep Duration and CVD

Recent comprehensive studies have delved into the broader 
implications of sleep on CVD risks. A study analyzed data 
from a vast population and emphasized the significance of 
proper sleep duration in reducing CVD risks.

Sleep duration also has an important effect on blood 
pressure levels [3••, 36]. Numerous studies have dem-
onstrated an important association between short sleep 
duration and the risk of developing hypertension [37–39]. 
A systematic review and meta-analysis of cohort stud-
ies showed that both short and long sleep durations are 
associated with a higher risk of developing hypertension 
[13••].

A study analyzed data from 67,250 women and 29,114 
men and explored the link between sleep duration and 
CVD risk [40]. Findings revealed that adhering to a 
healthy lifestyle, including proper sleep duration, signifi-
cantly reduced CVD, coronary artery disease (CAD), and 
stroke risks. Including sleep duration in the lifestyle score 
improved its predictive accuracy, emphasizing the impor-
tance of sleep in cardiovascular health [40].

Recently, Pan et al. conducted a comprehensive meta-
analysis to explore the connection between sleep depri-
vation and the risk of CVD, using data from 18 cohort 
studies focused on adult participants [41]. Their findings 
revealed that individuals sleeping only ≤5 or ≤6 h a day 
faced a heightened likelihood of developing CVDs, with 
a relative risk of 1.09 [41]. Interestingly, the younger 
population, aged ≥18 years, showed a stronger asso-
ciation compared to their counterparts aged ≥40 years, 
emphasizing the significant link between shorter sleep 
durations and increased CVD risks, highlighting the 
potential cardiac advantages of ensuring 7–8 h of sleep 
daily [41].

Another recent systematic review involving 97,837 
participants aged 18–92 studied the relationship between 
sleep and arterial stiffness, a vascular health marker [42]. 
Results indicated that while sleep duration did not gener-
ally affect arterial stiffness, durations over 8 h increased 
pulse wave velocity. Both extended sleep and poor quality 
were linked to arterial stiffness in adults.

Putting it together, sleep duration significantly influ-
ences cardiometabolic health. Ideally, adults should aim 
for 7–8 h of sleep, with deviations linked to increased 
health risks. Disturbed sleep can cause metabolic disrup-
tions, increase cardiovascular risks, affect appetite regu-
lation, and lead to obesity. Additionally, it impacts cho-
lesterol metabolism and glucose homeostasis, elevating 
diabetes risk. Moreover, sleep duration correlates with 
blood pressure regulation. In summary, optimal sleep 
duration is vital for maintaining cardiometabolic balance.

Sleep Irregularity and Cardiometabolic Risk

Irregularities in both the duration and timing of sleep are 
emerging as novel risk factors for CVDs, irrespective of 
traditional CVD risk factors and sleep quantity/quality.

Recent research demonstrates that irregular sleep dura-
tion or timing is associated with adverse metabolic out-
comes such as increased blood pressure, abnormal lipid 
profile, and insulin resistance [43, 44], all of which can 
increase CVD risks, in addition to sleep regularity’s direct 
effect on the cardiovascular system integral rhythmicity.

Irregular sleep can disrupt the circadian rhythm, caus-
ing different sleep-wake disorders [45••]. Those circadian 
rhythm disruptions result in many pathophysiological 
changes, including autonomic nervous dysfunction [46], 
inflammation [47, 48•], and metabolic disorders [49], 
which can increase cardiovascular risks.

There are several measures used to assess sleep regular-
ity [50]. Each measure reflects specific features of sleep 
regularity. Interdaily stability (IS) and intra-individual 
standard deviation (SD) reflect the variability of the over-
all sleep during the monitored period. Sleep regularity 
index (SRI) describes sleep variability between consecu-
tive days. On the other hand, social jetlag (SJL) mainly 
measures sleep regularity throughout the week, and is 
insensitive to day-to-day sleep variability, and reflects the 
misalignment between the body’s internal clock and social 
schedule [50].

