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Abstract
Factor analysis is widely utilized to identify latent factors underlying the observed 
variables. This paper presents a comprehensive comparative study of two widely 
used methods for determining the optimal number of factors in factor analysis, the 
K1 rule, and parallel analysis, along with a more recently developed method, the 
bass-ackward method. We provide an in-depth exploration of these techniques, dis-
cussing their historical development, advantages, and limitations. Using a series 
of Monte Carlo simulations, we assess the efficacy of these methods in accurately 
determining the appropriate number of factors. Specifically, we examine two cessa-
tion criteria within the bass-ackward framework: BA-maxLoading and BA-cutoff. 
Our findings offer nuanced insights into the performance of these methods under 
various conditions, illuminating their respective advantages and potential pitfalls. To 
enhance accessibility, we create an online visualization tool tailored to the factor 
structures generated by the bass-ackward method. This research enriches the under-
standing of factor analysis methodology, assists researchers in method selection, and 
facilitates comprehensive interpretation of latent factor structures.
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1 Introduction

One primary goal of exploratory factor analysis (EFA) is to determine the num-
ber of latent factors (Costello and Osborne 2005; Zwick and Velicer 1986). By 
shrinking a large number of observed variables to a smaller set of latent vari-
ables, social scientists are able to find the underlying, interpretable factors that 
can explain the observed data (Suhr 2005; Yang 2005). For datasets with many 
variables, identifying latent factors would make the data more controllable and 
better for further analysis.

Properly determining the optimal number of factors is a crucial step in fac-
tor analysis, facilitating more precise and insightful data interpretation (Fab-
rigar et  al. 1999). This step clarifies the fundamental patterns within the data, 
providing valuable insights and a deeper understanding of the subject. Moreover, 
it ensures model stability and reliability, leading to better predictions and well-
informed decisions. Consequently, it maintains an appropriate model complexity, 
preventing potential errors and inconsistencies that could compromise the integ-
rity of the research findings (Zwick and Velicer 1986).

While identifying factors is beneficial in data analysis, extracting the wrong 
number of factors could lead to problems such as reduced model accountability 
and computational errors. One might overfactor by extracting too more factors 
or underfactor by extracting too fewer, compare to the true number present in a 
study. Overfactoring results in meaningless factors and increases the chance of 
Heywood cases (De Winter and Dodou 2012), while underfactoring can lead to 
conservative results, omitting actual factors and causing substantial errors on all 
current factor loadings (Wood et al. 1996).

Numerous methods have been developed to identify the correct number of fac-
tors in EFA. Most traditional methods are developed based on the eigendecompo-
sition of the observed variables’ correlation matrix. For example, the eigenvalue-
greater-than-one rule, also known as the K1 Rule, recommends retaining only 
factors with eigenvalues larger than one (Kaiser 1960). Parallel analysis, another 
popular procedure, suggests retaining factors whose eigenvalues exceed those 
derived from simulated parallel datasets by a certain proportion (Horn 1965). 
Another type of correlation-based method assesses the interrelations among 
observed variables to determine the optimal number of factors that can adequately 
capture the underlying data structure. For example, the minimum average partial 
(MAP) method (Velicer 1976) determines which factors to retain by minimiz-
ing the average of the squared partial correlations. Additionally, machine learn-
ing approaches such as random forest (Breiman 2001) have also been adopted 
to solve the determination of the number of factors as a classification problem 
(Goretzko and Bühner 2020).

Some EFA methods are dedicated to explaining relationships among factors. A 
representative example is the bass-ackward method (Goldberg 2006), which aims 
to develop the hierarchical tree structure from the top down based on the correla-
tions among the factors. The construction of the factors progresses from abstract 
to specific as the tree expands from top to bottom, and the correlations between 
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inter-level factors serve as the corresponding edge weights. The expansion stops 
when no new factor emerges. Compared to traditional bottom-up factor analysis, 
this method provides a more transparent perspective that allows researchers to 
construct models with suitable factor sizes as well as explore relationships among 
these factors.

