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Abstract A major approach to cancer research in the late twentieth century was to 
search for genes that, when altered, initiated the development of a cell into a cancer-
ous state (oncogenes) or failed to stop this development (tumor suppressor genes). 
But as researchers acquired the capacity to sequence tumors and incorporated the 
resulting data into databases, it became apparent that for many tumors no genes 
were frequently altered and that the genes altered in different tumors in the same tis-
sue type were often distinct. To address this heterogeneity problem, many research-
ers looked to a higher level of organization—to mechanisms in which gene prod-
ucts (proteins) participated. They proposed to reduce heterogeneity by recognizing 
that multiple gene alterations affect the same mechanism and that it is the altered 
mechanism that is responsible for the cell developing one or more hallmarks of can-
cer. I examine how mechanisms figure in this research and focus on two heuristics 
researchers use to integrate proteins into mechanisms, one focusing on pathways and 
one focusing on clusters in networks.

Keywords Mechanistic explanation · Cancer · Heuristics · Networks · Pathways

1 Introduction

In many contexts in both science and medicine, research advances as investigators 
target lower levels of organization. Philosophical accounts of mechanistic explana-
tion emphasize strategies for decomposing a mechanism into its component parts 
and determining how these components contribute to the phenomenon associated 
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with the mechanism (Machamer et  al. 2000; Bechtel and Abrahamsen 2005). But 
there are situations in which research advances by moving from the level of the 
components of mechanisms to the mechanisms themselves. I focus on one situa-
tion. Many cancer researchers in the 1980s and 1990s had hoped that cancer could 
be explained in terms of altered genes, but by the early 2000s they confronted the 
heterogeneity of proteins identified as altered in cancer cells. This has led some 
researchers to focus not on the genes and proteins themselves but on the mechanisms 
in which the proteins function in cells. In the process, they have developed a new set 
of research heuristics that integrate proteins into mechanisms so that they can then 
appeal to the mechanisms as wholes to explain cancers.

As with research on many biological phenomena, research on diseases often 
begins by seeking a single causal factor relevant to the generation of the disease. 
In the case of cancer, this has often taken the form of identifying genes that when 
altered1 contribute to the transformation of a healthy cell into a tumor cell. The 
identification of the first oncogenes and tumor suppressor genes in the 1980s moti-
vated further pursuit of this endeavor. With the development of new tools for gene 
sequencing in the 1990s, investigators started to sequence tumors to identify the 
genes frequently altered in them. This, however, revealed a serious problem of het-
erogeneity: no gene was altered in all samples of what were assumed to be from the 
same type of cancer and only a few genes were altered in a significant portion of 
tumors of that type. I discuss the discovery of heterogeneity and the challenges it has 
presented for identifying causes of the transformation of a cell into cancer in Sect. 2.

One response to this heterogeneity is to reject the idea that genes are the relevant 
causal agents in cancer and appeal, for example, to the tissues in which cancer cells 
reside (Soto and Sonnenschein 2011).2 Many cancer geneticists, however, have 
adopted a different strategy, one that also involves moving to a higher level of organi-
zation, but one still within the cell. They target cellular mechanisms as the relevant 
units and seek to explain the transition of a cell into a cancerous state in terms of the 
altered functioning of these mechanisms. A mechanism can be disrupted by any num-
ber of altered genes that code for the mechanism’s constitutive proteins. The guiding 
idea is that one can overcome the heterogeneity problem by identifying and focusing 
on the disrupted mechanisms that are responsible for the various hallmarks of cancer.

Philosophers interested in discovery often focus on heuristic strategies: fallible 
reasoning strategies that reduce the search space of potential explanations (Newell 
and Simon 1972; Wimsatt 2007; Bechtel and Richardson 1993/2010; Darden 2006). 
In this paper I focus on new heuristic strategies that are employed in advancing from 
components to the mechanisms in which they participate so as to invoke those in 
explanations. In Sect.  3 I differentiate two such approaches—integrating compo-
nents into pathways and identifying clusters through network analyses. In subse-
quent sections I present examples of cancer research that employ these strategies to 

1 I will speak mostly of alterations, not mutations, since many studies consider other forms of genetic 
change, such as altered copy number or chromosomal inversions. I will use mutations when the study is 
focused specifically on mutations.
2 For discussion of the opposition between what has been dubbed the somatic mutation theory and the 
tissue organization field theory, see Bertolaso (2016), Plutynski (2018) and (Green in press).
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identify mechanisms through which altered genes contribute to cancer. These strate-
gies are heuristic in the same sense as decomposition and localization, discussed 
by Bechtel and Richardson (1993/2010), and forward and backward chaining, dis-
cussed by Craver and Darden (2013)—they are strategies for developing mechanis-
tic hypotheses which are not guaranteed of success. They must be further tested. 
One measure for evaluating them is further mechanistic research on the proposed 
mechanisms themselves, showing how they function in healthy cells and how they 
can induce hallmarks of cancer when disrupted. Another, invoked in several of the 
examples discussed below, is to show that they enable better stratification of patients 
in terms of outcomes and responses to therapies.

2  The discovery of heterogeneity

The quest to find altered genes as the causes of cancerous states within cells was 
galvanized in the 1980s by the identification of two different classes of genes that 
were discovered to be altered in tumors—oncogenes, which were hypothesized to 
generate cancer when mutated, and tumor suppressor, hypothesized normally to pre-
vent the transition to cancer but allow it when altered. The discovery of the first 
oncogenes, Hras (H for Harvey and ras for rat sarcoma) and Kras (K for Kirsten) 
(Ellis et al. 1981), grew out of research that viewed tumors as induced by viruses 
but ended up focusing attention on gene alterations as causes of cancer.3 The pro-
posal that some genes normally suppress tumors but allow them when mutated grew 
out of Knudson’s (1971) hypothesis that development of some cancers require two 
independent mutations (two hits), where, in some cases, the first hit involves a gene 
whose function is normally to suppress development of cancer. Although it does not 
function in the two-hit scenario, TP53, mutated in more than 30% of human tumors, 
is the best-known tumor suppressor gene.