A recent study analyzed over 10 million hours of accel-
erometer data from 60,977 UK Biobank participants [51••], 
and showed that higher sleep regularity was associated with 
a 20–48% lower risk of all-cause mortality, a 16–39% lower 
risk of cancer mortality, and a 22–57% lower risk of car-
diometabolic mortality across the top 4 Sleep Regularity 
Index (SRI) quintiles compared to the least regular quintile 
[51••]. Sleep regularity was found to be a stronger predic-
tor of all-cause mortality than sleep duration. The findings 
suggest that sleep regularity is a vital predictor of mortality 
risk and may be another practical focus for enhancing health 
and longevity rather than just sleep duration.

The relation between sleep regularity and hypertension 
seems to vary according to the sleep regularity measure 
studied. Some studies have demonstrated a link between 
SRI, IS, and hypertension [44, 52]. On the other hand, the 
link between SJL, SD, and hypertension was less consist-
ent [53–57]. These differences could be attributed to the 
different study designs used as well as to the sleep regular-
ity measures studied with measures like SRI and IS, being 
more sensitive in covering all the sleep-wake information 
throughout the recording period [50].

Of the sleep regularity measures, SD and IS exhibit a 
more consistent association with glycated hemoglobin A1c 
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(HbA1c) levels in individuals with diabetes compared to 
the general population [43, 52, 53, 58–60]. There is also a 
link between SRI and diabetes, glucose levels, and HbA1c 
[44, 61]. On the other hand, SJL effect on glucose metabo-
lism varies according to age [50, 56, 57, 60, 62].

The relation between obesity and sleep regularity varies 
according to the specific measure used. For example, SRI 
demonstrated a significant association with obesity [44]. 
On the other hand, the relationship between IS and obesity 
seems less consistent [52]. As for the relationship between 
obesity and SJL, the results are mixed, with adults showing 
a stronger association between SJL and obesity when com-
pared to children and adolescents [55–57, 63–65]. However, 
a recent study of 277 adolescents demonstrated that the asso-
ciation of visceral adiposity with MetS is worse among those 
with circadian misalignment, delayed sleep phase, an irregu-
lar sleep-wake cycle, or greater SJL [66•]. It also appears 
that SD of sleep duration has a stronger link to obesity and 
BMI compared to sleep timing [53, 58, 67, 68].

Evidence linking irregular sleep with CAD is limited, but 
two studies offer some insights into potential associations. 
In a study of almost 2000 participants, those with greater 
variability in sleep duration and onset were more likely to 
develop cardiovascular events [69•]. Another study involv-
ing 1978 adults found that participants with higher sleep 
irregularity exhibited a 10-year increased risk of cardiovas-
cular disease [44].

Current research suggests that irregular sleep patterns, 
including variations in sleep duration and timing, are emerg-
ing as novel risk factors for cardiometabolic disorders. 
However, the evidence is less solid and varies depending on 
the specific measure used. Future research should focus on 
refining sleep regularity measures, investigating potential 
underlying mechanisms, and conducting longitudinal studies 
to establish causality. Additionally, potential confounding 
effects of other sleep disorders and lifestyle factors should 
be considered in future studies.

Obstructive Sleep Apnea 
and Cardiometabolic Risk

Obstructive sleep apnea (OSA) is the most common sleep-
related breathing disorder (SDB), affecting approximately 
34% of men and 17% of women aged 30 to 70 [70]. OSA is 
characterized by recurrent episodes of partial or complete 
upper airway collapse during sleep, causing cyclical epi-
sodes of hypoxemia, hypercapnia, and sleep fragmentations. 
This results in sleep disruption, fluctuations in intrathoracic 
pressure, and increased sympathetic nervous system activ-
ity [71]. Intermittent hypoxia also produces oxygen-free 
radicals, which lead to an enhanced inflammatory response. 
Over time, this can heighten the risk of cardiovascular 

diseases, including systemic hypertension, congestive heart 
failure, arrhythmias, atherosclerosis, stroke, and pulmonary 
hypertension [71, 72].

OSA and Cardiovascular Risks

OSA has been associated with various cardiovascular disor-
ders. Recent findings have emphasized the role of hypoxia 
burden in predicting cardiovascular disease (CVD) outcomes 
in OSA patients [73]. This burden reflects the extent, depth, 
and duration of OSA-related low oxygen levels. It has been 
linked to increased CVD mortality and other adverse health 
impacts [74••, 75••]. Trzepizur et al. demonstrated that 
hypoxia burden and the percentage of sleep time with oxy-
gen saturation <90% were significantly associated with the 
incidence of cardiovascular events in a clinical cohort of 
more than 5300 individuals with OSA [75••].