The bass-ackward approach has been applied in a variety of psychological 
research areas (Bagby et  al. 2014; Gerritsen et  al. 2018; Kirby and Finch 2010). 
However, while the approach shows the great capability of constructing a hierarchi-
cal structure from the top down, its efficacy in terminating with the correct number 
of factors has not been thoroughly examined. Since the final extraction could repre-
sent the last level of the tree structure, terminating either too early (underfactoring) 
or too late (overfactoring) could yield misleading results. Therefore, it is important 
to investigate the performance of the bass-ackward approach in choosing optimal 
factor numbers, especially concerning its two termination criteria (i.e., BA-max-
Loading and BA-cutoff).

This study aims to comprehensively compare three representative methods for 
determining the optimal number of factors in factor analysis: the K1 rule, parallel 
analysis, and the bass-ackward method. The rest of the paper is organized as fol-
lows. First, we provide an in-depth overview of factor analysis and the three meth-
ods for choosing optimal factor numbers. Then, we conduct a simulation study to (1) 
assess the efficacy of the bass-ackward approach in identifying the correct number 
of factors and (2) investigate the impact of various conditions on the three methods’ 
performance.1 After that, we introduce an online application that we developed to 
implement the three methods and visualize the factor structures based on the bass-
ackward method. Finally, we conclude the paper with recommendations on the use 
of these three methods.

2  Method

2.1  Exploratory Factor Analysis (EFA)

Within the framework of EFA, the common factor model represents observed vari-
ables as functions of model parameters and latent factors (Preacher et al. 2013). In 
matrix notation, an EFA model can be expressed as

where Y is a p × n matrix of data from n participants on p observed variables, 
items, or indicators, � is a p × q factor loading matrix, F is a q × n matrix of fac-
tor scores, and E is a p × n matrix of unique factor scores. In EFA, the common 
factors are assumed to explain the shared variance among the observed variables, 
while the unique factors account for the variance specific to each variable and the 

(1)Y = �F + E

1 Simulation codes are available at https:// osf. io/ vzufs/.

https://osf.io/vzufs/
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measurement error. And the unique factors are assumed to be uncorrelated with both 
common factors and among themselves.

Therefore, under the factor model, the covariance matrix of the p variables is rep-
resented as

where � is a p × p covariance matrix of the observed variables, � is a q × q matrix 
of factor correlations, and � is the p × p diagonal matrix of variances of the unique 
factors.

One assumption in EFA concerns the distribution of observed variables, which 
are typically presumed to follow a multivariate normal distribution. This assump-
tion underpins the use of maximum likelihood estimation (MLE) methods for fac-
tor extraction and influences the interpretation and validity of the analysis (Jöreskog 
1967). However, it is widely acknowledged that in practical applications, this 
assumption may not hold (MacCallum et  al. 2007), potentially influencing factor 
loading estimates and the conclusions drawn from the model. To address these chal-
lenges, robust techniques have been developed, offering more flexibility by accom-
modating deviations from normality, thus extending EFA’s utility across various 
research contexts (Yuan et al. 2000).

A critical step in EFA is to determine the number of factors q . Many methods are 
available for such a task. In the following sections, we review three methods: the K1 
rule, parallel analysis, and the bass-ackward method.

2.2  The K1 Rule

The K1 rule, also known as the Kaiser rule, Kaiser–Guttman rule, and the eigen-
value-greater-than-one rule, is one of the most popular methods for identifying the 
number of factors in many research fields (Warne et al. 2012). This method starts 
by calculating the eigenvalues of the correlation matrix of the observed variables. 
According to the K1 rule, factors with eigenvalues greater than one are retained, 
as they are considered to capture key information. The idea behind the K1 rule was 
first developed by Kaiser (1960), inspired by Guttman (1954)’s discussions on the 
lower bounds for component retention in image analysis. Following its development, 
numerous studies have further explored and expanded upon this method (Braeken 
and Van Assen 2017; Kaiser 1970; Wood et al. 1996).

