
ORI GIN AL PA PER

Mapping an expanding territory: computer simulations
in evolutionary biology

Philippe Huneman

Received: 28 November 2013 / Accepted: 16 March 2014 / Published online: 25 July 2014

� Springer International Publishing AG 2014

Abstract The pervasive use of computer simulations in the sciences brings novel

epistemological issues discussed in the philosophy of science literature since about a

decade. Evolutionary biology strongly relies on such simulations, and in relation to

it there exists a research program (Artificial Life) that mainly studies simulations

themselves. This paper addresses the specificity of computer simulations in evo-

lutionary biology, in the context (described in Sect. 1) of a set of questions about

their scope as explanations, the nature of validation processes and the relation

between simulations and true experiments or mathematical models. After making

distinctions, especially between a weak use where simulations test hypotheses about

the world, and a strong use where they allow one to explore sets of evolutionary

dynamics not necessarily extant in our world, I argue in Sect. 2 that (weak) simu-

lations are likely to represent in virtue of the fact that they instantiate specific

features of causal processes that may be isomorphic to features of some causal

processes in the world, though the latter are always intertwined with a myriad of

different processes and hence unlikely to be directly manipulated and studied. I

therefore argue that these simulations are merely able to provide candidate expla-

nations for real patterns. Section 3 ends up by placing strong and weak simulations

in Levins’ triangle, that conceives of simulations as devices trying to fulfil one or

two among three incompatible epistemic values (precision, realism, genericity).
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In the spirit of logical positivism, it would not be unusual to think that the two
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through experiment or observations, and logic—especially in the form of

mathematical models. The eruption of computer modelling changed the picture of

science to the point that what now may be the most important part of the daily work

of scientists—especially in the fields of the special sciences—consists in designing

and running computer simulations; it took a few decades before philosophers of

science began to take such a change seriously and to wonder whether scientists were

still doing the same science as the one the Vienna Circle was philosophizing about.

In the wake of Humphreys (2004), they thus began to ask how we know something

through computer simulations, and, more radically, what do we know through them

(Winsberg 2010). If one can agree that simulations extend our computational

abilities in a way somehow parallel to the way instruments such as telescopes or

microscopes extend our perceptual abilities then it is understandable that

philosophers should assess the extent of the consequences of such an extension.

Computers do not only imply that we compute faster and more: according to

Anderson’s famous slogan (‘‘more is different’’, Anderson 1972), they also imply

that we compute, and then think, differently. The philosophical question thus

becomes: how different? Are computers a new sort of experiment? (Peck 2004).

In the context of these questions it is interesting to consider one specific kind of

computer simulations, namely those that are used in evolutionary biology, for the

following reasons. Besides the fact that a huge amount of models and theories are

induced and tested on the basis of computer simulations, it is notable that a whole

field of biology deals only with computer simulations: so-called Artificial Life (AL),

which tries to design algorithms that implement the properties of inheritance,

variation and fitness likely to yield a real evolutionary process. The philosophical

rationale behind this project is often the desire to investigate the proper features and

processes of life—assuming that life is what evolves, on Earth, through evolution by

natural selection—as they would be when separated from the fact that living

individuals on Earth have been instantiated on the basis of a carbon-based

chemistry. This is arguably a contingency of our universe; and if ‘‘Life’’ is supposed

to make sense in general—that is, to be something like a ‘‘natural kind’’ (sensu

Kripke) or to be able to refer across possible worlds as a rigid designator—one

should be able to disentangle the properties of Life itself (or at least of the agents

likely to undergo evolution by selection) and the properties stemming from the fact

that carbon molecules instantiate life in this world.

Moreover, turning to evolution itself, it has even been argued (e.g. Dennett 1995)

that evolution by natural selection is a sort of algorithm. Inversely, in all areas of

science and engineering, when it is not possible to solve an optimizing problem as a

solution of equations, one designs a specific range of algorithms, so-called ‘‘genetic

algorithms’’. Their description uses the keywords of evolutionary biology—genes,

mutations, recombination, crossover, fitness, etc.—which also indicates that

evolution may receive an algorithmic interpretation. When one adopts such

interpretation, it is natural to think that the computer simulations invented and

explored by AL scientists capture something of the algorithmic processes that are

constitutive of evolution. It is therefore plausible to think that the epistemic issues

proper to the use of computer simulations can be fruitfully addressed within the

context of evolutionary biology. Examining how these simulations are designed, the
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questions they are likely to answer, and the kind of explanations or contributions to

explanations they provide should enrich a general understanding of knowledge by

simulations. This is the topic of the present paper.

The outline of this paper is the following. A first section will expose the specific

epistemological problems raised by computer simulations, namely, the validation

problem, the explanatory scope problem, and the problem of their relations to non-

simulation models. Essentially, simulations will be examined alongside the

antagonistic epistemic values that Richard Levins elaborated with respect to model

building around 50 years ago. The second section will sketch some roles of

simulations in evolutionary theory. The last section will isolate what is epistemi-

cally proper to the use of simulations in evolutionary biology, and the types of

responses to the epistemological problems outlined in Sect. 1.

1 Computer simulations and their epistemological problems

1.1 Characterization of computer simulations

Provisionally, I work with the following characterization of a computer simulation

in general: simulations include programs which drive the behaviour of a set of

digital elements with specific rules—such as agent-based models, cellular automata

(e.g. Margolus and Toffoli 1987), and genetic algorithms, all of them being used in

all areas of the sciences, natural as well as social (see, e.g., Epstein 1999). In doing

so, they may represent a target system. For instance, an agent-based model

simulating the dynamics of a deliberating group—whose rules (either deterministic

or stochastic) are founded on the changing beliefs rules inspired by the psychology

of daily life, and whose prior conditional beliefs are based on average opinion polls

gathered from typical representatives of the given sociological categories to which

the individuals belong—will model the target system made up of a set of jurors

judging a given case defined by some judiciary or social criteria.1

But simulations also include algorithms that compute the solutions of differential

equations once they are discretized. For example, while general Navier–Stokes

equations capture the behaviour of liquids, they are hard to solve generally; and

therefore their discretized counterparts allow one to compute approximate values of

the solutions. These two types of simulations can thus be embraced in a single

concept: a simulation realizes an algorithm implementing a specific model (as a

simplified representation of a possible state of things), which can be defined by

discrete rules or by equations, into a computer language in a way that allows us to

compute a set of outputs from a set of inputs.

For a given simulation, then, running the program—which can be called a

‘‘simulation round’’—takes the place of deducing the consequences from an analytic

model, i.e. computing the integrals or solving a set of partial differential equations.

The algorithms are determined by parameters whose values range across a particular

domain. Comparing identical and different rounds of the simulation (with regard to

1 See http://www.jurysimulationresearch.org to find examples of such simulations.
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parameter values) allows one to ‘‘gauge’’ the space of parameters according to the

kinds of outcomes each combination of parameter values yields. In the sense that it

allows one to capture the possible behaviours of the target system, this operation

precisely corresponds to solving the equations of an analytic model.

1.2 Three questions

Once simulations are understood as models, they raise epistemological questions

along the following three lines: their explanatory scope, their relation to experiment

and mathematics, and their validation.

1.2.1 Explanatory scope

Even though ‘‘model’’ is a term at the centre of heated controversies in the

philosophy of science, almost everyone agrees that models play an important

explanatory role in general. Computer simulations are a specific kind of model, but

there is not a universal answer to the question: ‘‘what do they model?’’ For example,

consider the famous simulation of the flocking behaviour of birds proposed by

Reynolds (1987). This simulation showed that digital creatures called ‘‘boids’’—

obeying very simple local behavioural rules of direction matching, collision

avoidance, flock cohesion, may display a pattern of collective motion similar to the

patterns of collective flight displayed by flocks of birds.2 ‘‘Boids’’ are also a good

model for the behaviour of schools of fish and other groups of animals.

However, nothing in the model transcribes the real characteristics of fish or birds:

the only property under focus is that they move. No knowledge of what fish or birds

are is relevant here—not even the fact that they are living organisms, or that they

evolved through natural selection. This is in contrast with other kinds of models.