Furthermore, a recent cohort study from Hong Kong 
with 1860 participants examined the relationship between 
sleep parameters and major adverse cardiovascular events 
(MACEs) over a median of 8.3 years [76••]. The study 
found that the AHI was not a consistent predictor of MACEs. 
Instead, the duration of sleep with oxygen saturation below 
90% (TST90) and both wake and nocturnal heart rate were 
more reliable indicators. This suggests that TST90 and mean 
heart rate are better predictors for MACE in OSA patients 
than AHI. However, a randomized controlled trial study 
indicated that OSA does not necessarily increase cardio-
vascular events in non-sleepy patients with ACS, and the 
use of CPAP does not significantly reduce this prevalence, 
highlighting the intricate relationship between OSA and car-
diovascular risk [77•]. Therefore, future research endeav-
ors should aim to uncover the underlying cardiometabolic 
complications in OSA and design personalized treatment 
strategies, while also validating these study results across 
diverse populations.

Moreover, OSA and CVD share common risk fac-
tors, such as obesity, insulin resistance, incident diabetes, 
and dyslipidemia [78, 79•, 80]. Recent epidemiological stud-
ies demonstrated that individuals with OSA are more likely 
to have MetS [81–84].

The American Heart Association (AHA) advocates for 
screening OSA in patients with certain cardiovascular condi-
tions, such as resistant hypertension, pulmonary hyperten-
sion, and recurrent atrial fibrillation [85]. It also suggests 
considering sleep apnea evaluation in patients with tachy-
brady syndrome, ventricular tachycardia, or those who have 
survived sudden cardiac arrest, especially if sleep apnea is 
suspected after a comprehensive sleep assessment.

As a sleep medicine specialist, understanding this con-
nection is crucial in OSA patient care and risk evaluation. 
Continued research is vital to deepen our comprehension of 
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this relationship and tailor treatments for OSA patients with 
higher cardiovascular risks.

Figure 2 illustrates the relationship between OSA and 
cardiovascular risks

The Relationship Between OSA and Hypertension

Hypertension is common in OSA patients, with estimates 
suggesting that 30 to 50% of hypertensive patients have 
coexisting OSA. Conversely, half of OSA patients have 
comorbid hypertension [72]. Despite the shared risk fac-
tors between hypertension and OSA, such as obesity and 
metabolic syndrome, their relationship is independent [86]. 
Furthermore, the ESADA group’s recent study demonstrated 
the significance of monitoring bicarbonate levels to under-
stand hypertension pathophysiology in OSA patients [87].

There is significant evidence to support using CPAP in 
hypertensive OSA patients. CPAP treatment leads to a drop 
of 2 to 2.5 mmHg in systolic blood pressure (SBP) and 1.5 
to 2 mmHg in diastolic blood pressure (DBP); this response 
seems to be more pronounced in patients with resistant 
hypertension [88, 89]. Although this reduction may appear 
modest, research suggests that even a slight decrease can 
positively impact cardiovascular risk [90]. In a recent study 
of hypertensive OSA patients from the ESADA cohort with 
a follow-up of 2–36 months, the initiation of positive air-
way pressure (PAP) treatment led to significant reductions 

in systolic and diastolic blood pressure (BP). BP control 
showed marked improvement post-PAP treatment, especially 
for those on monotherapy [91•]. Notably, the improvement 
in BP dependent on antihypertensive treatment was found 
to be independent of any confounders [91•]. Moreover, a 
recent large clinical trial assessed the prolonged impacts of 
OSA and CPAP on BP in patients with ACS, and segre-
gated patients into three groups based on OSA diagnosis and 
CPAP adherence [92••]. After an average of 41.2 months, 
there were no significant BP differences between OSA and 
non-OSA groups. However, a notable BP rise was observed 
in patients with AHI > 40 [92••]. Remarkably, persistent 
adherence to CPAP treatment led to a BP reduction after 18 
months, especially in severe OSA patients, suggesting that 
consistent CPAP treatment can mitigate this rise.

