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Abstract
Purpose of Review Modern social life often demands aberrant light exposures (i.e., jet lag, shift work, or nocturnal life style),
which results in desynchronization and misalignment of circadian rhythms. Experimental and epidemiological data suggest that
circadian disruption, caused by genetic manipulations or forced light/dark conditions, promotes cancerogenesis. Human genetic
studies highlight the contribution of individual clock genes to this process, though the exact function is somewhat controversial.
Recent Findings Multiple reports demonstrate an association of genetic variations within clock genes with risk of tumor devel-
opment. Mutations or deregulated expression of clock genes are frequently detected in different tumors and often show corre-
lation with cancer progression and patient prognosis. Cellular studies report contradictory results that clock genes can inhibit as
well as support tumor growth and proliferation in different cells.
Summary Clock genes appear to have multifaceted functions during cancer development and can act both as tumor suppressors
or promote cancerogenesis depending on the particular type of tumor. However, the exact conditions and factors which determine
such behavior remain elusive and must be investigated in future studies.
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Introduction

In essentially all living organisms, from cyanobacteria to
humans, physiological and behavior responses are manifested
in 24-h cycles, thereby, improving metabolic fitness and sur-
vival under daily changes of food availability, temperature,
and light. The circadian system in mammals has a complex
hierarchical structure with central clock and peripheral oscil-
lators. The central clock resides in the suprachiasmatic nuclei
(SCN) of the brain and perceives light information directly
from the retina via optical nerves [1]. In contrast, other organs
contain peripheral clocks, which encompass single-cell oscil-
lators found in virtually all cells of the body or cultured cell
lines [2]. Entrainment of peripheral oscillators by SCN via

humoral and neuronal pathways, or temperature, is crucial to
maintain synchrony of central and peripheral body clocks be-
tween each other and the external environment [2].
Alternative entraining cues, such as food, can also reset pe-
ripheral clocks independent of SCN and shift the balance in
the internal synchrony [3].

The molecular apparatus of the circadian system consists of
several clock genes interlocked in the cell autonomous net-
work of transcriptional-translational feedback loops (TTLs).
Transcription factors CLOCK and BMAL1 heterodimerize to
induce expression of negative regulators Periods (PER1-3)
and Cryptochromes (CRY1-2). Translated PERs and CRYs
gradually accumulate in the cytoplasm and formmacromolec-
ular complexes up to 1 MDa, that later translocate into the
nucleus to repress CLOCK and BMAL1 [4]. Consequent deg-
radation of PERs and CRYs allows CLOCK and BMAL1 to
launch a new cycle of transcriptional activity, resulting in 24 h
oscillations of transcription [5]. Additionally, a family of nu-
clear receptors REV-ERBs (α and β) and RORs (α, β, and γ)
controls rhythmic expression of BMAL1 gene and other tar-
gets through competitive binding to cognate response ele-
ments in the promoter region [6]. The molecular clockwork
impacts cellular and tissue physiology via the large network of
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clock-controlled genes (CCGs), whose rhythmic expression is
regulated by different clock factors on transcriptional and
posttranscriptional levels [7, 8].

Tumor-Protective Function of the Circadian
Clock

Extensive experimental evidence, obtained on laboratory ani-
mals, demonstrates that disruption of circadian rhythms often
leads to malfunction of diverse physiological processes [9].
Thus, the question whether circadian disturbances affect hu-
man health in similar manner became a subject of intensive
investigations. Indeed, multiple epidemiological studies
showed that impaired function of the circadian clock promotes
development of different disorders, such as metabolic syn-
drome, cardiovascular disease and cancer [10]. Light exposure
at night, shorter sleep duration, and irregular food intake,
along with high caloric diets are inevitable attributes of the
modern postindustrial society, and cause desynchronization of
body clocks. In turn, circadian disruption impacts multiple
aspects of human health potentially leading to impaired me-
tabolism and cancer [11, 12]. Indeed, prolonged shift work
and chronic jet lag were associated with development of can-
cer [13–15]. Accumulating evidence in this field prompted the
World Health Organization (WHO) to include shift work in
the officially recognized list of cancerogenic factors as
Bprobably carcinogenic to humans^ [12, 16].