Experimental models—think of Mendel’s peas—model systems of populations with

inheritance properties, since they are themselves sexual species. It can hence be

seen as a legitimate model of biological inheritance. Mathematical models, on the

other hand—think of Fisher–Wright models in population genetics—are modelling

populations of genes, some main dispositions of which (mutating, recombining,

replicating, impacting reproductive chances of phenotypes) are cardinal features of

the entities called ‘‘alleles’’ in the model. It can hence be seen as a legitimate model

of allele frequency change in a population.

In the absence of references to biological entities or processes, it is not obvious

that the ‘‘boids’’ simulation, for example, is a model of animal behaviour: boids do

not share (like peas) any biological property with any animal system; and boids are

not modelling some of the main dispositions common to all the ‘‘animals’’ qua

animals they would model—such as fish or birds. Granted, the explanatory relation

of models to reality—or of ‘‘model systems’’ to ‘‘target systems’’ as this is called in

the literature—is a longstanding puzzle; however, nothing indicates that such a

puzzle will be the same when one considers computer simulations; therefore, it may

2 The simulated flocking behaviour can be seen at http://www.red3d.com/cwr/boids/applet/.
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be that the boids model does not exactly pertain to biology the same way as the

other two examples—Mendel’s peas and the Fisher–Wright equations—do.

1.2.2 Relation to experiments and mathematics

The boids simulation is both a digital system, and an experimental setting—like

Galileo’s inclined planes, with which it has many features in common, as it has been

often argued in the literature (e.g. Peschard 2010; Hughes 1999; Norton and Suppe

2001). It is a simple system that produces an output according to how we determine

the input: stones of various weights and various inclination angles, in the case of

Galileo’s device; various parameter values for the rules of the boids, the number and

different initial speeds of the boids, the positions of obstacles along the trajectory. In

both cases, we gain knowledge by considering the various reproducible associations

between our chosen inputs and the recurrent outputs. Moreover, this knowledge is

about something else than the model system that is somehow related to it: the

dynamics of gravitational bodies on Earth, the swarming behaviour of animals.

Along these lines, it has been suggested that computer simulations are indeed a sort

of experiment, using digital material rather than matter (Morrison 2009).

It is quite common to think that in many cases simulations are designed when

experiment or observation is not possible (claim 1); climate science or cosmology

provide instances of this. However, the fact that computer simulations simply

implement some algorithms also inevitably suggests that they are mathematical

tools rather than experiments. Therefore, nothing really specific about simulations

would distinguish them from mathematical models. Supporting this claim, Frigg and

Reiss (2009) argued that there are two epistemic questions which scientists handle:

when they use simulations as well they work with mathematical models checking

the appropriateness of the model (‘‘validation’’) and verifying its computation of the

solutions (‘‘verification’’).

It is indeed common among scientists to view simulations, which are algorithms,

as a mathematical alternative to models written with equations. As a result, the

question for them turns to the choice between these two kinds of mathematical

models: authors debate about which criteria should govern this choice; and further,

whether there are ideal recommendations about which should be chosen in general.

And here, a plausible view is that simulations are used when the solutions to the

analytic models are not available (claim 2). Claim 1 and claim 2 therefore see

simulations as a surrogate—whether the inaccessibility concerns experiments or

equations. It is possible that both are right regarding some kinds of simulations.

However, with regard to the relationship between analytic models and

simulations, three cases (i–iii) have to be distinguished:

(i) We may have an analytic model of a system written in terms of equations that

describe its behaviour. Recall the Navier–Stokes equations which govern any

hydrodynamic system, and would therefore also govern for example its

turbulences. It is in general too difficult for us to find the solutions of these

partial differential equations (which would allow us to describe a given

hydrodynamic system, model its behaviour, and predict phenomena of
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interest). Therefore, we simulate the system under focus based on some

algorithms derived from the Navier–Stokes equations. Often, we may have no

actual data to compare to the outcomes of the simulation, since simulations are

used when we have no access to the reality modelled by our analytic models

(think of simulations of the behaviours of galaxies when they crash into each

other, black holes, etc.).

(ii) Let us suppose there is a system for which we have no equations. Yet we may

have some coarse-grained description of it—some reasonable intuitions about

things that are going on that allow us to build a model by considering the

behaviour of parts of the system along some rules we intuit, and then

modelling the global behaviour and its outputs. Agent-based modelling often

proceeds in this way; it is thus always bottom-up modelling. An example

would be Reynolds’ boids—since scientists initially thought of some possible

rules that bodies moving in a flock- or swarm-like manner could follow, built

the boids accordingly, and then fine-tuned the rules and checked for the

accurate output (the one that corresponded to empirical data). Many models in

the social sciences are like this, for example, Epstein’s model of civil violence

(2002). These models correspond to what Humphreys called ‘‘non-theory

based models’’. In this case, we are not facing a situation where simulations

are used because analytic models are intractable, since these models are not

available from the start.

(iii) There are also cases where the same phenomenon can be understood both

through an analytic model (i.e. partial differential equations) and through

algorithms. More precisely, it is often the case for certain kinds of systems

that we have an analytic model where some subclass of behaviours of the

system is tractable while many others are not—while we have a range of

simulations for any subclass of behaviour. Simulations and equations may be

very different, with no easy way to derive the latter from the former; and they

may also have different simplifying assumptions, which implies that they are

not exactly equivalent. Sometimes this case includes situations where

researchers start with the simulation models. These simulations generated

interesting outputs that proved they were a correct model for the data.

Afterwards, some researchers found the analytic model corresponding to the

simulations. This happened with the neutral theory of ecology—first exposed

in the seminal book by Hubbell (2001) in terms of simulations of agent-based

zero sum games in metacommunities,3 with the agents being individuals of

specific species. Later on Volkov et al. (2003) derived a set of equations that

generally described these neutral metacommunities. However, these equa-

tions are not easily tractable.

Case (iii) raises the question of how to choose between equations and algorithms—a

methodological issue often faced by scientists, as is exposed by Gaucherel et al.

(2011) in the case of ecology. They argue that there is no principled criterion in

3 Sets of ecological communities of species, related by processes of migration, colonization, gene flow,

etc.
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choosing one above the other; rather, complex explanatory interests dictate

preferences. Nevertheless, the alternative between analytic models and simulations

is often understood in the sense of a lesser value of simulations—because either they

just approximate the solutions, or they are simply embedded in gross common sense

assertions or intuitions—a fact that lowers their scientific value.

The contrasting reactions to computer simulations in explanations range from

depreciation by microeconomists (Lethinen and Kurikovski 2007) to enthusiasm

among the community of Artificial Life researchers (Adami 2002). This variety has

to do with a paradox that emerges when we compare modelling by simulations with

experiments and mathematical models. If we consider simulations as experiments,

they have an original characteristic that could be called transparency: we are

somehow in command of the simulation, since we control all its parameters;

whereas with experiments, which take place in the real world, we may fail to know

important parameters or causally relevant factors that are accountable for the

outcomes.4 If we consider simulations as mathematical models, on the other hand,

they are non-transparent, in the sense that we often cannot write down a solvable

equation that would account for their global behaviour; in other words, these

outcomes are not necessarily solutions of analytical equations of some canonical

type. For instance, in many cases of cellular automata we cannot look globally at a

step of a cellular automaton and compute its next step without looking at it locally,

cell by cell (Wolfram 1984; Huneman 2008a).5

The reservations vis-à-vis simulations may often support the quest for an analytic

model that would transcribe the algorithms. Turning again to Reynolds boids, one

notices that this is actually the case here. The boids algorithms have been very

illuminating in regard to the behaviour of gregarious animals, such as nightingales

or cranes; it also perfectly models the behaviour of schools of fish.6 It shows that

simple individual behavioural rules, which only consider the local position and

neighbourhood of a fish or a bird, generate a cohesive and ordered motion without

the need of any centre of control. Later on, it was shown to be derived from the

agent-based model of self-propelled particles (SPP) called the Vicsek model

(Vicsek et al. 1995)—where particles follow discrete rules that do not consider

long-range parameters (as was the case in Reynolds rules: they fly in accordance

with the centre of the group…), and noise is added (which plays a fundamental role

in making the collective behaviour robust; see Toner and Tu 1998). SPP are a

paradigmatic model for the study of swarming behaviour in all unicellular

organisms (to which no sensation of long range events can be ascribed) and animals,