OSA and Heart Failure

Heart failure (HF) is a significant cardiac outcome in OSA 
patients [93]. Among HF patients, the OSA prevalence 
ranges from 15 to 50% [94•]. Several mechanisms explain 
OSA’s effects on HF, including intrathoracic pressure 
changes during sleep and sympathetic nervous system acti-
vation from hypoxia [95].

Multiple mechanisms underlie the pathophysiological 
effects of OSA on HF. Apneic events during sleep cause 
intrathoracic pressure changes, increasing venous return 

Fig. 2  It illustrates the relation-
ship between obstructive sleep 
apnea (OSA) and cardiovascu-
lar risks. It shows how OSA, 
through mechanisms such as 
hypoxia, hypercapnia, arousals, 
and intrathoracic pressure fluc-
tuations, can lead to increased 
sympathetic activity, oxidative 
stress, inflammatory response, 
and endothelial dysfunction, 
which in turn contribute to 
cardiovascular conditions like 
hypertension, heart failure, ath-
erosclerosis, arrhythmias, and 
coronary heart disease
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and left ventricular afterload while decreasing stroke vol-
ume (SV) [95]. This, coupled with sympathetic nervous sys-
tem activation from hypoxia and frequent arousals, results 
in tachycardia, vasoconstriction, and elevated myocardial 
oxygen consumption, thereby increasing myocardial infarc-
tion risk [95]. Hypoxia independently predicts ventricular 
dysfunction and impairs myocardial contractility, leading 
to oxidative stress, myocardial damage, and reduced left 
ventricular ejection fraction (LVEF) [96]. Furthermore, 
hypoxia-induced pulmonary hypertension amplifies right 
ventricular afterload, promoting HF onset [95].

CPAP treatment offers several benefits for HF patients, 
including reduced sympathetic activity, blood pressure, 
myocardial oxygen consumption, improved cardiac func-
tion, and fewer HF-related hospitalizations [97]. However, 
it does not consistently improve LVEF in OSA patients with 
stable systolic dysfunction [97], so its long-term advantages 
for HF patients remain under study.

OSA and Atrial Fibrillation

OSA is a standalone risk factor for atrial fibrillation (AF). 
Severe OSA patients have a four-fold higher AF incidence 
than non-OSA individuals, and there seems to be a poten-
tial dose-response relationship between OSA severity and 
the risk of AF [98]. The proposed mechanisms behind this 
involve a mix of acute atrial stimulation and long-term 
changes, such as chronic electrical and structural alterations 
[99]. Understanding these mechanisms can help develop new 
treatments and optimize current ones.

A recent study found that the AF incidence was 88% 
higher in OSA patients, with both age and hypertension 
reinforcing this association [100]. Additionally, AF-related 
OSA patients experience higher cardioversion recurrence 
rates and increased catheter ablation failures [99].

CPAP therapy remains the primary and preferred treat-
ment for OSA. Li et al.’s 2021 meta-analysis, encompass-
ing nine studies with 14,812 participants, suggested that 
CPAP might decrease AF in patients not undergoing rhythm 
adjustment or direct cardioversion [101•]. Yet, a recent ran-
domized controlled trial indicated that CPAP treatment did 
not significantly lower the likelihood of AF recurrence post-
ablation for patients with paroxysmal AF and OSA [102].

These findings suggest the importance of considering this 
relationship for future AF prevention strategies.

OSA and Coronary Artery Disease

Repetitive low-oxygen cycles in OSA lead to chronic and 
acute changes like intermittent hypoxia, acidosis, sympa-
thetic overactivation, inflammation, oxidative stress, insu-
lin resistance, elevated lipids, and endothelial dysfunction, 

which can promote atherosclerosis and contribute to CAD 
development and plaque instability [103].

Current evidence indicates an increased risk of CAD in 
OSA patients [104]. More than 70% of patients with acute 
CAD have undiagnosed OSA [105•]. Additionally, OSA has 
been linked to an increased risk of nocturnal ischemic events 
[105•].

A post hoc examination of the OSA-ACS project, which 
sequentially enrolled ACS patients and performed overnight 
sleep studies from June 2015 to January 2020, explored the 
relationship between OSA and long-term cardiovascular 
risks in ACS patients revealed that ACS patients with hyper-
tension, especially severe hypertension, had an elevated risk 
of major cardiovascular events due to OSA [106••]. How-
ever, this was not the case for ACS patients without hyper-
tension, highlighting the importance of identifying OSA in 
ACS patients with hypertension.