The discoveries of oncogenes and tumor suppressor genes encouraged research-
ers to seek genes in which alterations caused cancer, an endeavor that was much 
enhanced with the development of high-throughput gene sequencing techniques 
in the 1990s. To make this growing body of data on cancer genes available to the 
larger community, Futreal et  al. (2004) conducted what they termed “a census of 
human cancer genes.” One of the questions Futreal et al. faced in determining which 
genes to include in the census was differentiating altered genes that play a causal 
role in cancer (which for them meant conferring “a clonal growth advantage”)4 from 
what they identified as passenger or bystander mutations (“Somatic mutations that 
are found in cancer cells that are not involved in generating the neoplastic pheno-
type”). To avoid including passenger mutations, Futreal et  al. simply “excluded 
genes in which fewer than five unambiguous somatic mutations have been reported 
in primary neoplasms,” assuming that genes that do not play a causal role are more 

3 For historical reviews of the discovery of the Ras genes and the development of the oncogene frame-
work, see Morange (1993, 1997, 2001) and Malumbres and Barbacid (2003).
4 Cancer researchers now generally refer to those genes that play a causal role in cancer as drivers 
(Greenman et al. 2007; Stratton et al. 2009).
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likely to vary than those that do. Even using this criterion, Futreal et al. identified 
291 genes, all coding for proteins. They found this number surprisingly large as it 
amounts to somewhat more than 1% of known coding genes in humans. A further 
surprise was that even genes that were frequently mutated were not mutated in all 
tumors affecting a given tissue. This began to draw attention to heterogeneity of 
gene alterations in tumors as a serious challenge in identifying genes responsible for 
cancer.

In the same year as Futreal et  al.’s census was published, another group of 
researchers at the Sanger Institute in London made public the Catalogue of Somatic 
Mutations in Cancer (COSMIC) online database (Bamford et  al. 2004). Initially, 
COSMIC selected four cancer genes, Hras, Kras2, Nras, and Braf. The cura-
tors searched PubMed and extracted information from the identified publications 
about samples, experimental methods, and mutations. Within a year COSMIC had 
expanded to include 28 known cancer genes. In addition to published sequences, 
the researchers also included data from their own Cancer Genome Project that by 
2005 had re-sequenced known cancer genes in 728 publicly available cell lines with 
a goal of identifying novel oncogenes. Altogether, that expanded coverage to 538 
genes and 124,367 tumors with 23,157 mutations (Forbes et al. 2006). In the ensu-
ing decade, COSMIC has continued to expand rapidly and provides further evidence 
about just how heterogenous is the set of gene altered in cancer.

The heterogeneity of genes implicated in cancer became even more apparent with 
a paper by Wood et  al. (2007).5 These researchers sequenced about 13,000 genes 
from 11 breast and 11 colorectal cancer patients and reported significant muta-
tions in almost 200, with a mean of 76 mutations resulting in altered amino acids 
in proteins in individual breast cancer tumors and 84 mutations in colorectal cancer 
tumors. The well-known oncogenes and tumor suppressor genes were among the 
frequently mutated, but there were many samples in which no frequently mutated 
gene was found. This led the authors of offer a new vision of cancer genome land-
scapes: “They are composed of a handful of commonly mutated gene ‘mountains’ 
but are dominated by a much larger number of infrequently mutated gene ‘hills’.”6 
The challenge was to make sense of how mutations in the genes constituting the hills 
contributed to cancer.

The heterogeneity problem grew steadily with the pursuit of yet another extremely 
large-scale research endeavor, The Cancer Genome Atlas (TCGA) was created in 
2008 as a joint initiative by two institutes within the US National Institutes of Health, 
the National Cancer Institute and the National Human Genome Research Institute. 
The project set out to collect, sequence, and distribute approximately 500 samples 
of tumors in different organs and deposit the data in publicly accessible databases. 

5 Other papers of the same period reached similar conclusions: Thomas et al. (2007), Annunziata et al. 
(2007) and Keats et al. (2007).
6 Ideker pithily captures the problem posed by heterogeneity: “heterogeneity by definition means that 
recurrent patterns are not observed for most mutations. To make matters worse, patients afflicted by such 
unique patterns of mutations have been labeled ‘N-of-1 s,’ to capture the idea that they cannot be joined 
together with any other individuals to be analyzed and treated as a larger cohort (i.e., of size N > 1). 
Patients enduring this desultory fate stand alone, without a friend even in disease” (Ideker 2016).
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TCGA began with glioblastoma multiforme in the brain, squamous cell carcinoma 
of the lung, and cystadenocarcinoma of the ovary and eventually expanded to 
cancers affecting 33 different organs. Under the name The Cancer Genome Atlas 
Research Network, TCGA researchers published characterizations of many cancer 
types, including human glioblastoma (2008), breast (2012), lung (2012), colon and 
rectal (2012) cancers, clear cell renal cell carcinoma (2013), acute myeloid leuke-
mia (2013), endometrial carcinoma (2013), urothelial bladder carcinoma (2014), and 
gastric adenocarcinoma (2014). These studies often revealed previously unsuspected 
genes implicated in cancers in particular tissues. The first study identified three pre-
viously unsuspected genes as frequently mutated in glioblastoma: NF1, previously 
implicated in neurofibromatosis, ERBB2, previously identified in breast cancer, and 
PIK3R1, part of the PIK3 signaling pathway that was known to be abnormally acti-
vated in a number of cancers (Cancer Genome Atlas Research Network 2008).