4 Often, unpredicted results of experiments, or failure to reproduce experiments in different labs, come

from these parasitic unknown factors: most recently, the European experiments that found neutrinos

going faster than the speed of light were affected by such uncontrolled factors, i.e. optical fibers with

unusual diameter (Reich 2012).
5 Moreover, computer simulations run by themselves, so we cannot see and understand what is going

on—in the sense of how Descartes, in principle, required all cognitive operations to be self-certain of the

validity of each of its steps.
6 It is still used when producing cartoons with fish [Reynolds’ simulations were first developed in the

context of video programming, as is indicated by the fact that his paper was published in a journal of

graphic design (Computer Graphics) rather than in a computer science or biology journal].
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including humans. And in turn, it has been shown that the Vicsek model instantiates

a set of equations known as the Toner–Tu equations—which describe the whole

flock behaviour through a set of four equations with two variables, the flock density

and the flock (vectorial) mean velocity (Toner and Tu 1998). And so here we have a

continuous epistemic process that went from simulations like case (ii) to simulations

like case (i) (equation-based).

Therefore, it looks like once again, as in the case of the neutral theory in ecology,

one can understand the simulation algorithms as the manifestation of underlying

equations—just as the zero-sum games meta communities can be seen as

instantiations of the equations proposed by Volkov et al. (2003), or as the agent-

based behaviour of some aggregated consumption behaviour can be understood as

the solution of a set of equations describing the agents’ utility functions (as it is

assumed by orthodox microeconomists—Lethinen and Kurikovski 2007).

But in this case, moreover, it appears that the Toner–Tu equations are somehow

correlated with the Navier–Stokes equations that describe the motion of a fluid: in

both cases, the overall behaviour of macroscopic entities is described through

formally analogous equations of velocity and density. Yet, the former equations

violate a symmetry principle proper to hydrodynamic liquids in equilibrium

described by Navier–Stokes—namely, the fact that such liquids do not have a

privileged direction in three-dimensional space, unlike SPP collectives.7 But the

epistemically relevant aspect of this analogy is that these Toner–Tu equations

provide a new insight if one considers a striking feature of the collective behaviour

of birds viewed in nature: seen from far away they look like the flow of a river. They

are especially analogous to this when they avoid obstacles by separating into groups

and rejoining afterwards—just like a river moving around a rock or a sand island

(see Fig. 1).

Now, imagining that the fish in a school of fish become smaller and smaller as the

school becomes larger and larger, the school starts to resemble a flow of particles

(like, for instance, iron dust); and at the limit, when the particles reach the size of

molecules, the school would become a liquid (ignoring, however, the symmetry

breaking proper to flocks; cf. Lopez et al. 2012). Therefore, the fact that the

behaviour of boids as modelled by Reynolds resembles the behaviour of a flow of a

liquid as seen from very far away is captured by the fact that the Toner and Tu

equations governing these simulation systems are a sort of Navier–Stokes equation.

Actually, it is ‘‘the existence and similarities of collective motion phenomenon in

very different species and even in non-living systems’’ (Lopez et al. 2012) that

stimulated the elaboration of a general set of equations, which captures flocking

behaviours and more generally SPP behaviour as an instance of a universal

behaviour. So here, the simulations can appear afterwards as being derived from

equations; but in fact, the equations just provide a supplementary understanding of

what is going on in collective behaviours—i.e. the fact that they instantiate a very

general behaviour in nature, affecting both organisms, small particles and liquids.

7 Even though the equations do not specify the cause of the symmetry-breaking, and that it can as well be

initial stochastic fluctuations.
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1.2.3 Validation

Simulations may raise specific problems about what they explain, about their

intrinsic nature, and—given that they are scientific tools—about their validation.

Once again, Reynolds’ boids are a good example. As said, they adequately model

the behaviour of flocks of birds as well as schools of fish by ascribing to agents in

the simulation (the boids) some simple behavioural rules. The result matches the

observed patterns of behaviour of many social animal species. However, what do we

mean by claiming that this is a good model? Fish, birds, grasshoppers are very

different species, and nothing indicates that they may have the same nervous

system; therefore, how could you say that they genuinely obey the same behavioural

rules? Without independent evidence of the fact that the nervous or cognitive

systems of specific fish and birds indeed implement Reynolds’ rules, we cannot say

that the model accurately captures the nervous and cognitive properties of those

animals—even though we could say that we correctly model the behaviour of the

collective. It is a mathematical fact that, if these rules can produce the observed

flocking behaviour, there are possibly many other sets of rules that yield the same

grouping behaviour. Thus, why would we say that all species that display the same

behaviour therefore obey the same rules, namely those proposed by Reynolds?

Adding to this that the boids are in fact instantiating a Toner–Tu equation that also

holds for purely physical systems increases the doubts we could have about the

modelling adequacy of the boids. Even though the boids prove that no centred

control system is required to produce flocking behaviour in any species, it is hard to

infer more than that about the genuine rules that govern individual behaviours.

This validation problem for simulations seems to be quite original, if compared to

the usual model validation problems, since the rules of the building blocks—e.g. the

agents in an agent-based model—are often not intended to be the rules actually

followed by extant parts of the system (i.e. organisms) that could be studied

empirically. There is also, however, an analogy with the underdetermination of

theory by its data; i.e., as Russell or Duhem remarked a long time ago, any

Fig. 1 Reynolds’ boids. Screen
capture from http://commons.
wikimedia.org/wiki/File:
Blender3D_BoidsOnPlane.
ogg?uselang=fr, which shows
the flight of boids over moun-
tains (source Wikipedia
Commons)
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mathematical ‘‘law’’ which is hypothesized to explain observed regularities comes

with a whole series of different laws that are empirically equivalent.

To make the validation problem for simulations more salient, as well as to

capture its originality, let us turn to meteorology. Küppers and Lenhard (2005) have

shown that simulations of the global dynamics of a system sometimes make very

unrealistic assumptions in regard to the parameters of the system they model (in

order to compensate for the effects of the discretization of the equations), but yield

very adequate predictions of global behaviour. Arakawa’s climate models are good

examples of this: they quite accurately predict the future weather on a global scale,

but they set some parameter at a highly unrealistic value. Here, not only are the

unrealistic assumptions tolerated in the simulations, but without them the model

would not be accurate enough in regard to what we want to predict.

1.3 A general perspective on epistemological questions relating to simulations

A more fruitful way of considering the validation problem, as well as the

explanatory scope problem, is to recall Levins’ (1966) conception of the strategy of

model building. In this 1966 paper, when considering ecological models, Levins

argued that models have different epistemic goals which cannot be fulfilled at the

same time (all of them being sometimes conflated under the name ‘‘validation’’).

Generality, realism, and prediction are these goals: a model can be realist and take

into account the specificities of a situation (for example a predator–prey model of a

population of foxes and rabbits could realistically describe the dynamics of a

population of foxes and rabbits). Although a pure predator and prey model (e.g.

Lotka–Volterra equations) will be more general, it loses realism—even though it

can give rise to predictions when some of the parameters are informed. Further, by

adding more specificities of an extant population, the model can be very precise as it

entails reliable quantitative predictions; however, it will lose some generality since

other prey and predator populations will not be modelled by it (Fig. 2).

As a consequence, Levins argues that no model can satisfy all epistemic values at

the same time, and therefore one has to make choices: there exist trade-offs between

all values, and the realization of these trade-offs characterizes a given model. That is

also why the same phenomenon, or target system, can be modelled by several very

different models that may have very different assumptions. Further research (e.g.

Matthewson and Weisberg 2009) delves into the details of these trade-offs by

distinguishing and defining different types of models by the kinds of trade-offs they

can make.