In OSA patients with CAD comorbidity, CPAP therapy 
has shown reduced cardiovascular events and mortality 
[107].

CPAP Therapy and Cardiovascular Outcomes

Although CPAP therapy has been found to lessen systemic 
inflammation and is correlated with a tendency towards a 
lower risk of cardiovascular incidents, its influence on the 
risk of heart attacks and acute coronary syndrome (ACS) is 
still under discussion.

OSA, linked to elevated cardiovascular risks, has been 
studied for the potential benefits of CPAP treatment. While 
observational research supports CPAP’s positive effects 
[108–110], many recent RCTs have shown limited benefits, 
especially in non-sleepy patients with severe conditions. 
However, prior research has not fully addressed the diverse 
nature of OSA, which has multiple subtypes due to various 
factors like anatomy, inflammation, and obesity. This diver-
sity leads to different physiological issues [111•, 112]. New 
studies have pinpointed markers related to OSA’s hypoxic 
burden and cardiac response as indicators of OSA’s impact 
on health and treatment outcomes, potentially aiding in CVD 
risk categorization [111•]. CVD risk linked to OSA var-
ies based on factors like age, gender, symptoms, and OSA’s 
physiological effects, phenotypes, and endotypes [113•, 
114]. Previous trials have not focused on patient subgroups 
most vulnerable to CVD or responsive to treatments, propos-
ing specific apnea-related measures for risk and intervention 
targeting. The International Collaboration of Sleep Apnea 
Cardiovascular Trialists (INCOSACT initiative) emphasizes 
considering the individual differences in OSA and enhancing 
treatment adherence [115].

Surprisingly, in the cohort study from Hong Kong, the 
application of regular CPAP treatment did not reduce MACE 
occurrences in patients with moderate to severe OSA [76••]. 
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Yet, a distinct subgroup, characterized by younger age, higher 
obesity, increased severity of OSA, and more cardiovascular 
risks, did exhibit a reduced risk of MACEs when subjected to 
regular CPAP treatment. Moreover, a recent cohort study with 
a follow-up period of 5 years reported that the presence/sever-
ity of OSA and its related PSG parameters were not associated 
with worse cardiovascular/mortality prognosis in patients with 
resistant hypertension [116]; however, the study showed that 
CPAP treatment might be protective in individuals with mod-
erate/severe OSA. These findings emphasize the need for a 
tailored approach to treating OSA, particularly by identifying 
patients with specific clinical markers who are most likely to 
benefit from CPAP. Building upon this, a recent preliminary 
report of an IPD meta-analysis of RCTs, which evaluated 
4186 patients, mostly hypertensive men with moderate OSA, 
found that while the initial risk of major cardiovascular events 
was similar regardless of CPAP use, consistent adherence to 
CPAP significantly reduced the risk [117]. While these find-
ings are still preliminary, they highlight the critical role of 
CPAP adherence for secondary cardiovascular prevention in 
OSA patients, reinforcing the notion that consistent treatment 
is crucial, despite ongoing debates about the overall effective-
ness of CPAP in reducing cardiovascular events.

In summary, it is vital to realize OSA’s multifaceted link 
with CVD, stressing the importance of recognizing OSA’s 
diversity in research and adherence to treatment. More 
robust trials are needed before dismissing CPAP for high-
risk OSA patients. Enhanced collaboration among specialists 
and tailored risk assessments utilizing emerging biomarkers 
in CVD risk assessment are essential.

OSA Paradox and Hypoxia Preconditioning

Despite the understanding that OSA exacerbates CVD risk, 
a recent analysis from the Veterans Health Administration 
(1999–2020) offers a fresh perspective on OSA and CVD 
[118•, 119]. Of 72,036 veterans hospitalized for acute MI, 
obese veterans with OSA had the lowest in-hospital mortal-
ity. After adjustments, compared to non-obese patients with-
out OSA, the mortality odds ratio was marginally higher for 
obese individuals without OSA, but notably lower for those 
with OSA, regardless of obesity [118•]. The data hints at a 
potential protective role of OSA in acute MI, especially for 
the obese, underscoring the intricate relationship between 
OSA, obesity, and CVD and emphasizing the need for fur-
ther research.