The K1 rule offers computational convenience and ease of implementation, mak-
ing it a favorable choice in various research contexts (Velicer et al. 2000). However, 
it has faced criticism for its tendency to inaccurately estimate the appropriate num-
ber of factors to retain. Studies (Browne 1968; Cattell and Jaspers 1967; Fava and 
Velicer 1992; Linn 1965) suggest that the K1 rule often keeps too many factors, 
especially when the study involves a large number of variables (for example, more 
than 50) (Zwick and Velicer 1986) and when it is applied to a sample instead of 
the entire population (Cliff 1988). In addition, the K1 rule might sometimes make 
inconsistent decisions when the eigenvalues are very close to one, e.g., factors with 
the eigenvalues of 0.99 and 1.01 (Turner 1998).

(2)� = ���
� +�
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2.3  Parallel Analysis

Another prevalent method for determining the number of factors is parallel analy-
sis (PA; Horn 1965). This approach compares the eigenvalues from the observed 
data with those from the generated parallel data, which mirror the dimensions of the 
original data but with uncorrelated observed variables. Specifically, one can gen-
erate a large number of random datasets with the same dimension as the original 
data but uncorrelated observed variables, extract eigenvalues for each dataset, and 
compare them with the eigenvalues from the original data. A smooth eigenvalue pat-
tern is anticipated, as the parallel datasets, generated randomly, are associated with 
uncorrelated variables. Consequently, eigenvalues from the original dataset exceed-
ing a predetermined portion of those from the parallel datasets are considered sub-
stantive and should be retained.

Since its development by Horn (1965), the PA method has undergone several 
improvements. In the original work, only a single normally distributed parallel data-
set was produced. Utilizing advanced computing abilities, Humphreys and Monta-
nelli Jr (1975) modified Horn’s initial method, allowing for the creation of multiple 
random datasets instead of just one. More recently, researchers have suggested keep-
ing factors with observed eigenvalues greater than those found in the 95th percentile 
of random datasets (Cota et al. 1993). Alternative methods for creating these parallel 
datasets have also been introduced, such as generating simulated datasets through 
permuting the original data (Buja and Eyuboglu 1992).

The simulation-based method has been extremely popular for its accuracy (Warne 
et al. 2012). Several studies described PA as one of the best procedures for estimat-
ing the number of factors (Hubbard and Allen 1987; Thompson and Daniel 1996; 
Weiner 2003), although generating N parallel cases and conducting eigenvalue 
decomposition for each necessitates N times the computing time required for the K1 
Rule. Another concern for PA method is its tendency for underfactoring, as pointed 
out by previous research (Turner 1998).

2.4  The Bass‑Ackward Method

The bass-ackward (BA) method, introduced by Goldberg (2006), facilitates the anal-
ysis of the hierarchical structure within a set of variables based on factor scores. The 
construct of the factors goes from abstract to specific as the hierarchical tree expands 
from top to bottom. The inter-level factor correlations function as the weights for 
the respective edges or paths, thus offering researchers a nuanced insight into the 
intrinsic relationships between the factors. Compared to the traditional bottom-up 
factor analysis, the BA method elucidates the relationships between factors by show-
ing how each main factor decomposes into more detailed sub-factors. This approach 
is particularly helpful for researchers seeking in-depth explanations.