In the case of Arakawa’s climate model, it is easy to understand what is going on:

it trades off realism for precision while keeping the level of generality unchanged.

The boids are even more general, and possibly less precise. They also forget realistic

details. So generally speaking, these models tend to exist in the part of the triangle

that is mostly general and precise (defining ‘‘precision’’ by the accuracy of global

predictions). Therefore, their validation cannot be understood as a comparison with

the real systems they model—but rather as global predictive accuracy.
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2 Simulations in evolutionary biology

There is an extensive use of simulations in evolutionary biology for a specific

reason; and this reason allows for some interesting features in these simulations that

may provide determinate answers to the three epistemological problems outlined

above—especially with my intent of putting them within the perspective of Levins’

triangle. First, this reason is the fact that the timescales of evolutionary biology are

such that it is difficult to experiment on real-life systems. Mathematical models, on

the other hand, are often difficult to handle. For instance, genomes contain

thousands of loci; but population genetics can maximally do two-loci models, which

is little even if it is reasonable to assume that the evolution of one gene can be

understood by a two loci model (Gillespie 2004). Therefore, besides classical

experiments with bacteria (Lenski and Travisano 1994), Drosophila (Teissier and

Lheritier) or mice (Lewontin and Dunn 1960), evolutionary biologists often turn to

simulations to capture something of the evolutionary dynamics that are likely to

occur.

There is another reason (alluded to in the introduction) to focus on evolutionary

theory, namely the Artificial Life (A-Life) research program. Evolution on Earth

occurs with the descendants of the first living cells—which results in the contingent

properties of a shared genetic code and a carbon-based chemistry. To consider what

evolution would look like ‘‘as such’’, as the A-Life project asks, simulations are the

appropriate tool, be they sophisticated genetic algorithms like Holland’s Echo,

cellular automata like Conway’s ‘‘Game of Life’’, or agent-based models, or any

other kind of algorithms. I have elsewhere discussed the project, along with the

strong A-Life thesis according to which evolutionary biology is a branch of some

general algorithmic theory (Huneman 2012a). In order to address the epistemolog-

ical problems sketched out in the previous section, I will recall the typology of

computer simulations in evolutionary biology before sketching the epistemic

properties they have in common.

Fig. 2 Levins’ triangle. The
coordinates are triplets (G, R, P),
G being the value for generality,
R for realism, P for precision.
Each edge defines value 1 for G,
R or P (drawing by the author)
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2.1 Types of simulations in evolutionary biology

In evolutionary biology, many issues obviously concern evolution by natural

selection. Therefore, simulations can first be classified according to whether they

confer a role to natural selection or not: Some simulations define a context where a

form of natural selection can take place—the building blocks of the simulation

feature variations, a form of inheritance, and can be ascribed a fitness function.8

Numerous examples exist: from the simulation of the respective impacts of adaptive

potential and geographical barriers on the process of speciation (Maley 1998), to the

simulation of industrial melanism, by cellular automata that are in competition for

the best match to a coloured environment (Maron 2004). But other simulations in

evolutionary biology can do without natural selection: for example, the well-known

paleontological model of the diversification of clades according to a random walk,

which was developed in order to check to what extent patterns of evolution of

biodiversity have to be ascribed to natural selection (Gould et al. 1973, 1977; cf.

Huss 2008). Some other examples include the models of ecological change in

biodiversity in metacommunities without natural selection, as developed by the

neutralist theory of ecology (Hubbell 2001).

The epistemic status of simulations in evolutionary biology gives rise to another

distinction:

(1) Weak simulations Some simulations may be developed to test a theory (and as

in case (i) above in Sect. 1, they may be derived from an analytic model) or a

hypothesis (possibly expressed in verbal terms). For example, Maron’s

melanism simulations mentioned above aim at testing the famous selection

hypothesis about the changing colour of peppered moths after the industrial

revolution (Kettlewell 1955). Yet ‘‘testing’’ may mean two different things:

(a) one wants to test a hypothesis that can be modelled in an analytic model

but is intractable, or that cannot be modelled by equations at all;

(b) one wants to test a hypothesis about a process in nature for which real

data is difficult or impossible to gather, such as what is going on in black

holes. Maley’s model, for example, tests the hypothesis that geographic

barriers are an important driver of speciation; in doing so, the simulation

provides the data by which the hypothesis will be judged.

Thus, within the testing process (a process where scientists conceive of hypotheses,

design models to implement hypotheses, and derive predictions and compare

predictions to data), the simulation sometimes takes the place of the prediction (a),

and sometimes has the role of providing data (b). To sum up, in case a, data and

simulations are used to test hypotheses. In case b, there are hypotheses, but no data;

this is provided by simulations, which replace experiments and observations.

8 These three properties are, as formulated by Lewontin (1970), the conditions for natural selection.
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(2) Strong simulations Some other simulations are not intended to test any theory

or hypothesis; rather, they just explore the possible outcomes of a simple

model. For instance, Holland’s Echo algorithm models the ecology and

evolution of ‘‘organisms’’ that have genes, have chromosomes, and compete.

This is not supposed to model actual target systems; and thus, the

correspondence with real organisms—or simply the choice of organismal

properties—is not a characteristic of the simulation. Scientists explore Echo

and its behaviour by varying its parameter values and checking what happens,

focusing on the system itself, and not referring to a target system.

Qualitatively, Echo displays some interesting recurrent behaviours (such as

the appearance of predators, the emergence of mutualisms and parasitism, etc.)

that resemble very general traits of real ecosystems; it shows typical ecological

behaviours, such as the competition exclusion principle (Holland 1995; Hraber

and Jones 1994; cf. Pocheville 2014 on the competition exclusion principle).

But it is not really a model of an ecosystem: its unrealistic assumptions

concerning reproduction—namely, the absence of reproductive isolation for

species—makes Echo a poor model of evolutionary biology (Crubelier et al.

1997). It is not intended to test hypotheses about any extant ecosystem or kinds

of ecosystems and their key features (genetic features such as gene flow;

ecological properties). More generally, all simulations developed within the

framework of Artificial Life are of this nature. (I will consider below to what

extent such A-Life simulations contribute to classical evolutionary biology.)

Thus, in contrast to weak simulations (1a and 1b), in strong simulations there

are no hypotheses and no data to test.

Often, weak simulations of type a will have a predetermined fitness function.

Inversely, in strong simulations, no fitness function is defined—which allows the

system to evolve in a sense that may resemble open-ended evolution in which the

rate, range and nature of adaptations is not bounded. Actually, some strong

simulations are designed precisely to see under which conditions open-ended

evolution as we see it on Earth could emerge (Bedau et al. 1998; Taylor 2012).

Interestingly, all these simulations feature the ‘‘transparency paradox’’ mentioned

in Sect. 1.2.2. First, they are transparent, in the sense that nothing else than the

designed algorithm that we conceived of is responsible for the properties we are

witnessing. Second, they display emergent processes, which may result in some

global outcomes that are not potentially included in the initial states, and not even

potentially describable in the language intended to describe the initial states—i.e.

the agents and their properties (Rasmussen and Barrett 1995). For example, the

moving patterns named ‘‘gliders’’ in the peculiar cellular automaton called

Conway’s Game of Life (Fig. 3), as well as the so-called ‘‘glider guns’’, are such

emergent patterns. Emergence here has to be understood as computational

incompressibility (Huneman 2008a, b; Bedau 2003, 2008); for this reason, the

emergent outcome is indeed not transparent, in the sense that no mathematical

global laws are likely to be easily formulated to grasp the reasons for its apparition

and predict it.
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2.2 Epistemic properties of simulations in evolutionary biology

2.2.1 Internal causal dependencies

A general consideration of the epistemic impact of simulations in evolutionary

biology starts from acknowledging that they realize a certain kind of causal

relationships; and it is in virtue of these relationships that simulations can either

represent natural processes or provide knowledge about them, as I will now argue in

three steps.

