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Opinion statement

Purpose of review Systemic sclerosis (SSc) has been difficult to treat due to disease
heterogeneity and an incomplete understanding of the molecular mechanisms underlying
pathogenesis. Some patients show improvement on existing or experimental therapies
while others show no significant response. Due to these challenges, clinical trials often do
not meet their primary clinical endpoints. Here we review the data-driven
genomewideapproaches that have recently been employed to characterize the molecular
changes observed in SSc patients.

Recent findings Understanding an individual patient’s gene expression phenotype or
genotype, a cornerstone of personalized medicine, has been proposed to help determine
which therapies are most likely to treat their disease. Network and systems biology
methods have been applied to the compendium of publicly available SSc data and suggest
that there are shared mechanisms driving the disease in different organs. Computational
methods have also been applied to meta-analyses of SSc clinical trials. These approaches
have led to the prediction of potential combination therapies that target the multiple
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pathways deregulated in SSc, which can now be tested in the clinic.

Summary Data driven methods to analyze compendia of data are providing additional
insights into SSc and related conditions. Modern bioinformatics and systems biology are
ecosystems of data and code that are growing exponentially. Data integration allows
researchers to combine multiple underpowered studies, a concern in a rare disorder such as

SSc, for greater gain.

Introduction

Genome-scale gene expression data allow us to infer,
from relative mRNA expression measurements, path-
ways that are active in a whole tissue biopsy or sample.
Genome-wide gene expression has been studied in mul-
tiple affected tissues from patients with systemic sclero-
sis (SSc), including skin [1-3], blood [4-6], lung [7, 8],
and esophagus [9¢]. Perhaps, the most prominent fea-
ture of these data is the inherent heterogeneity of mo-
lecular processes perturbed in SSc patients. To that end,
“intrinsic” molecular subsets have been identified by
examining SSc skin gene expression data from three
independent cohorts [1-3]. Furthermore, subsets have
been observed in a small study of esophagus [9e]. A
recent multi-tissue study also suggests that inflammato-
1y subsets found in skin and esophagus share underlying
gene expression patterns and pathways with fibrotic
lung disease [10ee].

Molecular heterogeneity is observed in rheumatic
diseases beyond SSc, and characterizing this heterogene-
ity has proven critical to optimizing treatment for pa-
tients. Individual studies for connective tissue disease
(CTD) have often been underpowered, which is a dis-
tinct limitation. Distinct molecular patterns in blood are
found in patients with rheumatoid arthritis (RA) that
have differential responses to TNF-« [11]. In a longitu-
dinal analysis of pediatric systemic lupus erythematosus
(SLE) blood gene expression, Banchereau, et al. identi-
fied molecular subsets of patients. In addition, the

authors found that plasmablast signatures correlate with
disease activity and that neutrophil transcripts increased
during lupus nephritis progression [12ee]. These results
indicate that molecular phenotyping can simultaneous-
ly measure clinical heterogeneity, response to treatment,
and help us understand disease mechanisms. Some early
studies have identified patterns in cell types thought to
drive disease that are correlated with response to treat-
ment (e.g., methylation patterns in CD4 T cells in RA
[13]). Perhaps the most important recent contribution
of gene expression studies to SSc is the identification of
specific pathways and cell types requiring further study
[10ee, 14]. These associations show significant progress
towards precision medicine in SSc—a necessary prelude
to optimizing clinical practice—that is rooted in an
understanding of disease mechanism.

Herein, we review recent advances in the study of
genome-scale gene expression data in SSc. We discuss
the special considerations when it comes to high-
throughput data analysis of this rare disease. In addition,
we discuss the value of integrating SSc data with the
comprehensive body of biological knowledge outside
of SSc. In the authors’ view, this is necessary because
human tissue biopsies are cell mixtures and because the
reproducible and/or important signals within tissues are
not necessarily single transcript levels, but the
coexpression (correlation of expression) of sets of genes
that represent biological processes [15ee].