TCGA revealed additional heterogeneity in the relation between genes and can-
cer. In addition to continually identifying additional genes mutated in cancers in 
different tissues, it revealed a serious problem with typing cancers by the tissues in 
which they occurred. This resulted both in missing important differences in terms 
of altered genes between cancers that affected the same tissue and commonalities 
between cancers that affected different tissues. For example, even though TCGA 
had set out to study colon and rectal cancers separately, they discovered that the 
genomic alterations are very similar and concluded that the two cancer types should 
be grouped as one (Cancer Genome Atlas Research Network 2012a). TCGA’s 
breast cancer study (Cancer Genome Atlas Research Network 2012b) reaffirmed 
and further characterized the four subtypes of breast cancer that had already been 
arrived at by earlier analyses. However, the researchers also found that the basal-
like subtype exhibited a similar pattern of gene mutations to that found in serous 
ovarian cancer, suggesting that they constitute a common form of cancer. Similarly, 
the endometrial cancer study (Cancer Genome Atlas Research Network 2013) went 
beyond the traditional classification of endometrial cancers into entometroid (class 
1) and serous (class 2) by identifying a subset of entometroid tumors that clustered 
with serous tumors and showed that these manifest strong similarities to serous 
ovarian cancer and basal-like breast cancer. The remaining entometroid tumors 
formed three classes: a newly discovered group with mutations in POLE, those that 
exhibited microsatellite instability, and those with low copy number alterations. 
These entometroid tumors share characteristics with colorectal tumors that TCGA 
had previously characterized. In recognition of the fact that “cancers of disparate 
organs have many shared features, whereas, conversely, cancers from the same 
organ are often quite distinct,” TCGA developed a new pan-cancer initiative that 
began by integrating the datasets from 12 individual cancer types already analyzed 
(Cancer Genome Atlas Research Network, Weinstein et al. 2013).7

7 An additional motivation for the pan-cancer initiative was that by combining data across cancer types, 
studies would have increased statistical power and be better able to identify infrequently occurring driver 
mutations. See Tamborero et al. (2013) for some of the new discoveries resulting from this effort.
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The official TCGA project wound down 2017,8 but the datasets it produced have 
provided data for an extensive set of network studies of cancer and a sharpened 
recognition of how heterogeneous the genetic alterations in cancer are. Drawing 
upon the results of Wood et  al. as well as those TCGA and COSMIC, Garraway 
and Lander (2013) concluded that very few genes are altered in greater than 10% of 
samples of a given cancer. Moreover, a very large number are mutated in less than 
5% of samples. This is referred to as the long tail of the distribution. The recogni-
tion of this large-scale heterogeneity of genes altered in cancer9 posed a challenge to 
attempts to explicate the transition of a cell into cancer at the genetic level.

3  Moving up from genes to mechanisms

As they confronted the heterogeneity problem, a number of researchers concluded 
that in searching for genes responsible for cancer, they had focused at too small a 
scale. The proteins synthesized from genes work together in larger-scale units that 
biologists refer to as mechanisms. Although scientists commonly invoke the term 
mechanism without clarifying what they have in mind, the sense seems to cor-
respond to that advanced by the new mechanists in philosophy of science—a set 
of components that perform different operations and are organized so as to work 
together in the generation of a phenomenon (Machamer et  al. 2000; Bechtel and 
Abrahamsen 2005; Glennan 2017).

Just as there are multiple parts to a mechanism, there are multiple ways in which a 
mechanism can be incapacitated. From the point of view of the system that depends 
on what the mechanism as a whole does, which way the mechanism is incapaci-
tated may not matter. A potential reason why alterations to any of a heterogenous 
set of genes may result in a similar cancer is that each of the resulting proteins fig-
ures in the operation of the same mechanism. In whatever way the mechanism is 
altered,  it ceases to function as it normally would. In the case of cancer, many of 
the mechanisms altered are control mechanisms that in normal cells down-regulate 
other mechanisms such as the cell cycle. Any mutation that impairs a control mecha-
nism from down-regulating cell division will result in uncontrolled cell division, one 
of the main hallmarks of cancer.10

In the rest of this paper I focus on two strategies through which researchers made 
the transition from focusing on genes to focusing on mechanisms, one involving 
the identification of pathways and one involving identification of clusters in net-
works. Mechanists in philosophy of science tend to count any set of components that 
causally interact in the generation of a phenomenon as a mechanism. Ross (2018), 

10 For the distinction between production and control mechanisms and its relevance in the case of can-
cer, see Bechtel (2018).

8 The endeavor to collect data and genetically characterize various cancers is being continued by the 
International Cancer Genome Consortium (ICGC), which started in 2008 (the same year as TCGA). 
ICGC is collaborating with TCGA in the Pan-Cancer Analysis of Whole Genomes.
9 Yet a further source of heterogeneity is found if one compares cells within the same tissue sample 
(Fisher et al. 2013).
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however, argues for distinguishing pathways and mechanisms as distinct causal con-
cepts. She is correct that there are distinctive features of the way scientists investi-
gate pathways. For instance, those investigating a pathway are more concerned with 
the sequence of intermediate products than with accounting for how each is gener-
ated. The notion of a pathway has its roots in biochemistry. For example, once Buch-
ner (1897) demonstrated that fermentation can occur in a cell-free extract, research-
ers started identifying intermediates in the generation of alcohol from glucose and 
trying to link them together in a continuous sequence. This effort culminated in the 
1930s in the pathway proposed by Embden and Meyerhof (Bechtel 1986) that is 
still accepted today. As molecular biologists turned their attention to signaling pro-
cesses, they also identified multi-step pathways in which intermediates are generated 
sequentially until the final signal is produced.