Insomnia and Cardiometabolic Risk

Nearly 20–30% of the general population suffers from 
symptoms of insomnia, with 8–10% fulfilling the criteria 
for a chronic insomnia disorder [120]. There is substantial 

evidence linking acute and chronic insomnia to adverse 
long-term health outcomes and negatively impacting the 
quality of life [121].

Insomnia is characterized by cerebral excitability or 
hyperarousal state [122]. This hyperarousal stems from 
the elevated overall metabolic rate during both sleep and 
wakefulness [123]. The increase in systemic inflammation, 
the dysregulation of the HPA axis leading to increased cor-
tisol secretion in the early stages of sleep, in addition to 
the abnormal modulation of the autonomic nervous system 
(ANS), causing increased sympathetic activity and reduced 
parasympathetic activity, which contributes to adverse car-
diovascular outcomes [1••, 122, 124].

Recent research indicates that insomniac patients, par-
ticularly those with objective short sleep duration, are at 
increased risk for various CVDs [1••], including hyper-
tension, CAD, AF, and HF [121, 125, 126]. In a 16-year 
cohort study examining younger veterans, insomnia was 
linked to a 32% increased risk of AF and an earlier onset 
of AF by up to 2 years [127]. This association remained 
consistent even after accounting for factors like OSA. Fur-
ther research is needed to determine if treating insomnia 
can reduce AF risk.

There also appears to be a relation between insomnia and 
HTN [128], and in population-based studies based on self-
reported data, there was a significant link between insom-
nia, whether defined as a symptom or a disorder, and HTN 
[129–132]. A study using a US medical claims database 
revealed that within a year, 40.9% of untreated insomnia 
patients had arterial hypertension, compared to 26.3% in 
the non-insomnia group [133•], and the annual occurrence 
rate of arterial hypertension was notably higher among those 
with insomnia, with a marked difference of 44.20 (95% CI 
43.76, 44.60) [133•]. This underscores a significant link 
between untreated insomnia and increased hypertension risk, 
which is supported by an earlier meta-analysis of prospective 
cohort studies, which estimated the risk of developing HTN 
with insomnia to be 5 to 20% [134].

A more recent systematic review and meta-analysis 
found a notable link between insomnia and an elevated 
risk of hypertension, particularly in individuals struggling 
with maintaining sleep and early morning awakenings; 
however, this correlation was significant mainly in Euro-
pean populations [135]. These findings could be crucial 
for preventing hypertension in those experiencing insom-
nia symptoms.

A more recent systematic review analyzed 21 studies, 
including 388,906 insomnia patients and 2,194,211 healthy 
subjects [136••], with a follow-up duration ranging from 3 to 
19.6 years, showed that risks for CV mortality and MI were 
significantly higher in patients with insomnia (Relative Risk 
(RR) 1.53, p < 0.01, and RR 1.48, p = 0.03, respectively). 
The risk for all-cause mortality and CV disease incidence 
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was also significantly higher in insomnia patients (RR 1.14, 
p = 0.03, and RR 1.31, p < 0.01, respectively). Regarding 
CV disease incidence, the researchers found that CV events 
increased non-significantly up to 10 years (RR: 1.40, 95% CI 
[0.99–1.98], p-value = 0.06, I2 = 98%). However, consistent 
trends with the overall result were observed at 10–20 years, 
which revealed a significantly higher incidence of CV events 
among insomnia patients vs. those without insomnia.

Several cross-sectional and longitudinal studies have 
reported significant associations between insomnia symp-
toms and metabolic markers such as insulin resistance, high 
fasting glucose levels, and the presence of T2D [137–139]. 
A recent systematic review of 12 studies revealed that 
insomnia increases the risk of developing metabolic syn-
drome components: hypertension by 41%, hyperglycemia 
by 29%, and obesity by 31%. However, there was no identi-
fied conclusive link between insomnia and hyperlipidemia 
[140]. On the other hand, genetically predicted insomnia 
consistently showed associations with higher BMI, triglyc-
eride levels, and lower levels of high-density lipoprotein 
cholesterol [141].