First, let’s consider the case of simulations where patterns emerge, such as the

gliders mentioned above in the Game of Life: the relationship between the

successive positions of the gliders can be understood as a relation of counterfactual

dependence between properties of emergent patterns (e.g. ‘‘if the glider at step n had

not been there, the glider at step n ? 5 would not be there, and be where it is’’). In

this sense, Huneman (2012a) argued that in computer simulations in general one can

discover counterfactual relations between emergent entities defined at a higher level

than the building blocks (such as the gliders in a Game of Life).

Second, and more generally now, the whole class of cellular automata displays

counterfactual relations between properties at various steps of the simulation that

are definable in terms of disjunctions of possible sets of states of the Cellular

Automaton (Huneman 2008a). We assume here that the same kind of reasoning will

hold about agent-based models and other types of simulations.

Third, if many computer simulations generally display these kinds of internal

causal relationships (counterfactual dependences between global states of the

simulation), what about the four classes of simulation in evolution defined above

(weak simulations with or without selection, and strong simulations with or without

selection)? Considering the case of genetic algorithms (which belongs to the class of

‘‘formal selection’’ contexts simulations), it is easy to see that these causal processes

are in fact actual ‘‘selective processes’’. For other simulations in the ‘‘formal

selection’’ class, having shown that they undergo some causal processes allows one

Fig. 3 Gliders in a Game of Life simulation. In this grid, cells are either white or black, and the state of a
cell in line n ? 1 is determined by the state of the parent cells (white/black) in line n and its two
neighbors according to a rule. Gliders are these patterns of black dots extended through several lines that
are conserved as such along many steps of the simulation, therefore that seem to ‘‘move’’ (translate while
rotating) regularly through the grid towards the bottom right, even though the cellular automaton only
determines the state of cells in each line

Mapping an expanding territory 73

123



to think that these processes will indeed be in the form of selective processes. As to

the ‘‘no selection’’ simulations, things seem less straightforward and we can leave

aside for now their status regarding causal relationships.

Considering the second epistemic distinction (weak/strong), I would now propose

the following preliminary distinction about the ways they respectively realize causal

relationships:

Weak simulations: If the hypothesis embodied by the simulation is correct, these

causal relations are of the same kind as some relations in the target system, e.g.

there is an isomorphism between selection in the Maron model of industrial

melanism and selection in a real melanism case.

Strong simulations: some features of causal processes occurring in them are

isomorphic to generic features of some kinds of causal processes within a class of

systems. For example, parasitism as a causal process in Echo does not correspond to

some particular parasitism case in a given ecosystem; rather, it instantiates some

very general features of the kind of process called ‘‘parasitism’’ (e.g. it may satisfy

the models that describe parasitism in terms of cost-benefit in fitness, see e.g.

Archetti et al. 2011).

2.2.2 ‘‘Pure possible processes’’ as the representative core of simulations

Having acknowledged causal features of computer simulations, I will now draw

some consequences about the epistemic relevance of weak and strong simulations. I

start by giving some examples and then defining an original character of

evolutionary biology simulations as including causal relations, and then hypothesize

what in principle we can expect from evolutionary simulations, especially as

compared to bona fide causal explanations. On the basis of this insight, the last

section will develop answers to the philosophical questions regarding computer

simulations in the context of evolutionary biology.

To illustrate what will appear as the main epistemic property of these

simulations, let us first consider that you do not have species easily in Echo

(Crubelier et al. 1997) or that no lineages can be defined in Tierra. More generally,

if one system is designed to study some level of biological reality, the other levels

are not ipso facto given—whereas they are in real biological systems (e.g., with

organisms, you have genes and species). Moreover, as Eldredge (1985) indicated,

all biological entities are distributed in two hierarchies: one is defined by ecological

interactions, since the levels are levels of ecological interactions (cells communi-

cating with cells, organisms chasing organisms, demes or colonies competing for

resources); the other is defined in genealogical terms—such as genes, organisms,

and species—with each level defining a kind of transgenerational persistence in

time. In both hierarchies, each level in the hierarchy coexists with all the others.

As a result, in biology it is hard to consider causal relations and interactions at a

single level: any cell interaction involves organisms, etc. This is why Huneman

(2012b) argued that any computer simulation displays ‘‘pure possible processes’’

concerning the modelled entities, located at a target-level of the biological hierarchy

(there is no implicit entangling between levels). By ‘‘pure possible processes’’, one

means that (i) these are ‘‘processes’’, since there are causal processes at stake in the

74 P. Huneman

123



simulations (as shown earlier); (ii) ‘‘pure’’ because they involve only one kind of

entity since the others are not defined in the simulation; (iii) ‘‘possible’’ because one

does not know whether these processes actually take place somewhere, or whether

they are just potentialities proper to the type of entity modelled in the simulation—

which of course relates to the validation problem proper to simulations, described

above.9

This feature relates to the epistemic property above called transparency: the

modeller controls all the causal processes occurring. For instance, in an Echo

simulation dealing with ecological relations between organisms, no parasitic effect

of species–species interaction (e.g. species selection) intertwines with the modelled

processes, since species are not even defined. Whereas in real biology it may be that

the interactions we witness and conceive of as organismic interactions (e.g.

selection of some type of traits) are yielded by a process taking place at another

level (e.g. species selection).

In the case of evolution by natural selection, there may be selection at all levels

of the hierarchy: genes, organisms, groups, species, and clades (Okasha 2006;

Damuth and Heisler 1988). Thus, in the real world, all these selective processes are

taking place together (yet with various relative impact)—whereas simulations may

model the pure possible selective processes at a given level, e.g., pure species

selection in some cases of studies on macroevolution (Gould and Lloyd 1999). If a

simulation designs organismic or genic selection but no species is defined, then it

shows what selection can do at levels under the species level. Yet of course the

‘‘pure possible processes’’ should not be understood only as particular-level

selection processes: for instance, the Miller and Todd (1995) simulation considers

the pure process of sexual selection and explores its various outcomes in terms of

diversification.

Therefore, one can generally see what weak simulations in evolutionary biology,

at least, can actually do from an explanatory standpoint: in the ‘‘formal selection’’

context, they test hypotheses regarding the sufficiency of organismic (or species, or

genic, etc.) selection to produce a given outcome (e.g. a specific adaptation such as a

mating behaviour, or different patterns of diversity). They may also test hypotheses

concerning the impact of certain parameters in driving one pure selection process

towards a given pattern or outcome. Maley’s model, for instance, compares the

relative influence of adaptation potential and geographical barriers on speciation as

a possible outcome of a pure organism-selection process.

Even if we turn to ‘‘no selection’’ simulations, an analogous feature appears. For

example, the Gould et al. random models in paleobiology showed that some random

walk in branching and diverging species may produce a pattern of distribution of

clades akin to what the fossil records actually display (Fig. 4). From a different

viewpoint, McShea (2005) designed simulations to investigate the possible

increases in the complexity of organisms across phylogenetic time. McShea

9 I say here ‘‘processes’’, but some of these processes are not ‘‘causal processes’’ stricto sensu, they are,

as illustrated, rather causal relations in the sense of counterfactual dependence. What is modeled, through

what’s called here ‘‘pure possible processes’’ as representational core of the simulation, is thereby not

only causal processes stricto sensu but causal relations, in whatever sense of causation can hold among

metaphysicians.
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challenges here the previous view of the increase of complexity that was held by

Bonner (1998)—which hypothesized that there was first selection for large size, and

that complexity comes as a consequence of large size, and thus the increase of

complexity was a by-product of selection for size. Thus, some of his simulations

have no selection in them; instead, they model the diversification of species as a sort

of diffusion process, with a fixed boundary.10 So here, as with the ecological neutral

model, computer simulations intend to determine what phylogenetic patterns could

be produced by a specific process alone—a process that is somehow a random walk

(Fig. 5).