Over time, the BA method has undergone several enhancements and adaptations. 
An early study by Waller (2007) introduced a simplified procedure for replicating 
hierarchical structures. This work demonstrated that correlations between factor 
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scores across different levels could be computed without actual factor scores, ena-
bling BA’s application to any dataset with an available correlation matrix. Subse-
quently, the BA method has been applied and adapted in diverse applications, par-
ticularly in psychopathology and personality research (Kotov et  al. 2017; Tackett 
et  al. 2008; Van den Broeck 2013). For example, Ringwald et  al. (2023) utilized 
the BA method to explore connections between psychopathology dimensions within 
the HiTOP (Hierarchical Taxonomy of Psychopathology) framework. Due to the 
absence of individual-level data, the study calculated congruence coefficients for 
factors across levels, offering a comparable estimate of the cross-level factor asso-
ciations. Kim and Eaton (2015) and Forbush et al. (2023) adopted a modified ver-
sion of Goldberg’s method, incorporating exploratory structural equation modeling 
to extract latent factors. A recent advancement by Forbes (2023) further refined 
the original BA method by enhancing the analysis of associations across hierarchi-
cal levels. This refinement introduced techniques to maintain essential factors and 
strong correlations, thereby facilitating a more distinct and clear-cut hierarchical 
structure.

2.4.1  Termination Criteria

The maximum number of hierarchical structure levels can equal the number of 
observed variables; however, the top-down procedure should always terminate 
before reaching this maximum. In this context, the factors at the bottom level are the 
ones retained. Consequently, the number of factors depends on when to terminate 
the top-down expansion.

Existing literature, including the foundational work of Goldberg (2006) and more 
recent advancements by Forbes (2023), has highlighted the necessity of defining ter-
mination criteria. However, the performance of these criteria, and their comparisons 
with traditional approaches such as the K1 Rule and PA, remains unexplored. In this 
section, we introduce two fundamental termination criteria, which underpin most 
existing methods for simplifying hierarchical structures, either independently or in 
combination.

Fig. 1  Parallel analysis results of the Holzinger and Swineford dataset
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(1) BA-maxLoading Criterion As per Goldberg’s recommendation, the expansion 
should stop when no variable registers its highest loading on a given factor. This 
criterion is rooted in the principle that a factor should be considered redundant if 
it does not represent the primary explanation for any observed variable. Upon each 

Fig. 2  Factor structure of the Holzinger and Swineford dataset using the BA method
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expansion from the kth level to the (k + 1) th level, the factor loading matrix is com-
puted to identify the primary factor for each variable at the (k + 1) th level. The pro-
cess terminates if any factors at this level do not emerge as the primary factor for 
any variable, resulting in the retention of k factors.

(2) BA-cutoff Criterion This criterion sets a predetermined cutoff value for each 
inter-level correlation, terminating the expansion when no new factor emerges. It 
draws inspiration from common graph pruning techniques (Jain and Dubes 1988; 
Newman 2004; Quinlan 1986), where unimportant edges (e.g., those with low 
weights) are removed to simplify the structure. In the BA method, these “edges” are 
the inter-level correlations between factors in adjacent hierarchical levels. At each 
expansion stage, the k ∗ (k + 1) inter-level correlations between the kth level and the 
(k + 1) th level are computed, and those falling below the cutoff value are discarded. 
The process ceases if any factors at the (k + 1) th level are not correlated with any 
factors on the kth level, yielding a total of k factors.

We refer to the first criterion as BA-maxLoading and the second criterion as BA-
cutoff in this paper.

2.5  An Example

To illustrate the three methods, we applied them to a real dataset previously used 
in the study by Holzinger and Swineford (1939). In this study, seventh- and eighth-
grade students from two schools, the Grant-White School ( n = 145 ) and the Pasteur 
School ( n = 156 ), participated in 26 tests designed to measure a general factor and 
five specific factors. For the analysis in this example, data from 19 tests were used, 
focusing on assessing four domain factors: spatial ability, verbal ability, speed, and 
memory. The data of the 145 students from the Grant-White School were used.

By conducting eigendecomposition, the eigenvalues of the observed data corre-
lation matrix were obtained as: 6.30, 1.95, 1.53, 1.49, 0.94, 0.87, 0.76, 0.66, 0.65, 
0.57, 0.55, 0.46, 0.44, 0.41, 0.37, 0.32, 0.31, 0.23, and 0.20. Out of these, four eigen-
values are greater than 1. Thus, according to the K1 rule, one can extract four factors 
for the 19 variables.