On their own, pathway accounts leave out an important feature emphasized in 
accounts of mechanistic explanations—the activity or operation involved in generat-
ing each subsequent step in the pathway. For example, the mechanism of fermenta-
tion involves not just the sequence of reactions but the enzymes that catalyze the 
various reactions. Nonetheless, researchers often view pathways as an important 
component of an account of a mechanism, and I will therefore treat pathways as 
(partial) accounts of mechanisms. There is, however, an important contrast to make: 
many mechanisms involve multiple parts interacting in the production of the phe-
nomena, not just the sequence of intermediates. Interacting components are often 
represented in networks, with nodes representing entities and edges the interac-
tions. Large networks, however, often resemble hairballs until they are laid out in an 
informative manner. A common strategy in network analysis is to identify clusters of 
highly interconnected components and position these near each other. Researchers 
often try to identify these highly interactive clusters with mechanisms that have been 
identified and investigated through more traditional techniques of cell and molecu-
lar biology. It should be noted that network accounts of mechanisms, like pathway 
accounts, are incomplete. In fact, what they often leave out is a specification of the 
reaction pathway. Thus, pathways and network clusters each offer partial insights 
into mechanisms, but these are often enough to leverage raising the level of inquiry 
from individual genes or proteins to mechanisms.

The distinction between pathways and network clusters is illustrated in Fig.  1, 
which presents a pathway representation on the left and a cluster in a network repre-
sentation on the right. Both involve the same proteins, shown in green. As many of 
the proteins synthesized by early identified oncogenes appeared to figure in signal-
ing processes (which then control mechanisms such as the cell cycle), it was natu-
ral to try to organize them into pathways. In some cases, the knowledge needed to 
construct a pathway was already available in basic biology before the gene alteration 
leading to cancer was identified. In many cases, however, this knowledge had to be 
generated by first identifying a gene that is altered in tumors and then investigat-
ing the reactions in which the corresponding protein figured. Figure 1a shows the 
first steps in the epidermal growth factor (EGF) signaling pathway. The small white 
boxes indicate reactions, green boxes the proteins figuring in the pathway and blue 
boxes the complexes formed: EGF forms a complex with the EGF receptor (EGFR) 
and in subsequent reactions is phosphorylated, yielding EGF-p-6Y-EGFR.
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Identifying clusters through network analyses provides a different strategy for 
arriving at mechanisms. These approaches begin with information about which cell 
components interact with each other (e.g., proteins that are capable of forming bonds 
or actually do form bonds with each other in a given cell type). Another data type 
involves synthetic lethality in which knocking out either of two genes individually 
leaves the organism viable but knocking out both kills it.11 Increasingly data about 
such interactions are stored in large, publicly accessible databases such as BIND 
(Bader et  al. 2001) or MINT (Zanzoni et  al. 2002), which researchers can then 
access. Using tools such as Cytoscape (Shannon et al. 2003; https ://cytos cape.org), 
they can identify clusters and layout nodes and edges in an informative fashion. Fig-
ure 1b shows such a cluster that corresponds to the pathway in Fig. 1a. In one sense, 
it shows less that Fig. 1a since it does not show the intermediates. On the other hand, 
since they are built from data about all interacting proteins, network representations 
can include proteins that have not been fitted into pathway accounts. Thus, Fig. 1b 
includes several nodes shown in grey circles whose function are not known. Edges 

Fig. 1  a A pathway diagram of initial stages in EGF signaling that shows the reactions (white boxes) in 
a particular reaction pathway. Green boxes represent proteins and blue boxes the resulting complexes. b 
A network diagram in which green circles represent the same proteins as in a, and the grey circles pro-
teins that interact with them. Reprinted by permission from Springer Nature, Nature Methods, Creixell 
et al. (2015). (Color figure online)

11 Until recently, successful synthetic lethal experiments were limited to yeast as RNAi based methods 
for inhibiting proteins had too many off-target effects. Recently, CRISPR technology has proven effective 
in identifying synthetic lethal pairs in mammalian cells and offers promise for contributing to the devel-
opment of new therapeutic approaches that target genes that are synthetically lethal in particular types of 
cancer (Shen et al. 2017; Du et al. 2017).

https://cytoscape.org
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connecting them to other proteins are undirected since even the direction of effect is 
not known. Those shown as green circles correspond to proteins whose functions are 
known from other sources (and included in the pathway in Fig. 1a). Since what is 
known includes the direction of causation, the connections between known compo-
nents are indicated by directed edges.

Researchers identifying pathways and researchers identifying clusters in networks 
employ different heuristic strategies, but both end up revealing sets of organized 
components that researchers treat as mechanisms. Each of these ways of identifying 
mechanisms has proven useful in addressing the heterogeneity problem. Whether 
they characterize mechanisms as pathways or network clusters, researchers can 
appeal to these higher-level entities as the entity that operates differently no matter 
which of its components is altered. The following two sections illustrate the use of 
pathway and network analysis strategies.