Animal models of circadian disruption, such as chronic jet
lag or constant light exposure, clearly demonstrate that the
presence of an intact circadian clock system exerts a tumor
suppressive function [17–19, 20•]. Furthermore, genetic abla-
tion of clock genes in mice resulted in higher frequency of
spontaneous and induced tumors [21, 22••]. Consistently, ex-
pression of certain clock genes, such as Per2, also suppressed
proliferation in murine cancer cells [23]. Together, these find-
ings suggest that synchrony of the circadian system and intact
molecular clocks are required to maintain both healthy ho-
meostasis in cell division and to prevent cancer.

Influence of Human Clock Genes on Cancer

Genomic alterations involving clock genes, such as point mu-
tations or copy number variations (CNV), are frequently
found in different human cancers (Table 1). As a consequence,
tumors often show deregulated expression of clock genes
(Table 1). Additionally, human geneticists identified in circa-
dian genes polymorphic regions and small genetic variations,
such as single nucleotide polymorphisms (SNPs), which may
profoundly affect the function of the gene [25]. In turn, certain
polymorphic alleles showed higher frequency of occurrence in

different cancer samples, correlating with their malignancy
and clinical outcome.

BMAL1

In mice, genetic ablation of single clock gene Bmal1, the part-
ner of Clock, yielded arrhythmic locomotor activity accompa-
nied by multiple pathological conditions, including accelerat-
ed aging and cancer [21, 26, 27, 28•]. Tissue-specific deletion
of Bmal1 in skin resulted in disrupted proliferation of
keratinocytes, resembling a pre-cancerous state [29]. In line
with these observations, several studies reported reduced ex-
pression of BMAL1 in different types of human malignancies
[30–33]. Moreover, certain genetic variants of BMAL1 gene
(rs2278749) negatively correlated with risk of breast cancer
[34]. Finally, ectopic expression of BMAL1 efficiently
inhibited proliferation of cancer cells, highlighting the tumor
suppressor function of this gene [35, 36].

Concurrently, other groups reported results contrasting
with aforementioned previous findings. For instance, expres-
sion of BMAL1 in malignant pleural mesothelioma appeared
to be higher than in normal tissues [37••]. Furthermore,
BMAL1 gene was identified as a survival factor for several
tumors, since it was required to prevent differentiation of can-
cer cells and facilitated their mitosis [37••, 38••], suggesting
that BMAL1 can also promote tumor growth under certain
conditions.

CLOCK

Monoallelic and biallelic mutations of human CLOCK,
resulting in reduced expression of this gene, were reported
in many cases of colorectal cancer [39]. In particular, the trun-
cating mutationCLOCK T8, was observed in 47 of 53 cases of
colorectal cancer, and led to production of aberrant protein.
CLOCK T8 lacked a transactivation domain and acted in a
dominant-negative manner, perhaps, similar to ClockΔ19 mu-
tation in mice [39, 40]. SNP in the 3’UTR of theCLOCK gene
(rs1801260), which was previously associated with diurnal
preference [41], also correlated with development of the colo-
rectal cancer [42]. CLOCK SNPs rs1801260 and rs3749474
associated with survival in patients with the colorectal cancer
[43]. Interestingly, the latter SNP (rs3749474) and another
CLOCK SNP (rs3805151) also significantly correlated with
risk of breast cancer [44–45], suggesting that CLOCK gene
polymorphisms may serve as prognostic markers for cancer
patients.

It is worthwhile to mention that certain types of breast and
colorectal cancers showed higher expression of CLOCK gene
compared to normal tissues [46, 47, 48••]. Additionally,
CLOCK gene variants (SNPs rs7698022 and rs11932595) sig-
nificantly associated with more aggressive ER/PR-negative
tumors, which did not respond to hormone therapy and had
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poorer prognosis [46].Moreover, similar to BMAL1, CLOCK
appeared to be required for proliferation of certain tumors
[38••, 49], arguing against its role as a tumor suppressor gene.