Notice that this claim does not mean that a simulation includes only one single

process whereas several of them occur in reality. A simulation may instantiate

several processes, for example selection at two distinct levels (genes and organisms

for example). The main point mostly concerns the feature of ‘‘transparency’’ proper

to simulation: in contrast to real experiments, where several processes can go

undetected and be intertwined with the ones the experiment targets, in a simulation

only those processes occur that are defined in the algorithm (the undetected

processes are just undefined). ‘‘Pure’’ processes exclude the ‘‘impurity’’ constituted

by the mixing of well-defined and undefined causal processes. And, in contrast to

mathematical models, simulations display the connections between these processes

and the patterns they possibly yield.

Therefore, the main epistemic role of computer simulations in evolutionary

theory consists in studying those pure possible processes which are likely to yield

some pattern. In other words, instead of proving that some process caused some

evolutionary result, they provide candidate causal explanations in the following

form: ‘‘if pattern X is met, then process x is likely to have produced it’’—the

implication being that other causal processes may have been at work but were not

significant in regard to this particular outcome.

3 Consequences: the epistemology of computer simulations in evolutionary
biology

On this basis, I will now ask what can simulations can do in evolutionary biology—

which means: what do they explain and how do they explain it; how do they relate

to mathematical models; and how are they validated?

3.1 Explanatory status of evolutionary simulations

Actually, since weak and strong simulations are generally distributed across the

classification sketched in Sect. 1.2.2 (i–iii), they cannot require a unified answer to

the question of what and how they do explain: strong simulations are often not

theory based, weak simulations are theory based (by definition, they rely on the

theory that supports the hypothesis they intend to test), and weak simulations may

10 As McShea and Brandon (2011) argue, this diffusion process constitutes the first process in

evolution—entailed by the mere fact of variation, that is logically prior to natural selection.
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be designed in order to test theories whose models are non tractable—which was

often the case with the neutral theory in ecology. So, to answer the remaining

questions, I will start with the minimal characterization of computer simulations in

evolutionary biology demonstrated above: they provide candidate explanations

(pure possible processes) for evolutionary patterns. From this, we arrive at two

consequences that define the explanatory scope of simulations.

(i) Simulations may help compare the likelihood of different hypotheses based on

distinct pure possible processes in regard to a given pattern. Recall that the

likelihood L of a hypothesis is the probability P of the data conditional on the

hypothesis [L = P (data/hypothesis)]. Now, let us suppose n hypotheses (H1… Hn),

each of them claiming that one causal process produces an outcome. For example,

the hypotheses might claim that species selection (H1), or individual selection (H2),

or genic selection (H3) is responsible for a trait such as territoriality, or for genomic

variability. Next, each hypothesis defines a pure possible process instantiable in a

weak simulation (e.g. a regime of selection). Thus, each hypothesis allows one to

design a specific simulation to instantiate the hypothesized causal process as a pure

possible causal process. Now, we can run each simulation a certain amount of times;

and in general, the frequency of occurrences of the outcome comparable to the

extant data indicates the probability of obtaining such data, were such a causal

Fig. 4 The similarity between the actual fossil record, order of brachiopods (distribution of clades over
times) (bottom) and the result of a random simulation. Reproduced from Gould et al. (1977, Fig. 1). Used
with permission from the Paleontological Society
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process to take place alone. Therefore, this gives us the probability of the expected

outcome—as a state comparable to the extant data—, conditional on the fact that the

hypothesis citing this causal process does hold; that is, such a procedure gives us the

likelihood of the hypothesis. This in turn gives us a measure of the plausibility that,

the pure processes cited in the most likely hypothesis have in the reality a higher

causal impact than the others.

When the simulation is deterministic, the fact that the desired outcome (i.e., the

one that is comparable to extant data) is reached significantly more often in the

simulations of hypothesis Hi than it is reached in simulations of the alternative

hypothesis Hj (in the sense that more initial conditions support it in the case of Hi)

means that—in the absence of any knowledge of the initial conditions—the

Fig. 5 Various kinds of diversification of a group as outputs from simulations that do not incorporate
natural selection (in McShea’s view, complexity is defined in terms of number of cell types so
diversification is a proxy for complexification). In case B, a lower boundary in complexity explains that
there is a trend towards complexification, just by diffusion—this is a passive trend. Reproduced from
McShea (1996, Fig. 7). With kind permission from Evolution
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simulated hypothesis Hi is more likely than the alternative hypothesis. Hence, by

counting the frequencies of simulation rounds which deterministically yield the

expected outcome, or by comparing the frequencies of expected outcomes in the

various rounds of a stochastic simulation, we can compare the likelihood of various

hypotheses via the simulations, and therefore discriminate among the more or less

likely candidate explanations (even though the simulations cannot provide us with

the explanation: they just tell us which ones are more or less likely to be correct,

among a set of hypotheses that we considered, but the true explanation, in terms of

real processes, can always be very different).

(ii) Simulations can provide null hypotheses for the study of collective behaviours

and complex systems. The case of neutral models in paleobiology by Gould and

colleagues exemplified the fact that ‘‘pure possible processes’’ can also be ‘‘random

processes’’.11 In this sense, the simulations also allow one to identify what patterns

would likely be yielded by random events. Such a simulation instantiates a null

hypothesis (let’s call it H0): to corroborate any alternative hypothesis one should

prove that under H0 the extant data—in the Gould et al. (1977) case, a pattern in the

fossil record—is less likely.

The example cited above concerning McShea’s (2005) model of the increase of

complexity in phylogenetic time provides a null hypothesis for explanations of

complexity. If the acknowledged complexity in real data matches the kind of pattern

that is produced in the model—by what McShea calls a ‘‘passive trend’’, meaning a

directional variation in the absence of selection (see Fig. 5)—then it is less likely

that such an increase is due to selection. In other words, these models give us null

hypotheses for the explanation of complexity increase.

This is also the case with the neutral models in ecology: some interpretations

(e.g. Holt 2006) define the neutral model as the null hypothesis to which alternative

explanations considering selection effects (‘‘niche effects’’, to use the ecologist’s

language) should be compared. And the main problem for ecologists is that this null

hypothesis matches the data quite correctly.12

Especially in the case of neutral models in ecology or in evolution, the

randomness can be understood as the consequence of certain values of variables

being 0 or 1—namely, those variables describing relative fitness.13 Therefore, the

model shows what would happen if there were no selection, and hence it can be

understood as a null hypothesis. The neutral ecological model here, for which all

fitnesses are equalized (a statement called ‘‘ecological equivalence assumption’’; see

Hubbell 2001), of course instantiates such a situation. But turning to population

11 A neutral model, be it in ecology, paleontology or genetic evolution, models no specific causal

process, for example it sets to 0 all parameters on which causal processes depend; however for the

epistemological investigation presented in this paper we can call ‘‘pure possible process’’ what is going

on in such models, in a way analogous to models of alternate causal hypotheses—‘‘process’’ here is used

in the sense that we talk of ‘‘stochastic processes’’, ‘‘chance processes’’, etc. We leave aside the

metaphysical question of whether (some) chance processes are causal processes.
12 See, for example, Bell et al. (2006, p. 1382): ‘‘It was surprising to find that spatial neutral models give

rise to frequency distributions of precision that are very similar to those estimated from biological

surveys, as a consequence of the spatial patterns produced by local dispersal alone’’.
13 If all relative fitnesses in the agents of a model are equal to 1, of course there is no natural selection.
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genetics, all models that simulate the stochastic variation of allele frequencies

(called ‘‘random genetic drift’’) in terms of diffusion models are also obviously

providing null hypotheses for our understanding of evolution. If a hypothesis is that

something exists because of selection, then such a hypothesis can be contrasted with

the expectations given by this null hypothesis.

To sum up, computer simulations cannot directly prove anything by themselves

when it comes to explain how the world really is: the world is defined by ‘‘impure

processes’’, and thus simulations are not able to represent accurately what is going

on in real biology. However, they provide candidate explanations that are in need of

further evidence. To this extent, they could be understood as formulating and testing

what Brandon (1990) calls ‘‘how possibly explanations’’—namely, propositions of

causal processes that could possibly have produced the patterns we find out there

(see also Dutreuil, this issue). As Brandon notices, ‘‘how actually explanations’’ are

scarce in evolutionary biology—given that such explanations would require

evidence regarding genetic make-ups, ecological contexts and phylogenies; and

we are rarely lucky enough to get all that. Thus simulations, which are capable of

providing and assessing ‘‘how possibly explanations’’, are a very frequent tool in

evolutionary biology. This feature of computer simulations in evolutionary biology

allows us to sketch an answer to the validation problem raised above.