4  Illustrations of pathway heuristics for addressing heterogeneity

Above I focused on how TCGA sequencing studies identified new genes as altered 
in various cancer types, thereby increasing the heterogeneity problem. In their anal-
yses, the TCGA researchers often drew upon pathways as a way to address the prob-
lem. The first released study, on glioblastoma, identified three signaling pathways 
that were disrupted in more than three quarters of the glioblastoma samples: the cyc-
lin-dependent kinase/retinoblastoma pathway (RTK/RAS/PI(3)K) that regulates cell 
division was disrupted in 88%, the TP53 signaling pathway that initiates DNA repair 
and apoptosis in 87%, and receptor tyrosine kinase pathway involved in controlling 
cell growth in 78% of samples. The fact that the pathways were much more fre-
quently altered than were individual genes (CDKN2A at 52% and TP53 at 35% were 
the most frequently mutated genes) pointed to the pathways as the relevant units of 
analysis for avoiding the heterogeneity problem. Other genes in these pathways were 
mutated less frequently but were construed as having the same effect in generating 
glioblastomas. Moreover, the study proposed that the pathway affected might pro-
vide insight into the success of treatments:

It would be reasonable to speculate that patients with deletions or inactivating 
mutations in CDKN2A or CDKN2C or patients with amplifications of CDK4/
CDK6 would be candidates for treatment with CDK inhibitors, a strategy not 
likely to be effective in patients with RB1 mutation. Similarly, patients with 
PTEN deletions or activating mutations in PIK3CA or PIK3R1 might be 
expected to benefit from a PI(3)K or PDK1 inhibitor, whereas tumours in which 
the PI(3)K pathway is altered by AKT3 amplification might prove refractory to 
those modalities (Cancer Genome Atlas Research Network 2008, p. 1066).

The appeal to pathways to explain features of cancer began well before TCGA. Han-
ahan and Weinberg (2000) identified what they characterized as six hallmarks of 
cancer: self-sufficiency in growth signals, insensitivity to growth-inhibitory (anti-
growth) signals, evasion of programmed cell death (apoptosis), limitless replicative 
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potential, sustained angiogenesis, and tissue invasion and metastasis.12 When they 
turned to explaining how these hallmarks were realized, TCGA researchers sought 
to arrange individually identified genes or gene products into already known path-
ways in which one affected another, eventually affecting the cell cycle or other 
mechanism responsible for a given hallmark. Figure  2 is their diagram showing 
pathways involved in cell proliferation and programmed cell death (apoptosis).13 
Growth factors, known to promote cell proliferation (by inhibiting components that 
block proliferation), are shown binding a receptor on the left. Binding to the recep-
tor initiates activity along different pathways, including one involving RAS, RAF, 
MEK, MAPK, and MYC. Mutations to various components of the pathway result 
in cancer cells continuing to proliferate. The lower-level details about the operations 

Fig. 2  Hanahan and Weinberg’s representation of multiple pathways in which mutations can lead to 
hallmarks of cancer. The proteins coded by the best-known oncogenes (Ras, Myc) and tumor suppressor 
genes (p53 [same as TP53] and PTEN) are shown in red. Reprinted with permission from Elsevier from 
Cell, Vol 100, Hanahan and Weinberg (2000). (Color figure online)

12 In a ten year update, Hanahan and Weinberg (2011) added two emerging hallmarks:
 reprogramming of energy metabolism and evading immune destruction.
13 The Atlas of Cancer Signalling Network provides a more recent, online (https ://acsn.curie .fr/), rep-
resentation of pathways involved in cell regulation that are affected in cancer (Kuperstein et al. 2015). 
To date it includes separate networks for cell cycle, DNA repair, apoptosis, epithelial-to-mesenchymal 
transition and motility, and survival that are integrated into a cohesive whole. As with Google Maps, one 
can zoom into look at relations of individual genes in detail. One can also click on them for further infor-
mation. In addition, it is possible to locate mutations in various cancers on the map to assess how they 
affect cell signaling.

https://acsn.curie.fr/
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of individuals genes fit naturally into this pathway analysis. For example, RAS was 
known to function as a GTPase, and when it hydrolyzes GTP to GDP, it renders 
itself inactive. Hence, the normal control signal from RAS is of short duration. 
But when the gene is altered, RAS is unable to hydrolyze GTP. The result is that 
it remains in the active form and initiates an ongoing proliferation signal. What the 
focus on the pathway makes clear is that the alteration of RAS as well as altera-
tions to other components of the pathway, such as NF1, RAF, and MYC, all have 
the effect of sustaining proliferation signaling along the pathway. This explains why 
mutations to each of them leads to sustained cell proliferation.

Vogelstein et al. (2013) provide a clear, illustrative example of how this sort of 
pathway analysis can explain heterogeneous mutations generating the same type of 
cancer and draw out the implication that consequently mutations affecting the same 
pathway should not occur in the same tumor:

Recognition of these pathways also has important ramifications for our ability 
to understand inter-patient heterogeneity. One lung cancer might have an acti-
vating mutation in a receptor for a stimulatory growth factor, making it able 
to grow in low concentrations of epidermal growth factor (EGF). A second 
lung cancer might have an activating mutation in KRAS, whose protein prod-
uct normally transmits the signal from the epidermal growth factor receptor 
(EGFR) to other cell signaling molecules. A third lung cancer might have an 
inactivating mutation in NF1, a regulatory protein that normally inactivates the 
KRAS protein. Finally, a fourth lung cancer might have a mutation in BRAF, 
which transmits the signal from KRAS to downstream kinases. (p. 1555).

A focus on pathways has the potential to radically reduce the heterogeneity prob-
lem. Vogelstein et al. (2013) contend that all known cancer driver genes reside in 
12 pathways that control 3 processes—cell fate, cell survival, and genome main-
tenance. This offers great promise for developing accounts of cancer that general-
ize across specific gene alterations. Enthusiasts for the pathway perspective, such 
as Vogelstein and Kinzler (2004), foresee it as bringing order to the heterogeneity 
of mutations. They propose that even if research reveals a few more pathways, there 
will be a relatively small number (on the order of 20) of pathways that, when dis-
rupted, result in cancer.