NPAS2

NPAS2 is considered as a functional homolog of CLOCK
with partially overlapping role in the TTLs mechanism [50].
Polymorphisms in the promoter and coding regions
(rs2305160, Ala394Thr) of NPAS2 gene were significantly
associated with increased risk of certain tumors, such as breast
cancer, non-Hodgkin’s lymphomas, hepatocellular carcino-
mas, and melanomas [51–54]. Colorectal cancer showed low-
er expression ofNPAS2 compared to healthy tissues, negative-
ly correlating with tumor size, stage and metastasis.
Subsequent depletion of NPAS2 with siRNA resulted in in-
creased proliferation, migration and invasiveness of tumor
cells [55].

In contrast, NPAS2 expression in hepatocellular carcinoma
cells was upregulated, compared to peri-tumoral tissues, and
positively correlated with both tumor progression and poorer
prognosis. Furthermore, knockdown of NPAS2 in these cells
yielded decreased tumor growth and proliferation, whereas
NPAS2 overexpression produced an opposite effect [56],
asserting that NPAS2 is necessary for development of certain
tumors.

PERs

PERs were the first clock genes linked to the cancer develop-
ment in humans and mice [57–59]. The initial evidence

hinting to the tumor suppressor function of mammalian
PERs originated from experiments on Per2m/m mice, which
developed tumors after γ-irradiation [57]. Indeed, PER2 gene,
transfected in sarcoma cells, suppressed proliferation and tu-
mor growth in a dose-dependent manner [60]. Moreover, an-
tiproliferative properties were also attributed to PER1, which
suppressed cell growth in several tumor cell lines, and showed
reduced expression in lung cancer [61]. Consistently, other
cancers also exhibited decreased activity of PER genes [59,
62–66]. Moreover, lower levels of PERs often correlated with
higher malignancy and poorer survival [30, 63]. Remarkably,
a conserved residue in human PER2, Serine 662, mutated to
Glycine in case of Familial advanced sleep-phase syndrome
(FASPS) [67], played a prominent role in tumorigenesis.
Transfection of PER2 S662G and S662D variants markedly
increased oncogenic transformation and decreased apoptosis
in Per2−/− mouse embryonic fibroblasts (MEFs) [68].

Avariable number tandem repeat (VNTR) sequence within
PER3 gene (rs57875989), containing 4 or 5 copies of a 54-bp
sequence (18 amino acids), was previously linkedwith diurnal
preference (PER3 4/4 evening and 5/5 morning phenotype)
and sleep homeostasis [69]. The same VNTR region showed
significant association with higher risk of breast cancer for
PER3 5/5 carriers [58]. Moreover, individuals carrying five
alleles in PER3 were also more susceptible to formation of
adenomas [70]. Besides this observation, several other poly-
morphic regions in PER3 gene were shown to modify risk of
cancer. For instance, SNP (rs228729) significantly correlated
with risk of lung cancer [64], whereas SNP (rs2640908) asso-
ciated with overall survival in patients with hepatocellular
carcinoma [71].

Table 1 Frequency of genomic alterations of clock genes in cancer according to Catalogue of Somatic Mutations in Cancer (COSMIC) (cancer.sanger.
ac.uk) [24]

Gene Point mutations Copy number variation (CNV) Gene expression

Gain Loss Overexpressed Underexpressed

BMAL1 167/31969 (0.5%) 35/8204 (0.4%) 7/8204 (0.09%) 358/9144 (3.9%) 32/9144 (0.35%)

CLOCK 197/32018 (0.6%) 95/11409 (0.8%) 10/11409 (0.09%) 442/9144 (4.8%) 10/9144 (0.1%)

NPAS2 206/31976 (0.64%) 26/8166 (0.32%) 5/8166 (0.06%) 450/9144 (4.92%) 3/9144 (0.03%)

CRY1 149/31979 (0.47%) 19/7086 (0.3%) 4/7086 (0.06%) 465/9144 (5.1%) 45/9144 (0.49%)

CRY2 133/31976 (0.42%) 35/10854 (0.32%) 8/10854 (0.07%) 355/9144 (3.88%) 39/9144 (0.43%)