Genome-wide gene expression in SSc shows systemic molecular
changes within a patient and multiple gene expression subsets

across the patient population

Prior studies of whole genome gene expression in SSc have demonstrated both
“global” molecular changes in patients with SSc as compared to healthy con-
trols and molecular heterogeneity within the patient population. Whitfield,
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et al. found that lesional and non-lesional skin show highly similar, disease-
specific patterns of expression despite one site showing fibrosis and the other
showing little clinical involvement [16]. This result has been one of the most
reproducible findings and has since been recapitulated in multiple studies
across multiple independent cohorts in skin [1-3, 17e]. A similar result is
observed in lower vs. upper esophagus [9®]. These results suggested the mo-
lecular phenotype that drives SSc disease is truly systemic and is therefore
observed consistently even in tissues that are considered clinically unaffected.
The reason why one of these tissues is clinically affected and one clinically
unaffected despite the same deregulated molecular pathways remains a
mystery.

A second observation that has been reproducible across cohorts is the exis-
tence of multiple gene expression subsets that can be found across the patient
population. Gene expression subsets were first observed in a cross sectional
study of SSc patients that included patients with diffuse and limited cutaneous
disease (dcSSc and 1cSSc, respectively), as well as patients with morphea and
healthy controls [1]. Patient biopsies fell into one of four major subgroups, each
with distinct patterns of gene expression with different deregulated pathways.
These were the inflammatory subset, which included patients with dcSSc, 1cSSc,
and morphea, a fibroproliferative subset composed only of dcSSc patients, a
limited subset composed only of patients with 1cSSc, and normal-like subset is
comprised of a small number of SSc patients that resemble healthy controls and
may represent late stage disease (described in more detail below). Therefore, the
subsets mirror the clinical subtypes to a certain extent, but add supplemental
information. These are referred to as “intrinsic” gene expression subsets because
they are “intrinsic” to a patient. The subsets were re-identified by Pendergrass
et al. in a SSc cohort from Boston University that contained a small number of
longitudinal biopsies [2]. In that study, it was shown that a patient’s gene
expression subset was stable over periods of up to 1 year.

Study of the intrinsic subsets has since moved to studies of therapeutics,
multi-cohort meta-analyses, and other organs. The subsets were again found in
an SSc cohort from Northwestern University examining response to mycophe-
nolate mofetil (MMF) in SSc patients [3]. This study showed that inflammatory
patients were most likely to improve on MMF. A meta-analysis of these three
datasets [1-3] using network-based methods identified a set genes consistently
expressed across the cohorts that recapitulate the intrinsic gene expression
subsets [15@¢]. A recent study by Assassi et al. [17¢], a completely independent
set of investigators from the first three studies, partially recapitulated the in-
trinsic gene expression subsets. An important result from the Assassi et al. paper
is the finding that the normal-like subset is likely to be late stage disease
resulting from patients whose disease has spontaneously improved. This result
is consistent with the Mahoney et al. meta-analysis that found that normal-like
subjects were characterized by a lack of inflammatory and proliferative gene
expression, but no distinct abnormal gene expression.

In other tissues, a study by Taroni et al. analyzed gene expression data from
esophageal biopsies from patients with SSc and found molecular subsets in this
second tissue that appeared to be intrinsic to patients [9e]. Further work
investigated whether the molecular patterns perturbed in skin were similar to
those disrupted in other tissues, including esophagus and lung [10ee]
(discussed in detail in “Systems biology of SSc, data integration, and the
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importance of public data” below). These data suggest that intrinsic molecular
subsets are a common feature of skin and esophagus in patients with SSc and
may share expression patterns with one another and other tissues.