5  Illustrations of the network clustering heuristic for addressing 
heterogeneity

When researchers possess the knowledge, or are able to procure the knowledge, 
needed to arrange genes altered in cancer into pathways, the pathway become a rel-
evant explanatory unit. However, construction of pathways requires detailed knowl-
edge of the sequence of activities in which proteins engage. Many genes identified 
as altered in tumors cannot, given current knowledge, be fit into pathways. Hu et al. 
(2007) observed that of the 291 genes Futreal et al. had identified as cancer genes
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only 28% currently have extensive functional associations in the Kyoto Ency-
clopedia of Genes and Genomes (KEGG), while only 59%, 58%, 48% and 26% 
are listed in the IntAct, Biomolecular Interaction Network Database (BIND), 
Molecular Interaction Network (MINT), and Database of Interacting Proteins 
(DIP), respectively. This indicates that roughly half of all established cancer 
genes still lack functional-association information in the main public func-
tional-association databases.

Researchers cannot assign proteins to pathways if they do not know the reactions in 
which they are involved. Network approaches, which require only more basic infor-
mation such as which proteins can interact with each other or which genes form syn-
thetic lethals, provide strategies for overcoming this limitation. Above I described 
the use of cluster analysis to identify clusters of highly interacting genes or proteins 
that may correspond to mechanisms. To determine what these clusters and their 
components do, researchers often annotate nodes in networks using Gene Ontology 
or GO (Ashburner et  al. 2000). GO draws from the published literature informa-
tion such as where in the cell a gene is expressed or what cellular function it fig-
ures in and organizes this information into hierarchical representations in the form 
of directed acyclic graphs.14 To formulate hypotheses about the function of genes or 
proteins for which there is no current knowledge (e.g., they are not annotated in GO) 
researchers often employ a heuristic known as guilt by association: when an entity 
without a known function is grouped into a cluster with others that have a known 
function, assume that it should be assigned the same function (Bechtel 2017, 2019, 
presents examples of such inferences in yeast biology).

Hu et al. (2007) illustrates the use of this strategy in cancer research. MLLT2 is 
mutated in leukaemogenesis in infancy but has no biological process annotation in 
GO. To develop a hypothesis about its function, the researchers first situated it in 

Fig. 3  Hu et al. (2007) invoked 
network connections to propose 
a G-protein receptor function for 
MLLT2, which had no annota-
tion in GO. GO annotations are 
indicated by color: transcription 
(pink), G-protein coupled recep-
tor (blue), unknown (white) 
and other functions (green and 
yellow). The confidence score 
for the prediction of G-protein 
coupled receptor is shown. 
Reprinted by permission from 
Springer Nature, Nature Reviews 
Cancer, Hu et al. (2007). (Color 
figure online)

14 For a detailed analysis of the construction of GO, see Leonelli (2016).
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a protein–protein interaction network and identified a sub-network of proteins that 
directly bind to it (GNA11, GNAI3 and NACA, shown in the inner circle in Fig. 3). 
They then added those proteins that bind to these proteins (a sample is shown in the 
outer circle). What they found noteworthy is that 104 of these proteins, including the 
immediate neighbors GNA11 and GNAI3, had previously been linked to G-protein 
coupled receptor (GPCR) signaling. From this they infer that MLLT2 likewise con-
tributes to GPCR signaling. This inference is of course fallible and needs to be eval-
uated using more traditional molecular techniques; guilt by association is a heuristic 
reasoning strategy that can initiate such investigation.

A second example illustrates the power of this approach to identify mechanisms 
in which genes altered in tumors participate. Chuang et  al. (2007) sought to dis-
tinguish among breast cancer patients those whose tumors metastasized from those 
whose tumors did not metastasize. They began with expression profiles in patients 
whose tumors metastasized and those that did not and identified 8141 genes that 
showed differences. They overlaid these on a protein–protein interaction network 
and searched for subnetworks in which expression discriminated patients that 

Fig. 4  Subnetworks identified by Chuang et al. (2007) of proteins that were differentially up- or down-
regulated (indicated by color) in breast cancer patients whose tumors metastasized. Letters next to each 
subnetwork indicates cell processes in which the subnetwork is involved. Reprinted with permission from 
John Wiley and Sons, Molecular Systems Biology, Chuang et al. (2007). (Color figure online)
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metastasized. From one of their datasets, which they took from TCGA, they identi-
fied 149 subnetworks, some of which are shown in Fig. 4.

When they annotated the proteins using GO, somewhat more than half the sub-
networks were enriched for proteins assigned to at least one biological process. (In 
Fig.  4 the biological process is identified by the letters next to the subnetworks, 
which are interpreted in the legend.) Many of these are processes that figure in 
Hanahan and Weinberg’s hallmarks of cancer: proliferation and replication, apop-
tosis, circulation, and metabolism. The color of nodes indicates whether the expres-
sion is up-regulated or down-regulated in tumors that later metastasized, and dia-
monds indicate that the change in expression is statistically significant. Chuang et al. 
showed that after scoring subnetworks in terms of average increased or decreased 
expression of proteins in the network, they could train a classifier based on logis-
tic regression to predict metastasis with ~ 70% accuracy, which is much higher than 
models based on individual genes. They take this result to indicate that the subnet-
works they identify are mechanisms that differentially determine whether the tumor 
will metastasize. By focusing on these mechanisms, heterogeneity is significantly 
reduced.

A relatively recent promising network analysis strategy for identifying mecha-
nisms altered in tumors treats the genes that are modified as sources of heat and 
applies a diffusion algorithm to distribute the heat to nodes nearby in the network. 
(Since the whole network is connected, the duration of diffusion must be limited; 
otherwise heat will disperse and reach equilibrium over the whole network.) This 
strategy is particularly effective when heat from multiple nodes diffuses into the 
same cluster, which can then be identified as the relevant mechanism that, when dis-
rupted by alteration of any of the various genes, results in cancer.