In PA, we generated 1000 sets of parallel uncorrelated data with the same dimen-
sion as the real data (145 participants on 19 variables). The eigenvalues of the corre-
lation matrix of each dataset were subsequently obtained. Figure 1 shows the eigen-
values of the original data, the 95% percentile, and the average of the eigenvalues 
of the 1000 generated datasets. The 95th percentile and the averaged eigenvalues 
derived from a randomly generated dataset serve as threshold lines in parallel analy-
sis for determining the number of factors to retain. In this example, the first two 
original eigenvalues were above these thresholds. Therefore, based on parallel anal-
ysis, the desired number of factors is two.

Finally, the hierarchical factor structure generated by the BA method is presented 
in Fig.  2. The single factor at the first level (top row), F11 , was retained for the 
one-factor solution; that is, the solution was based on the assumption that all vari-
ables were associated solely with one factor. The factors F21 and F22 , located at 
the second level, were retained for the two-factor solution. Generally speaking, the 
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k factors at the kth level, denoted as Fk1,Fk2,… ,Fkk , were retained for the k-factor 
solution. Since the maximum number of possible factors is smaller than the number 
of variables, the inequality 1 ≤ k < p holds, where p is the total number of observed 
variables. The edges or lines depicted in the figure represent the correlation between 
two factors across adjacent levels. A large correlation indicates that the factor at the 
lower level is likely to be a successor of the factor at the higher level. For example, 
the correlation between F31 and F41 was 1, suggesting that F41 was inherited from 
F31.

The number of levels retained in Fig. 2 may vary depending on the termination 
criteria used. When applying BA-maxLoading, the top-down expansion stops at 
level 6, as no variables exhibit maximum factor loading on the factor F77. When 
applying the BA-cutoff criterion, the stopping level depends on the cutoff value. For 
example, with a cutoff value of 0.8, the correlation between F21 and F33 (0.77), F21 
and F31 (0.48), and F22 and F32 (0.52) are below the cutoff, thereby terminating 
the process at level 2 (i.e., the number of desired factors is 2). If using a cutoff value 
of 0.9, both the correlation between F11 and F21 (0.82) and between F11 and F22 
(0.81) are below the cutoff, leading to the termination at level 1 (i.e., there is only 
one factor). According to our simulation, the best cutoff is usually between 0 and 
0.4, resulting in 6 to 7 factors being retained in the example dataset.

Fig. 3  Path diagram of the factor analysis model in the simulation
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3  Simulation Study

The goal of the Monte Carlo simulation study was twofold. First, it sought to assess 
the effectiveness of the BA method in discerning the number of factors for the first 
time. Second, it aimed to compare the efficiency of the three previously discussed 
methods under various conditions.

3.1  Simulation Design

In the simulation study, we investigated various conditions that might influence the 
performance of the methods: sample size ( n ), number of factors ( q ), number of vari-
ables per factor ( p∕q ), size of factor loading ( � ), size of cross-loading ( �′ ), and size 
of factor correlations ( �).

Sample Size The sample sizes were set as n = 100, 200, 300, 400, and 500, rang-
ing from “poor” to “very good” according to Comrey and Lee (1992). A small 
sample size means few observations and would increase the difficulty of identify-
ing latent factors. Conversely, a large sample size usually leads to more stable and 
accurate results, yet at the cost of data collection efforts. The median in our setting 
closely aligns with the median sample size of 267 in empirical studies reported by 
Henson and Roberts (2006).

Number of Factors We generated datasets with the number of factors q = 3, 4, 5, 
and 6, which covers a wide range of real cases in previous psychological research 
(DiStefano and Hess 2005; Henson and Roberts 2006).

Number of Variables per Factor The variable-to-factor ratio is a critical deter-
minant of model stability (Guadagnoli and Velicer 1988). We examined cases 
where one latent factor explains 2, 4, 6, 8, and 10 observed variables, aligning 
with typical research settings (DiStefano and Hess 2005). The corresponding 
total number of variables p range from 6 (2 × 3) to 60 (6 × 10).