A recent study that analyzed data from 2861 patients, 
with 8954 observations, obtained from two prospective 
cohorts (PsyMetab and PsyClin) [142•] concluded that 
insomnia disorders were significantly associated with meta-
bolic disorders and risk of death.

In light of the above discussion, it is evident that insom-
nia is intricately linked with heightened cardiometabolic 
risk. As we move forward, research efforts must be directed 
towards establishing the causal relationship between insom-
nia and cardiometabolic risk factors, scrutinizing the inter-
play between insomnia and sleep duration on cardiometa-
bolic risk, probing into potential moderating factors such 
as age and baseline hypertension, evaluating the impact of 
different insomnia subtypes on cardiometabolic risk, and 
undertaking longitudinal and intervention studies. By filling 
these research voids, we can gain a more nuanced under-
standing of the complex interplay between insomnia and 
cardiometabolic risk, thereby paving the way for more effec-
tive prevention and treatment strategies for both insomnia 
and cardiometabolic diseases.

Restless Leg Syndrome And Cardiometabolic 
Risk

Restless leg syndrome (RLS) is a common sleep disorder 
affecting 3 to 10% of adults [143••]. It is characterized by 
an unpleasant sensation in the lower limbs, which is worse 
at rest and improves with movement [143••]. RLS symp-
toms have circadian patterns and are worse at night, causing 
sleep disruption, which affects sleep duration and quality 
[144]. Many studies have shown that RLS patients have a 

higher risk of developing CVDs and other chronic diseases 
[145, 146].

Although it is unclear how RLS could lead to CVDs, sev-
eral mechanisms have been suggested. RLS causes sleep 
disruption and negatively impacts sleep quality, increasing 
inflammatory responses such as eosinophil, platelet, C-reac-
tive protein-to-albumin ratio, neutrophil-to-lymphocyte ratio 
monocyte-to-lymphocyte ratio, platelet-to-lymphocyte ratio, 
and monocyte-to-lymphocyte ratio [147]. These inflamma-
tory markers are known to contribute to the development 
of CVDs and have been linked to elevated blood pressure, 
CHD, and cardiovascular mortality [148].

A recent study evaluated the levels of proteins KNG1 
and A1AT in patients with high-severity RLS and healthy 
controls [149]. It found elevated KNG1 and reduced A1AT 
levels in High Severity-RLS patients, independent of factors 
like age or smoking. The results suggest that these proteins 
are potential biomarkers for CVD risk in HS-RLS patients.

Moreover, dopamine deficiency in RLS can result in loss 
of inhibition in the spinal cord somatosensory and sympa-
thetic pathways. This may lead to increased sympathetic 
activation, potentially increasing the risk of hypertension, 
CVDs, and stroke [146]. Impairment in the arterial barore-
flex and increased peripheral vascular resistance, possibly 
due to sympathetic activity increase, may also contribute to 
CVDs [150]. Furthermore, patients with RLS display noc-
turnal blood pressure irregularities and factors like endothe-
lial dysfunction and hypoxia, and a significant increase in 
total cholesterol and low-density lipoprotein cholesterol, 
elevating their CVD risk [147, 151].

Nearly three-quarters of RLS patients have periodic limb 
movements, which has also been linked to a higher risk of 
CVDs [152, 153]. A study examined the prevalence of RLS 
and PLMS in the Multi-Ethnic Study of Atherosclerosis. 
Findings indicated that 7% of participants had both condi-
tions, with variations based on age and ethnicity but not by 
sex or obesity [154].

A 2017 systematic review of 18 cohorts by Kendzerska 
et al. examined the potential of RLS and PLMS as predic-
tors for cardiovascular events (CVE) and overall mortality 
in adults [153]. The meta-analysis indicated a significant 
link between RLS and CVE, especially in severe and pro-
longed cases. However, the connection between RLS and 
overall mortality was less clear. On the other hand, all 
studies showed a positive correlation between PLMS and 
CVE/mortality, especially when accompanied by arousals 
[153]. The current evidence suggests that PLMS might 
be a significant prognostic factor for CVE and mortal-
ity. A 2023 systematic review and meta-analysis evalu-
ated the association between PLMS and hypertension, 
including six observational studies, with 8949 participants 
demonstrating that the pooled risk ratio of hypertension 
in patients with PLMS was found to be 1.26 (95% CI, 