Hofree et al. (2013) illustrate use of diffusion to stratify patients with ovarian, uter-
ine, and lung cancer into patient groups that exhibit similar outcomes (measured in 
terms of survival, response to drugs, etc.). Their hypothesis was that the similar out-
comes might result from mutations affecting a common underlying mechanism. Their 
Network Based Stratification (NBS) approach first locates altered genes in a network. 
They then apply a network propagation algorithm developed by Vanunu et al. (2010) 
to spread activity over the neighborhoods around these genes.15 Based on the resulting 
values, they cluster nodes into a varying number of clusters that they viewed as poten-
tially corresponding to subtypes of these cancers. Finally, they evaluate how well mem-
bership in a cluster predicted patient outcome. Figure 5a compares the performance of 
NBS (blue) in predicting ovarian cancer patient outcome when patients were clustered 
into various numbers of subtypes compared to standard clustering (red) or a permuted 
version of NBS (green). The number of concentric circles around a data point indi-
cates significance (p value). When divided into 3 or 4 subtypes, NBS’s improvement 
in predicting patient outcome was highly significant (p < 0.0001). Figure 5b presents a 
Kaplan–Meier analysis showing duration before relapse after treatment with platinum 
chemotherapy when NBS identified four subtypes. Pluses indicate time of relapse for 

15 There are several additional network diffusion algorithms that researchers have applied to cancer data 
such as HotNet (Vandin et al. 2011, 2012) and HotNet2 (Leiserson et al. 2015).
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individual patients, with their location with respect to the y-axis indicating the percent-
age of patients that have still not relapsed at that point. The colored lines connect these 
points for each group. When it creates four clusters, NBS differentiates four subtypes of 
ovarian cancer with different periods to relapse.

Fig. 5  a Comparison of network based stratification (NBS; blue) versus standard clustering (red) or a 
permuted version of NBS (green) in predicting patient survival when clustered into different number of 
groups. Number of blue circles indicates p-value. b Kaplan–Meier analysis of survivability when NBS 
stratified samples into four groups. c Identification of most active subnetworks in the subtype of ovar-
ian cancer with the poorest prognosis. Actually mutated genes are indicated by underlining their names. 
These were treated as hot spots and node size indicates score after diffusion. Color indicates annota-
tion to specific cell functions, as indicated in the legend. Reprinted by permission from Springer Nature, 
Nature Methods, Hofree et al. (2013). (Color figure online)
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Hofree et al. then examined the subnetworks that were most active in the four dif-
ferent subtypes. Figure  5c shows the subnetwork most involved in the first (poorest 
prognosis) subtype of ovarian cancer. Mutated genes (indicated by underlining their 
names) were plotted on an interaction network. Edge width indicates degree of confi-
dence that there is an interaction between the gene products while the size of the circle 
for a gene indicates the mutation score after diffusion. The researchers used GeneMA-
NIA to annotate the genes in terms of cell function. Genes already assigned a role in 
cancer in COSMIC are shown with thickened borders. The network reveals clusters 
of genes associated with the mutated genes in this subclass of ovarian patients. The 
genes in these clusters are hypothesized to function together in mechanisms contribut-
ing to the designated cell function. For example, the genes indicated in red are involved 
in the fibroblast growth factor signaling pathway. The one gene mutated in the clus-
ter, FGFR4, was not a known cancer gene, but activity spread through the intercon-
nections to other genes, including two known cancer genes. The authors hypothesize 
that FGFR4 drives cancer by altering the same mechanism as these other genes. Such 
hypotheses must be tested experimentally; the objective of network analysis is only to 
generate plausible hypotheses for further testing.

The network analysis strategies presented in this section each reveal clusters of 
nodes that can be interpreted as cellular mechanisms. By identifying those clusters 
in which mutated genes reside or that become targets of activity using diffusion, 
researches target those mechanisms that are affected and whose altered operation 
may explain cancer. As with the pathway strategy, these higher-level units become 
the relevant explanatory units, significantly reducing the heterogeneity problem.

6  An illustration combining pathway and network heuristics to address 
heterogeneity

In the previous two sections I have presented examples in which pathway and net-
work heuristics have been applied separately. In a study of glioblastoma Wu et al. 
(2010) showed how they can be productively combined. They began with a net-
work approach. Drawing upon multiple sources, the researchers generated what they 
termed a Functional Interaction (FI) network of 10,956 proteins and 209,988 inter-
actions. Wu et al. then integrated FI with a pathway approach. They identified 73 
proteins in TCGA’s glioblastoma pathways. They then use FI to add proteins that 
interacted with one or more of these proteins. This effectively selected a subnetwork 
out of FI whose components are plausibly linked to glioblastoma. Two segments 
are shown in Fig. 6. The nodes in grey were included in the TCGA pathway, those 
in blue are added from FI (mostly connected with undirected edges since pathway 
information is lacking). From this network, the authors generated hypotheses about 
how mutations lead to cancer. One hypothesis involves NUP50, shown in the left 
panel. It has a reduced copy number in three TCGA samples. Since it is connected 
to CDKN1B in the network, the authors propose that it is required for degrada-
tion of CDKN1B and its altered copy number contributes to glioblastoma by caus-
ing increased activity of CDKN1B in the cell cycle. In the right panel, tenascin-C 
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(TNC), mutated in three TCGA samples, is shown as a ligand for epidermal growth 
factor receptor (EGFR). Since EGFR is upstream of the RAS complex, the authors 
propose that mutation of TNC could contribute to cancer by up-regulating RAS, 
resulting in uncontrolled proliferation.