Systems biology of SSc, data integration, and the importance
of public data

The wealth of high-throughput gene expression data collected on SSc can now
be analyzed in aggregate to gain mechanistic insight into the disease. Systems
biology approaches provide a powerful method by which to analyze these data
(Fig. 1). By studying these data, we hope to understand the molecular
abnormalities that distinguish patients with SSc from healthy controls (i.e.,
identify differentially expressed genes) and to quantify heterogeneity (i.e.,

characterize molecular heterogeneity
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Fig. 1. Schematic overview of systems-level approaches to SSc genome-scale data analysis. As a rare disease with no approved
treatments, systemic sclerosis has special considerations when it comes to high-throughput data analysis. When genome-scale
technologies are used to measure mRNA levels, there is considerable noise and typically small sample sizes, particularly in the case
of pilot drug studies. The goal of molecular profiling is to take a steady state snapshot of the biological processes occurring in a
whole tissue at the time of biopsy and infer what cellular states are perturbed in patients as compared to healthy subjects. Recent
advances in systems biology and bioinformatics, notably the development of tissue and cell type-specific gene-gene functional
networks [18] allow us to untangle cell lineages and compare disease-associated genes functions in different tissues, e.g., the
major organs affected by fibrosis in SSc, skin, and lung. State-of-the-art machine learning algorithms can also be used to to
“bolster” differential gene expression analyses in small studies.



The Mechanistic Implications of Gene Expression Studies in SSc  Taroni et al. 185

Box 1. Key concepts in networks and systems medicine.

Systems biology is the study of the interaction of component parts that make up a biological system. For example, the crosstalk
between cell types or tissues in a tissue biopsy is stressed over study of a single cell type in isolation exposed to specific
perturbations (e.g., cultured keratinocytes treated with a pro-fibrotic cytokine such as TGF-B). An important principle in
systems medicine holds that complex human diseases, such as SSc, do not arise from an abnormality in a single gene but from
abnormalities in biological processes in which many genes and gene products work in concert [26]. Indeed, SSc has complex
genetic risk [27]; approximately 30 polymorphisms have been associated with SSc risk, but all have modest odds ratios [28].
Moreover, a large fraction of the genome is dysregulated in patients with SSc as compared to healthy controls in a multi-cohort
study of SSc skin genome-wide gene expression data [15¢e]. Importantly, genes with SSc risk polymorphisms are functionally
related to genes that are robustly differentially expressed in SSc skin [15@e]. These systemic abnormalities likely derive from
the many, interacting cell types that have been implicated in in the pathogenesis of SSc [28]. Addressing this reality head on
requires studying the interactions of genes, cell types, and tissues to build a sufficient model of SSc pathobiology.

Gene-gene networks: Networks are a natural and popular representation of the interactions between biological entities (genes,
proteins, cells) that can be derived from large amounts of data in systems biology. A network is any collection of objects called
nodes; relationships between nodes are represented by edges or links. While there are many classes of biological networks, one
class of functional genomic networks have proven especially fruitful to SSc research. Functional genomic networks have genes
as nodes, and edges between nodes represent functional relationships between genes, such as membership in the same
biochemical pathway. For an in-depth review of how functional genomic networks are constructed and used in translational
bioinformatics, see Greene and Troyanskaya [29]. Briefly, functional genomic networks are constructed using machine
learning to mine the vast compendium of genomic data to learn signatures of interacting genes, for which known functionally
interacting gene pairs provide a positive gold standard. These models then extrapolate to the rest of the genome to
predict functional interactions at the scale of the whole genome. Thus, functional genomic networks take advantage of
a wealth of biological knowledge and of biological “big data” probing thousands of perturbations and disease states.

Gene modules: Key concepts of network theory are important when analyzing and interpreting biological networks. Gene-gene
networks are highly modular [30]: some sets of genes are more densely interconnected and are said to belong to a module (aka,
a “community” or “cluster”). In functional genomic networks, a module is a set of functionally related genes that are tightly
interconnected and participate together in coherent biological processes (i.e., an example would be members of the 26S
proteasome). We use the term functional module to describe these gene sets. In the case of a tissue-specific network, a
functional module is a set of genes that participates in a biological process in a specific tissue. The same set of genes in the
context of two different tissue-specific networks (e.g., skin and lung) may have different relationships between them. That is
to say that functional modules in two tissue networks may be distinct.