43Current Sleep Medicine Reports (2024) 10:34–50 

1.12–1.41) [155••]. The results of this analysis indicate an 
increased risk of hypertension among patients with PLMS. 
However, prospective or interventional studies are needed 
to confirm this association. In a recent study, data were 
collected retrospectively from the Truven Health MarketS-
can Commercial Claims and Encounters database [156•]. 
The study examined 169,393 individuals, including 24,199 
diagnosed with RLS who were then prospectively moni-
tored for specific outcomes. Findings showed that RLS 
patients had an increased CVD risk, but treatment effec-
tively lowered this threat. While untreated RLS patients 
had a higher adjusted hazard ratio for future CVD, all RLS 
treatments, except for ergot-dopamine, reduced the CVD 
risk [156•], suggesting that while RLS is associated with 
a higher future CVD risk, the treatment of RLS can sig-
nificantly reduce this risk.

Recent evidence indicates that RLS patients are at a 
heightened risk for CVD and other chronic conditions. 
Given this, it is imperative for future studies to investi-
gate the mechanisms linking RLS to these diseases and to 
pinpoint potential biomarkers indicating CVD risk among 
RLS sufferers. Therefore, examining the efficacy of differ-
ent treatments in mitigating CVD risks and exploring non-
drug solutions for RLS symptoms is crucial. By expanding 
on this knowledge, we aim to enhance the well-being of 
RLS patients and minimize their chances of severe health 
issues.

Conclusions

Sleep plays a major role in regulating and maintaining 
human body functions, including cardiovascular func-
tion, blood glucose, lipids, and hormone secretion. In this 

review, we explored recent data on the consequences of 
insufficient and irregular sleep and other common sleep 
disorders on cardiometabolic risk and attempted to under-
stand the possible mechanisms behind this relationship. 
Sleep duration, sleep regularity, and disorders such as 
OSA, insomnia, and RLS have been associated with the 
development of obesity, hypertension, hyperlipidemia, 
inflammation, diabetes, CVDs, and cardiac disease-related 
mortality. Table 1 offers an overview of the main results 
presented in the paper, emphasizing the profound influ-
ence of sleep disorders on cardiometabolic well-being.

The current evidence suggests that sleep duration and 
regularity significantly influence cardiometabolic health. 
Optimal sleep is vital for maintaining cardiometabolic bal-
ance. Sleep disorders such as OSA, insomnia, and RLS 
have been linked to increased cardiometabolic risk, high-
lighting the need for further research to better understand 
these relationships and identify interventions to reduce 
risks caused by sleep disorders. By expanding our knowl-
edge in this area, we aim to enhance the well-being of indi-
viduals with sleep disorders and minimize their chances of 
severe health issues.
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Table 1  Key findings discussed in the paper, highlighting the significant impact of sleep disorders on cardiometabolic health

Sleep disorder Impact on Cardiometabolic Risk

Sleep duration Both short and long sleep durations have been linked to the development of obesity, hypertension, hyperlipidemia, 
inflammation, diabetes, cardiovascular complications, and related mortality. The optimal sleep duration for adults is 
7–8 h, with deviations linked to increased health risks.

Obstructive sleep apnea Associated with the development of obesity, hypertension, hyperlipidemia, inflammation, diabetes, cardiovascular 
complications, and related mortality. Causes sleep disruption, fluctuations in intrathoracic pressure, and increased 
sympathetic nervous system activity

Sleep irregularity Irregularities in both the duration and timing of sleep are emerging as novel risk factors for cardiometabolic disorders. 
Irregular sleep can disrupt the circadian rhythm, causing different sleep-wake disorders. This can result in many 
pathophysiological changes, including autonomic nervous dysfunction, inflammation, and metabolic disorders, 
which can increase cardiovascular risks.

Insomnia Associated with the development of obesity, hypertension, hyperlipidemia, inflammation, diabetes, cardiovascular 
complications, and related mortality

Restless leg syndrome Associated with the development of obesity, hypertension, hyperlipidemia, inflammation, diabetes, cardiovascular 
complications, and related mortality
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