Wu et al. then applied cluster analysis techniques to the FI subnetwork, which 
revealed 17 modules, of which six had four or more nodes (shown in Fig. 7, with 
shading identifying the two largest modules). Module 0 contains proteins found 
in the cytoplasm and plasma membrane that are mostly involved in signal trans-
duction, whereas Module 1 contains nuclear proteins that are mostly involved in 
cell cycle, DNA repair, and chromosome maintenance. From “[t]he fact that most 
of the [glioblatoma] samples have altered genes in both modules” the researchers 
advance a mechanistic hypothesis: “these two major modules are acting coop-
eratively in establishing and/or maintaining the [glioblastoma] phenotype, and… 
the development of [glioblastoma] cancers involve malfunctions in both signaling 
transduction and cell-cycle regulation” (p. 10).

In another approach, Wu et  al. started with genes mutated in at least two 
TCGA samples. By adding the minimum number of genes from FI needed to 
generate a connected subnetwork containing > 70% of altered genes, they built 
a network of 77 genes and 5 linker genes. These genes turned out to be far more 
interconnected, with a much shorter path length between them, than random sets 
of genes. As shown in Fig. 8, when they projected pathway information back onto 

Fig. 6  Two portions of the Wu et  al.’s FI network. Large circles identify genes mutated in TCGA. 
The small nodes in blue represent proteins in FI not included in TCGA’s pathway analysis. See text for 
hypotheses concerning possible roles of NUP50 (left panel) and TNC (right panel). Reprinted under Cre-
ative Commons Attribution (CC-BY) license from Wu et al. (2010). (Color figure online)
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the core subnetwork, they found four pathways—TP53, focal adhesion, signaling 
by PDGF, and cell cycle—highly represented in this core subnetwork. Moreo-
ver, as the figure indicates, they are highly intertwined, with overlap and cross 
talk between the pathways. By revealing this, the network research enriched the 
understanding provided by the pathways alone.

Wu et al.’s study illustrates how one can draw upon both pathway strategies 
and network clustering strategies in developing mechanistic hypotheses about 
how genes altered in cancer result in hallmarks of cancer. Above I noted that 
the two heuristic strategies each offered partial but complementary perspectives 
on a mechanism—identification of clusters in pathways left out specification of 
pathways, while pathway strategies lack the capacity to include proteins whose 
specific contribution is unknown. Wu et al.’s success in integrating them offers 
promise that these approaches will converge and produce robust accounts of 
possible mechanisms that explain how cancer hallmarks are generated. The abil-
ity to link multiple genes altered in tumors with these mechanisms further serves 
to reduce the heterogeneity problem.

Fig. 7  Application of betweenness algorithm reveals six modules in portion of FI network containing 
mutated or copy-number altered genes in TCGA glioblastoma samples. GO annotations shown for the 
two largest modules, shown in color. Size of nodes indicates frequency of a given gene being altered in 
TCGA data. Dashed edges are interactions predicted from model organisms, not empirically confirmed. 
Reprinted under Creative Commons Attribution (CC-BY) license from Wu et al. (2010). (Color figure 
online)
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7  Conclusions

Philosophers concerned with mechanistic explanations have focused on heuristic 
strategies for taking mechanisms apart to identify their components and determine 
what they do. In this paper I have described two heuristic strategies that work in the 
opposite direction: they start with components and hypothesize mechanisms. I have 
shown how cancer researchers are employing these heuristic strategies to address the 
enormous heterogeneity among genes that are found to be altered in cancer patients. 
By relating multiple altered genes to the same mechanism, researchers are seeking 
to explain why any of these alterations results in cancer.

More specifically, I have differentiated two heuristic strategies for advancing 
from altered genes to higher-level mechanisms in which the proteins coded by these 
genes function. The first identifies pathways of connected proteins, viewing those 

Fig. 8  Core subnetwork extracted from TCGA glioblastoma data with identification of genes in four 
pathways shown in shaded regions. The color of the nodes indicates genes shared in another sample of 
glioblastoma tumors (yellow) or not shared (blue). Red indicates those nodes added to connect the net-
work. Node size indicates frequency of mutation in TCGA sample. Reprinted under Creative Commons 
Attribution (CC-BY) license from Wu et al. (2010). (Color figure online)
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pathways as constituting the relevant higher-level control mechanism. This approach 
requires knowledge of how proteins affect each other—by, for example, transfer-
ring phosphate groups from one protein to the next in a signaling pathway. The set 
of proteins organized into a pathway constitute a mechanism and, when sufficient 
knowledge is available to generate a pathway, one can view the mechanism as the 
entity affected by alterations to any genes coding for components of the pathway. 
The second heuristic strategy starts with data about protein or gene interactions and 
constructs a network from this data. Clustering algorithms are then invoked to iden-
tify groups of genes or proteins that are highly interactive. These are treated as con-
stituting a higher-level mechanism. Unlike the first approach, this strategy identifies 
proteins as parts of a mechanism without knowing in which specific activities they 
figure. To apply this strategy, researchers only need evidence that the genes or pro-
teins interact in some way. Once these clusters are identified, researchers can use 
techniques such as diffusion to identify the mechanism that is likely affected by the 
alteration of the gene.

Like the heuristic strategies identified by Bechtel and Richardson (1993/2010) 
and Craver and Darden (2013), the strategies of appealing to pathways and net-
work clusters to identify mechanisms are discovery strategies. They are used to help 
researchers formulate reasonable hypotheses for further inquiry; they do not show 
that the hypotheses arrived at are true. These strategies, however, are different from 
those of more traditional mechanistic research since the goal (to determine which 
components work together as mechanisms) is different. Along the way, though, they 
also serve some of the same goals as the traditional heuristics—identifying new 
parts and operations of mechanisms and how they are organized together to produce 
specific phenomena. In the case of cancer, the main focus is on how these mecha-
nisms generate the hallmarks of cancer when they are altered so that the mecha-
nism no longer operates in its normal fashion. In this context of the heterogeneity 
problem, by turning to mechanisms and not just their parts, researchers acquire a 
way of understanding how multiple different alterations all produce the same cancer 
hallmarks.
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