Gene hubs: While modularity focuses on sets of genes, the concept of a hub is more concerned with the individual gene level. A
hub is a gene that has many edges or connections and is therefore inferred to be of particular importance. For example, in
model organism protein-protein networks, knock out of hub proteins has been shown to be associated with lethality [26, 31].
Hub genes in functional modules are likely to play an important role in the biological process captured by that module. We next
discuss how these concepts in systems and network biology have been used to study SSc.

subset detection). From these molecular abnormalities, we can discern
higher-order biological information, such as pathways, biological processes,
and/or cell type activation states that are aberrant in SSc, as these may drive
disease and be rational targets for therapeutic intervention. Often, this
higher-order information resides in curated ontologies, where human
experts systematically review the literature to establish gene-pathway,
gene-process, and gene-disease associations.

Since all currently available SSc gene expression datasets are composed of
whole tissue samples, they are mixtures of cell types. Recently, functional
genomic networks have been built to study tissue- and cell type-specific genes’
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interactions at the system-level [19¢]. In addition, tools for assessing cell type-
specific changes in expression data are now also available [18, 20-22]. These
tools pave the way for understanding the critical similarities and differences
between affected tissues in SSc—and thus, clinical manifestations—and ulti-
mately how cellular state and tissue microenvironment give rise to SSc mani-
festations (e.g., skin fibrosis).

In addition to the biological variation within any cohort, one must also take
into account the considerable technical noise. Moreover, because SSc is a rare
disease, studies are often underpowered due to small sample sizes, making
analysis and interpretation of these data challenging. It is here where functional
genomic networks prove most useful, as they can be used to rigorously extract
meaningful pathway and cell type signals from underpowered studies. This
approach can result in biologically significant findings beyond what can be
gleaned from an analysis of each dataset alone.

Mahoney et al. [15¢] applied these methods to three independent SSc skin
datasets to identify the genes that were consistently expressed across the patients
and to determine how genetic polymorphisms found in genome-wide associ-
ation studies (GWAS) were connected with the SSc intrinsic gene expression
subsets. Mahoney et al. used the IMP functional genomic network (see Box 1 for
definitions) [23] to understand the relationship between sets of genes that had
similar coexpression patterns across three independent SSc skin cohorts. The
IMP network was constructed using a large compendium of publicly available
gene expression data (v2.0 lists over 3700 datasets from NCBI Gene Expression
Omnibus http://imp.princeton.edu/networks/data/). Only two datasets con-
tain the term “scleroderma” or “systemic sclerosis” in their titles. Thus, the
overwhelming majority of experiments in these networks do not directly ex-
amine SSc. Nevertheless, when queried with the consensus genes from the
meta-analysis of SSc skin, the resulting network captured information highly
relevant to SSc pathobiology. For instance, the hubs of the functional modules
in the network included FBN1, which had been implicated in SSc pathogenesis
in prior work (Alterations in or duplications in this gene result in skin abnor-
malities in the Tsk1 and Stiff Skin Syndrome mouse models of SSc [24, 25].)
Functional hubs identified in these data included a hub associated with alter-
natively activated, M2 macrophages, interferon signaling, cell proliferation, and
TGFR signaling and ECM deposition. An important result from this study was
the finding that genetic risk polymorphisms identified in candidate gene studies
and GWAS were almost exclusively connected in the immune system [15e9].
These data also suggest that the gene expression subsets are mechanistically
interconnected and strongly suggest the initiating events in the SSc reside in the
immune system with aberrant immune responses.

This work was extended in Taroni et al. in which ten SSc datasets sampling
four different affected tissues (skin, lung, esophagus, and peripheral blood
mononuclear cells [PBMCs]) were examined and subsequently analyzed in the
context of the GIANT [25] tissue-specific networks [10]. An important finding
from this analysis is that the inflammatory subsets identified in skin and
esophagus shared coexpression patterns with severe phenotypes in other tissues
(e.g., pulmonary fibrosis and pulmonary arterial hypertension). These patterns
included innate immune signatures. The use of tissue-specific GIANT networks
allowed for more detailed comparison of tissues (e.g., lung and skin), which
lead to further analyses that suggested alternatively activated macrophages play
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arole in both tissues, but may have slightly different phenotypes depending
on the tissue context. A limitation of this study was that the biopsies in the
multiple cohorts were largely from different patients (i.e., there was minimal
overlap between cohorts). Further work might include the study of multiple
tissues from patients to test whether patterns are conserved across tissues
within a patient.