PER1 295/32963 (0.89%) 16/11069 (0.14%) 31/11069 (0.28%) 331/9144 (3.62%) 7/9144 (0.08%)

PER2 294/32040 (0.92%) 5/8968 (0.06%) 27/8968 (0.3%) 337/9144 (3.69%) 14/9144 (0.15%)

PER3 270/31977 (0.84%) 19/10926 (0.17%) 31/10926 (0.28%) 396/9144 (4.33%) 0/9144 (0%)

REV-ERBα 150/32069 (0.48%) 188/11344 (1.66%) 6/11344 (0.05%) 486/9144 (5.31%) 222/9144 (2.43%)

REV-ERBβ 133/32158 (0.41%) 19/8078 (0.24%) 14/8078 (0.17%) 430/9144 (4.7%) 31/9144 (0.34%)

RORα 152/32133 (0.47%) 20/10096 (0.2%) 16/10096 (0.16%) 338/9144 (3.7%) 9/9144 (0.1%)

RORβ 8/32069 (0.02%) 20/10575 (0.19%) 13/10575 (0.12%) 325/9144 (3.6%) 0/9144 (0%)

RORγ 211/34156 (0.62%) 308/14638 (2.1%) 4/14638 (0.03%) 781/9144 (8.54%) 14/9144 (0.15%)

TIMELESS 303/32040 (0.95%) 38/9060 (0.42%) 1/9060 (0.01%) 656/9144 (7.17%) 45/9144 (0.49%)
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Nevertheless, expression of PERs is not generally reduced
during cancerogenesis. Significantly higher levels of PER2
mRNA and protein were detected in samples from gastric
cancer [72]. Similarly, expression of PER1 and PER2 posi-
tively correlated with tumor size in colorectal carcinomas
[73]. Therefore, although PERs exhibit mostly antioncogenic
properties, it might not be the case in some specific tumor
types.

CRYs

The link between cancer and CRY genes is particularly
interesting, since mammalian CRYs have high sequence
homology to photolyases, enzymes involved in repair of
the light-induced DNA damage [74]. Indeed, lower expres-
sion levels of CRY1 and CRY2 were reported in different
cancers [75]. Polymorphisms in CRY1 (rs1056560) and
CRY2 (rs1401417) genes also significantly modified risk
of breast cancer [45]. SNP (rs1056560) in 3′UTR region of
CRY1 gene correlated with overall survival in gastric can-
cer and modulated patients’ response to platinum-based
adjuvant chemotherapy [76]. Several genetic variants of
CRY2 showed significant association with susceptibility
to non-Hodgkin’s lymphomas [77].

Interestingly, loss of Cry proteins in murine models signif-
icantly reduced the risk of cancer [78]. In addition, higher
expression of CRY1 correlated with poor prognosis in patients
with colorectal cancer [79], suggesting tumor promoting func-
tions for CRY1.

REV-ERBs and RORs

Activation of both REV-ERBα and β by a synthetic ago-
nist (SR9011) suppressed the viability of breast cancer
cells, hinting at the tumor suppressor potential of these
transcriptional regulators [80]. Nevertheless, certain breast
cancer tumors showed amplification of the genomic re-
gion containing REV-ERBα gene [81, 82]. Proliferation
of highly aggressive ERBB2-positive breast cancer cells
was dependent on REV-ERBα [83]. Moreover, pharmaco-
logical inhibition of REV-ERBs in cancer cells led to en-
hanced cytotoxicity and improved sensitivity to anti-
cancer drugs [84].

A family of RORs include three members (RORα, RORβ,
and RORγ), which antagonize REV-ERBs and activate tran-
scription of target genes [85]. The function of RORs, however,
spans beyond the regulation of circadian rhythms, since RORs
are also implicated in differentiation and maturation of various
cell types [86]. Mounting evidence suggests that RORs may
play a tumor suppressor role in cancer related pathways [87].
Indeed, ligand-induced activation or transfection of exoge-
nous RORα inhibited proliferation and tumor growth in dif-
ferent cancer lines [88–90]. Mice with targeted deletion of

Rorγ were highly susceptible to development of aggressive
highly metastatic T-cell lymphomas [91]. Finally, different
tumors and cancer cell lines showed reduced expression levels
of RORs, often correlating with higher malignancy and poor
prognosis [92–97].