3.2 Validation and Levins triangle

Given the huge differences between kinds of simulations in evolutionary biology,

the question of their validation can benefit from being addressed in the context of

the Levins triangle, where the distinctions between their proper epistemic values can

be made salient. To introduce the question, I start sketching the usual explanatory

process that involves weak simulations, and then compare it to an analogous process

involving analytical models. Then I’ll turn to strong simulations (3.2.2.) and finally

situate these teachings in the larger context of the Levins triangle (3.3.).

3.2.1 Case of weak simulations: analogies

The building and use of weak simulations is often the following:

(1) Independent evidence suggests that some processes are possible (for example,

that more species form when geographical barriers exist than when they have a

definite adaptive potential, or that birds in a flock may follow simple

individual rules);

(2) Scientists then design a simulation that implements the main hypothesis in

algorithms, which allows them to test the hypothesis that such a pure possible

process is indeed likely to produce the intended pattern of data as an outcome

(for example, speciations in Maley’s model, or the flock’s flight behaviour);

(3) If this is the case, more independent evidence has to be gathered in order to

confirm that such a ‘‘pure possible process’’ was indeed really occurring (for
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example, more data about geographical barriers and phylogenies, in Maley’s

case, or more data about the behaviour of actual birds, in the case of flocking

boids).

Now, this epistemic process is not wholly special, and should be put in the context

of discussions about the methodological steps required in building and validating

any model. Important debates about validation revolved around the distinction

between verifying (i.e., whether a model correctly computes its solution) and

validating (i.e., whether a model is appropriate to its target system). Many of the

debates are affected by the question of whether in principle these are two distinct

operations, or whether they are intertwined; they are also affected by the fact that

the code, as well as the simulation algorithms themselves, has to be verified (Parker

2013). In any case, besides this first validation issue, there is a second one which

arises from the basis of the epistemic process I just sketched above.

The question of how we validate simulation models from this viewpoint indeed

resembles a classical issue in the epistemology of analytic models, namely, the

‘‘calibration vs. confirmation’’ problem (e.g. Werndl 2013). Quickly said, when we

have a set of data and several candidate models to explain this data, we may use two

distinct operations with our analytic models: calibration and confirmation—but the

same data may be used either to validate or to confirm a model, leading to a kind of

underdetermination issue, as I make it clear now. First, recall that two mathematical

functions may be very different and yet still yield very close empirical predictions

within the domain where we are considering them. For example, a set of data can be

compatible with an exponential function such as y = f(x) = exp (-ax) ? b, or with

a hyperbolic function such as y = g(x) = 1/cx-d, or with a specific quadratic form.

Granted, they are very dissimilar, but the results y = F(x) are non-discriminable

when F is f or g—at least for the range of values we are considering when trying to fit

the data (of course, this is only valid with some parameter values—a, b, c, and d in my

example). Once a function—f or g—that seems plausible is chosen, one can use the

data to calibrate the function (specify the parameters); and then, one will use (possibly

other) data to confirm the specified (calibrated) function, that is, to test whether it

correctly predicts data sets. Calibrating a model means having already chosen one

kind of function (e.g. exponential) and then using the data to fix the parameters in a

way that the outcome of the function matches the data; confirming means using data

to corroborate the choice of this (exponential) function against another one.

An interesting example of this can be found in what is called ‘‘time discounting’’

in behavioural economics. It has been shown (e.g. Thaler 1981) that when they are

asked to make choices at various moments in time (for example, whether they

would prefer to have $100 now or $110 in a month), people—rational agents,

according to a neoclassical assumption—manifest interesting inconsistencies.

Essentially, they tend to show a clear preference for the present (i.e. for the $100

now), which is salient in the high discounting rates they apply to immediate

moments in time. But this tendency is inversed when people make the same choice

for future delays ($100 in a year or $110 in a year and one month). In this case, they

tend to prefer the biggest but most distant alternative. If their choices were

consistent through time, they would maintain their preference for the closest reward,
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no matter the delay. However, a controversy rages about not only the explanation of

such discounting, but, before that, its genuine pattern. It is often said that

discounting is hyperbolic (Strotz 1956; Laibson 1997), fitting the observed

inconsistency. Once this pattern has been determined, then additional data will be

used to calibrate the model. However, some people have argued that discounting

actually follows an exponential function, first elaborated by Samuelson (1937); in

this case, additional data are not used to calibrate the hyperbolic function model, but

to confirm an exponential function model independently calibrated. Of course, the

causal hypotheses to explain the discounting may be very different if the true

discounting function is hyperbolic rather than exponential (Retz Lucci 2013). In any

case, this easily shows that the data may be used to either calibrate a hyperbolic

function, or to confirm a hyperbolic function against an exponential function (or

inversely).

To sum up: if we have independent evidence that the accurate model is an

hyperbolic one (perhaps because we have plausible reasons to think that the

mechanisms that produce the data are such that they will yield an exponential

function), the extant data can be used to calibrate the model. Further data will then be

used to confirm that this is a correct model. So here we have a circular process: the dual

use of data for calibrating and then confirming; in the case of computer simulations, I

sketched an explanatory process that was also circular, involving at two stages the

appeal to data (steps 1–3 at the beginning of this section). There is an obvious parallel

between the circularity in these two protocols. This would lead to the conclusion that

nothing really specific characterizes the validation question for simulations: in any

case there is the same circular validation process that ties model and data.

However, the circular explanatory process that I just sketched above does not

cover cases where one looks for null models. The null models themselves actually

enter into the validation process of other models—namely, models of alternative

hypotheses. It also does not cover a frequent use of what we called ‘‘strong

simulations’’. Since strong simulations do not implement hypotheses about the

world, they can be used neither to discriminate against other hypotheses, nor to

forge null models. And since we do not have data against which the hypothesis of

strong simulations could be tested, the calibration stage seems meaningless here.

For this reason, the validation question addressed above does not really concern

strong simulations.

3.2.2 Back to strong simulations

In principle, the two kinds of simulations must be distinguished according to how

they deal with pure possible processes. Weak simulations, which we have

considered so far in this section, are used to test whether some possible processes

can result in forming some type of patterns. On the other hand, I argue that strong

simulations are used to explore the potentialities of a kind of pure possible

processes.

Ray’s Tierra simulations, for example, explore the kind of evolutions that very

simple variants and replicators can undergo, independent of the determinate features

of the replicators we find in real life (genes, epigenes or ‘‘memes’’) (Ray 1992). So,

82 P. Huneman

123



when more generally AL practitioners claim that they essentially investigate what

evolutionary entities can be and do, this means that their strong simulations explore

the outcomes of pure possible processes of selection and variation, in absence of any

material constraints on the entities under selection.14 Such an exploration does not

focus on one pure possible process, in the sense of a process that could exist in the

actual world but is always intertwined with other processes (for instance: gene

selection, species selection, etc.); it focuses instead on a kind of such processes;

natural selection, for instance, with no specification of what the entities under

selection are, or what the nature of the inheritance system is. Such processes are

likely to be realized in many possible worlds, and therefore intertwined by many

other kinds of pure possible processes, some of them not being empirically

instantiated in the actual world. The pure possible processes extant and intertwined

in the actual world are just instances of such a type or species of process (e.g., gene

selection instantiates the type ‘‘selection’’). Such a focus on kinds or types of pure

possible processes manifest in AL characterizes strong simulations in general.

Thus, where weak simulations explore the ability of pure possible processes to

yield specified patterns, strong simulations explore the possible kinds of patterns

produced by different kinds of processes. The latter realize internal causal processes

that have therefore features not isomorphic to pure possible processes in the world,

but to general features of families of processes that can occur in various possible

worlds, without necessarily being realized in the actual world.