Lofgren et al. took a different approach to the integration of data in SSc and
identified an SSc skin severity score (4S) that was significantly correlated with
mRSS [32ee]. This study analyzed seven different SSc datasets from six inde-
pendent clinical centers. They used samples from two centers as discovery
cohorts and validated these results in five independent cohorts. Lofgren et al.
show that this 4S8 signature was significantly correlated with mRSS and could
predict mRSS change at 24 months.

These studies demonstrate the value of analyzing gene expression data from
multiple studies in the context of global and tissue-specific networks to examine
disease and tissue-specific phenotypes, and emphasize the value of these data to
rare diseases such as SSc. Further analyses of these data from SSc studies,
possibly in the context of other related disorders, are likely to continue to
provide insight into disease pathology.

Treatment: molecular phenotyping and biomarkers in SSc
therapeutic trials

The characterization of molecular heterogeneity in SSc and the identification of
intrinsic subsets naturally lead to questions of patient stratification for the
purpose of treatment, precision medicine, or prognostication. Indeed, this
heterogeneity could explain the failure of most clinical trials in SSc to meet
clinical endpoints. If the biological processes underlying different patients’ skin
disease are distinct, it is to be expected that a therapeutic agent targeting one
particular process (or set of related processes) would fail when that pathway
does not contribute to disease.

Early studies investigated whether pre-treatment intrinsic subset was infor-
mative about clinically significant improvement during treatment. Hinchcliff
et al. [3] considered the immunosuppressive agent MMF, which is believed to
suppress lymphocyte proliferation through the inhibition of de novo synthesis
of guanine nucleotides [33]. Hinchdliff and coworkers found that patients who
improved on MMF were more likely to map to the inflammatory subset.
Notably, no improvement was observed in fibroproliferative patients [3]. A
strength of this work was the high quality clinical information that accompa-
nied the molecular data from skin biopsies; one physician scored skin disease
severity using the modified Rodnan skin score (mRSS), a semi-objective score
calculated from evaluating skin thickness at 17 anatomic sites as rated by
clinical palpation.

Many drug trial cohorts, particularly pilot studies, are not as large and as
extensively phenotyped as the Hinchdliff cohort, which can present challenges
in analyzing and interpreting the associated molecular data. In some cases, less
than half of the patients in a trial improve while on a particular treatment and
placebo arms are uncommon [34ee]. Below, we review the expression-based
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findings from the primary publications (where applicable) for drug trials in SSc
that have accompanying molecular data and additional research on those
therapeutics in SSc (see also [35] for a recent review).

Rituximab (Rituxan™, anti-CD20) depletes cells expressing CD20, a cell
surface marker on pro-B to mature B cell stages but not plasmablasts [36].
Lafyatis and coworkers found that the mean change in mRSS (the primary
outcome in most of the studies included herein) between base and 6 mos. of
treatment was not significant, although depletion of circulating and dermal B
cells was observed [37]. Pendergrass et al. were unable to identify significant
differences in gene expression pre- and post-treatment using Significance
Analysis of Microarrays (SAM) [38], “consistent with apparent lack of
clinical response” [2].

The immunomodulatory biologic abatacept (Orencia™) is a CTLA4-IgG
fusion protein designed to preferentially bind to CD80/86 receptors on
antigen presenting cells (APCs) and, therefore, block co-stimulation of T
cells through CD28. Chakravarty et al. performed a placebo-controlled
study of abatacept and found that most treated patients improved and that
most improvers mapped to the inflammatory subset pre-treatment [39e].
Abatacept improvers showed a decrease in immune-related pathways post-
treatment [39¢]. The CD28 signaling pathway was specifically downregu-
lated in improvers, but not in placebo-treated patients or one non-
improver [39e]. A multi-center placebo-controlled trial of abatacept is
currently underway (NCT02161406).