Accordingly, multiple genetic variations within RORs
genes were associated with risk of cancer, such as SNPs in
RORα (rs7164773, rs10519097, rs1482057, and rs12914272
for breast cancer) and RORβ (rs3903529, rs3750420, and
rs7867494 for breast cancer) [34, 44, 98].

Notably, a particular isoform of RORα, RORα2, promoted
cell motility and migration in breast cancer cells and showed
elevated protein abundance in breast cancer tumors [99].
Additionally, expression of RORβ was found to be increased
in the highly metastatic leiomyosarcoma of uterus [100]. In
turn, prostate cancer showed higher expression of RORγ, cor-
relating with malignancy and metastasis. Subsequent siRNA-
depletion of RORγ or treatment with its chemical antagonists
impaired viability of prostate cancer cells and hampered tumor
growth [101••].

TIMELESS

Although, TIMELESS is a mammalian homolog of the bona
fide component of the Drosophila clock, it does not have
clearly assigned function within mammalian TTLs [102].
Nevertheless, TIMELESS was suggested to mediate DNA
damage induced resetting of the circadian clock and facilitate
coupling of the circadian oscillator with the cell cycle [103,
104]. Furthermore, TIMELESS had a critical role in DNA
damage-mediated activation of both check-point kinases
CHK1 and CHK2, thus, influencing proliferation and sensi-
tivity to anti-cancer drugs in tumor cells [103, 105–107].
Consistent with this, deregulated expression of TIMELESS
was documented in several tumors, such as lung and breast
cancers, negatively correlating with patient survival [106,
107]. Genetic variants of TIMELESS gene (rs2291738 and
rs7302060) were also significantly associated with develop-
ment of breast cancer [108].

Conclusions

Experimental studies, in combination with epidemiological
and genetic data, favor the concept that human circadian
clock and, in particular, clock genes play an important role
during tumorigenesis. According to the prevailing hypothe-
sis, clock genes manifest predominantly antioncogenic prop-
erties and inhibit uncontrolled proliferation via homeostatic
regulation of cell division. Altered expression or mutations
of clock genes per se are rather unlikely to be a primary
driver of cancer, though these aspects may definitely con-
tribute to growth and progression of tumors via disrupted
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temporal control of physiology at the local and systemic
levels. On the other hand, clock genes may also support
tumor growth under certain conditions, since many cancers
express high levels of clock genes and require them for
survival. Perhaps, these effects depend on the type of cancer
and the tissue of tumor origin. Indeed, low or high expres-
sion levels of several clock genes in tumors from different
tissues may have opposite prognostic values (Fig. 1). For
instance, high expression of PER1 in stomach cancer had a
negative prognosis on survival of patients, whereas in the
case of liver and cervical cancers—higher expression of
PER1 was linked to a more favorable prognosis [109–111].
Similar phenomena can be also observed for CRY2 and
REV-ERBα (Fig. 1), suggesting that individual mutational

signatures occurring in different cancers may define the
overall influence of clock genes on tumor physiology.
Thus, future research, focused on the exact molecular mech-
anisms determining such tumor-specific behavior, will help
us to improve our comprehension of mutually driven inter-
actions between the circadian clock and cancer.

Compliance with Ethical Standards

Conflict of Interest Anton Shostak declares no conflict of interest.

Human and Animal Rights and Informed Consent This article does not
contain any studies with human or animal subjects performed by any of
the authors.

Stomach cancer Liver cancer Cervical cancer
PE
R

Colorectal cancer Liver cancer Renal cancer

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Years

C
R
Y2

Low expression
High expression

Colorectal cancer Melanoma

R
EV
-E
R
B
α

Unfavourable prognosis

Human Protein Atlas
v17.proteinatlas.org

Years

Years

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Favourable prognosis

Fig. 1 Prognostic value of clock gene expression in different cancers. Kaplan–Meier survival graphs of patient cohorts, grouped upon expression levels
of PER1, CRY2, and REV-ERBα. Images and data available from v17.proteinatlas.org
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