Yet it appears that the difference seems to be only one of degree: testing a

hypothesis about the production of speciation by geographical barriers through a

simulation (as Maley did) concerns a process that is quite general—since it is not

tied to a specific population; further, because they are not actual processes but what

one could call ideal processes, ‘‘pure possible processes’’ are of course quite

general. Thus, in regard to the division between strong and weak simulations, one

could object that no criterion is given to distinguish between pure possible processes

and kinds of processes; in the same way, the distinction between kinds of patterns

and patterns seems not to be so robust.

But another important discriminating consideration is the explanatory intent of

the simulation: because weak simulations are intended to test a hypothesis, they are

supposed to be compared against data—extant patterns, and evidence about extant

processes. This comparison is involved in the general circular validation process I

just described in the previous section. To emphasize the importance of the

difference in explanatory intent, think of Reynolds’ boids: if one focuses on testing

the hypothesis that collective behaviour does not need central control, then they are

weak simulations; if the aim is to understand all kinds of swarming behaviour

available on the basis of simple rules, then they are strong simulations.

On the other hand, strong simulations are exploratory; therefore, they cannot

enter the same circular process of validation by comparison with extant data since

there is no data about the different kinds of patterns across possible worlds. For

14 These strong simulations have the same epistemic function as what Weber (2014) calls ‘‘experimental

models’’—namely, processes and systems that are designed in order to experiment and test hypotheses

about one very general kind of system.
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example, no one has uncontroversial data about phylogenetic patterns in

evolutionary systems that are more general than DNA inheritance and carbon-

based organisms; but data across possible worlds is precisely the data needed to say

anything about the ‘‘kinds of patterns’’ that strong AL simulations would look for.

Thus, with all criteria (considering kinds of processes, considering kinds of patterns,

lack of extant data), one can still distinguish between strong and weak simulations

from an explanatory viewpoint. However, this distinction still seems to merge into a

continuum; because, as said above, ‘‘pure possible processes’’ (for example,

selection) can be ranged along a continuum—from the most individualized (pure

genetic selection in a DNA world) to the most general (pure replicator selection,

‘‘replicators’’ being any entity that replicates). I want to emphasize, however, that

one can distinguish two poles within this continuum in a non-arbitrary way, which I

call strong and weak simulations.

3.3 Mapping simulations on Levin’s triangle

In order to understand the various epistemic functions fulfilled by simulations in

evolutionary biology it is helpful to turn to Levins triangle and to understand how

different simulations trade-off differently between distinct epistemic values. The

difference between weak simulations and strong simulations appears here as a

difference between realism and generality. Because weak simulations somehow test

hypotheses about the causes of real patterns in biology, they may often aim at some

form of realism. On the other hand, strong simulations focus on kinds of possible

processes (for example, ‘‘selection in itself’’, without regard for the type of

selectable entity—not natural selection of individual organisms, of genes, etc.), and

to this extent they can be very general.

The two types of simulations thus form two zones within Levins’ triangle—one

tending towards realism and the other towards generality (Fig. 6). The more one

moves towards generality, the less validation protocols such as the one I described

above (as analogous to the confirmation/calibration dialectics for mathematical

models) are taking place. Instead comes an assessment of another nature—namely,

the assessment of the fruitfulness of the simulation (see Colyvan 2001, p. 79). Being

general, it cannot actually be compared to sets of actual data; but one can instead

measure the extent to which it provides insights about the variety of patterns likely

to be produced by one kind of process. As one goes towards strong simulations,

validation protocols are substituted with fruitfulness assessments. The precise

criteria for fruitfulness assessments have to be examined elsewhere.

Of course, the continuum between weak and strong simulations extends between

two of the zones in the triangle that I just indicated. For instance, this means that the

‘‘pure possible processes’’ addressed in weak simulations can be seen—once they

are taken very abstractly—as ‘‘kinds of possible processes’’ investigated by strong

simulations: in this case, you would go smoothly from the pole of weak simulations

to the pole of strong simulations.

It should also be noted that the simulations may score differently regarding their

precision: some weak simulations will be precise in the sense that they provide

quantitative results; while some strong simulations such as Ray’s Tierra may be
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considered only slightly precise since they offer mere qualitative scenarios. But

other strong simulations (such as the Echo ecologies) are also precise since they

allow one to measure and quantify the outcomes. Thus, strong simulations occupy a

zone in the Levins triangle that is concentrated on the ‘‘generality’’ border, ranging

from ‘‘quite precise’’ to ‘‘imprecise’’; and weak simulations are more centred along

the realism border, but also accumulate along the ‘‘precision’’ zone.

The validation problem (as it has been exposed in Sect. 1.2.3) thus concerns

simulations when they are understood as belonging to the realism zone inhabited by

weak simulations; and in this case, as I said earlier, it is analogous to the usual

calibration/confirmation dialectics for analytic models. For this reason, it is

plausible that there is no specific common property of simulations in evolutionary

biology that would justify giving all of them a specific epistemic status regarding

their validation. What is more interesting, rather, is the way they can be distributed

along the Levins triangle. It might be that this distribution—when it is explored in

detail—will be quite different from the distribution of analytic models in the

triangle; as well as, possibly, from the distribution of some models made of real

experimental devices.

4 Conclusion

Generally speaking, algorithmic devices only permit us to single out one or a few

type of entities. In this sense, they are focusing only on the pure processes involving

solely those entities. In evolutionary biology, this means that computer simulations

are well suited to explore certain levels of selection, certain regimes of selection, or

simply null models for selectionist explanations.

As shown here, one of the intriguing features of computer simulations in

evolutionary biology is that they are divided between strong and weak simulations,

Fig. 6 Strong and weak simulations in the Levins triangle, here divided into two zones, one—brown—
along the Generality border (below) and the other—blue—along the Realism border (on the right). Of
course these two zones would in fact not be sharply separated. This intends to represent the fact that the
strong simulations will probably be met in the former zone, and the weak simulations in the weaker zone;
and in each zone, the frequency of such simulations increases while one moves toward the border. In the
intermediary region, simulations of both kind can be found (drawing by the author)
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which fulfil different epistemic aims. This distinction must be taken into account

when enquiring about the explanatory scope and status of these simulations, and

yields only complex answers—which were sketched in Sect. 3. Even though both

types of simulations turn out to be rather evenly distributed across a continuum

(than opposed as two types of models), Levins triangle has proven itself to be very

useful in building a systematic perspective on the explanatory use of computer

simulations in this field. It also constrains the form of the validation problem for

computer simulations in evolutionary biology: the more you go towards weak

simulations, the more validation problems can be understood in a general circular

scheme akin to the calibration and confirmation dynamics in analytic models; the

more one becomes interested in strong simulations, the more validation stops being

the real issue, especially because ‘‘realism’’ gradually no longer becomes the main

epistemic value to fulfil—hence, the more one is compelled to consider other kinds

of epistemic assessments, such as fruitfulness, which needs to be investigated in

another paper.

Considering computer simulations in evolutionary biology cannot provide a

univocal answer to the three questions exposed in Sect. 1. Their variety means that

they do not share a common explanatory scope, their validation cannot be

understood in a common way, and what they have in common with experiments or

mathematical models depends upon whether they are strong or weak simulations; as

strong simulations, they resemble some experimental models designed to explore a

range of behaviours, such as the bacterial systems of Lenski and Travisano’s (1994;

cf. Weber 2014); as weak simulations they are chosen and evaluated in the same

way as mathematical models are, through a circular process of assessment.

However, all these simulations articulate in various ways the two aspects that

evolutionary biologist have distinguished and then related ever since Darwin: the

patterns (e.g. the Tree of Life) and the processes (e.g. natural selection) of evolution.

Because the simulations display in themselves a connection between processes and

patterns—as instantiating pure possible processes, and featuring the types of

patterns these yield—they actually constitute a rich and original way to investigate

this connection. And doing so, these simulations present us, through their variety,

with a crucial aspect of the way computer simulations as such modify our capacity

to acquire knowledge.
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