Nilotinib (Tasigna™) is a tyrosine kinase inhibitor (TKI) with a “narrow”
target profile, designed specifically to inhibit Abelson murine leukemia viral
oncogene homolog 1 (ABL1) and the platelet-derived growth factor receptor
(PDGFR). Gordon et al. reported a significant improvement in mRSS at
12 months in an open-label trial of nilotinib in early diffuse systemic sclerosis.
Improvers, as classified by this study, had significantly higher expression of
TGFBR and PDGFRB signaling pathways pre-treatment as compared to non-
improvers. Expression of these pathways was downregulated post-treatment in
improvers [40e].

Fresolimumab (anti-TGF-R) is a human monoclonal antibody that binds all
three isoforms of the pro-fibrotic growth factor TGF-. Consistent with the
mechanism of action, Rice et al. found that fresolimumab-treated patients
showed evidence of the inhibition of TGF-p induced genes (correlated with
biomarker genes first described in [41] and updated in [42e, 43e]. Rice et al. also
noted that these changes in gene expression were “generally correlated” with
changes in mRSS [43e].

Taken together, these data suggest that pre-treatment (or baseline) activity
levels of the pathways or processes targeted by a therapeutic may be predictive
of response to that treatment. Molecular phenotyping prior to prescribing
treatment may be of value. However, these results should be interpreted with
caution due to the small number of patients included in many of these studies.
As of this writing, there is still no FDA-approved treatment for SSc. As men-
tioned above, mRSS is a semi-objective measurement—a robust multi-gene
biomarker may be a more reliable measurement of skin disease severity [41].
Prognostic biomarkers would be particularly valuable.

A recent study by Taroni et al. examined gene expression data from the
aforementioned studies (MMF, abatacept, rituximab, nilotinib, and
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fresolimumab) in the context of a skin-specific network [34ee]. Taroni et al.
made use of the fact that studies typically include samples from patients
that meet clinically important criteria for improvement during the course
of a trial (termed improvers) and those patients that do not (termed
non-improvers). Taroni et al. identified differentially expressed genes
pre- and post-treatment in improvers from gene expression data in these
trials and then used a skin-specific functional network [19¢] to identify
subnetworks associated with these response genes. The authors found
that the gene modules that were targeted by multiple trial therapies had
significant overlap in immune-related processes, with the exception of
the fresolimumab trial [34ee]. The authors then demonstrated that the
gene patterns that were elevated in fresolimumab non-improvers pre-
treatment are similar to those patterns that were uniquely altered in
MMF improvers, suggesting that these non-improvers may have benefit-
ed from treatment with MMF [34ee]. This early study establishes the
utility of this approach to the analysis of therapeutic studies in SSc and
may lead to avenues of investigation that include the prediction of
combination therapies.

Conclusions

The systems biology approaches described above can also be applied to the
facets of SSc that have eluded study. For example, using gene signatures derived
from well-studied or easily assayed SSc affected tissues (e.g., skin), it is now
possible to study SSc-affected tissues that are substantially more difficult to
acquire in patients or controls (e.g., the GI tract or kidney). This is because, while
we might lack SSc tissue from many affected organs, we do have solid estimates
of the gene expression abnormalities in many affected tissues, and functional
networks can tell us how those genes interact in tissues of interest. Such study
could yield deep insight into the most intractable clinical SSc outcomes.

In closing, we emphasize that modern bioinformatics and systems
biology are ecosystems of data and code that are growing exponentially.
The more publicly available SSc data there are, the more finely tuned all
of these tools become. In many cases, the most detailed and sophisti-
cated results from a data set derive from reanalysis by researchers who
can integrate across multiple data modalities. Data integration may
allow researchers to combine multiple underpowered studies, a concern
in a rare disorder such as SSc, for greater gain. In the genomic era, the
importance of data release at the time of publication cannot be
overstated. Tools such as functional genomic networks operate at data
scales that have to be automated. The better the public data, the more
we can all learn from it.

The result of these systems biology studies in SSc should be a better under-
standing of disease mechanisms, thus allowing us to develop better and more
targeted therapies to SSc. A second result of these studies will be better patient
stratification tools that can be used in clinics to identify the patients most likely
to improve on a given therapy. Future clinical trials may use these tools and
methods to improve outcomes and better understand both successes and
failures in this difficult disease.
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