Size of Factor Loadings and Cross-Loadings The magnitude of factor load-
ings has the greatest effect on model performance (Guadagnoli and Velicer 1988). 
We selected three levels of factor loadings: � = 0.5 , 0.6, and 0.7, covering from 
moderate to strong magnitude (Warne et al. 2012). We also examined the effect of 
cross-factor loadings. Two levels of cross-factor loadings were considered: �� = 0 
and 0.1. When �� = 0 , there is a simple structure. Hence, there were 2 × 3 = 6 dif-
ferent factor loading matrices in our simulation settings.

Size of Factor Correlations Factors extracted from psychological datasets often 
correlate with each other. Our simulations used factor correlation � = 0 , 0.1, 0.2, 
and 0.3. When �=0, the factors are orthogonal. When � = 0.1–0.2, the factors are 
slightly correlated. When � = 0.3 , the factors are moderately correlated.

For the BA-cutoff criterion, we set three cutoff values: 0.20, 0.25, and 0.30, as 
these were optimal in most cases based on our preliminary investigation.

To better illustrate the settings, the path diagram for the condition with p = 2 , 
p∕q = 3 is given in Fig. 3. The factor loading matrix and factor correlation matrix 
are as follows:
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In the path diagram, the solid line represents a salient loading l, and the dotted line 
represents a cross-loading c. In this example, there are 2 factors and 6 variables, 
and each factor is mainly associated with 3 variables. As is shown in Fig. 3, the first 
3 variables are mainly associated with factor 1 with a factor loading of l , and are 
slightly associated with factor 2 with a cross-loading of c . The correlation between 
factor 1 and factor 2 is �.

To be more realistic, we introduced variability to both the factor loading and factor 
correlation matrices in the data simulation. For a given level of factor loading 𝜆 > 0 , 
we generated l following a uniform distribution within [ � − 0.05 , � + 0.05 ]; similarly, 
each factor correlation was generated from following a uniform distribution within 
[ � − 0.05 , � + 0.05 ]. For simulation results based on data generated with fixed l and � , 
see “Appendix 1.”

3.2  Evaluation Criteria

There are a total of 5 × 4 × 5 × 6 × 4 = 2400 combinations of conditions in the simu-
lation study. For each condition, we generated 500 datasets and applied the three meth-
ods introduced earlier to determine the number of factors. To compare the performance 
of these methods, we used several evaluation metrics validated by previous research 
(Auerswald and Moshagen 2019; Warne et al. 2012).

The accuracy of a method is defined as the proportion of correct results across all 
replications. We also calculated the standard deviation of the 500 estimates of the num-
ber of factors to measure the method’s stability.

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

l c

l c

l c

c l

c l

c l

⎞
⎟⎟⎟⎟⎟⎟⎠

,� =

�
1.0 �

� 1.0

�
.

Table 1  Performance of the three methods for identifying the number of factors: the K1 rule (K1), paral-
lel analysis (PA), and the bass-ackward method (BA). BA_maxL : BA-maxLoading. BA_c : BA-cutoff with 
the cutoff value c (c = 0.20, 0.25 and 0.30)

Bold numbers highlight the best-performing methods for each evaluation criterion

K1 PA BA_maxL BA_0.20 BA_0.25 BA_0.30

Mean bias 1.49 0.76 1.12 2.12 1.92 1.80
Ratios of underfactoring 0.12 0.29 0.05 0.17 0.20 0.23
Ratios of overfactoring 0.32 0.00 0.36 0.41 0.35 0.30
Mean bias of underfactoring 0.38 1.03 1.04 2.29 2.36 2.42
Mean bias of overfactoring 1.45 0.04 1.99 3.22 2.99 2.75
Accuracy 0.56 0.71 0.58 0.42 0.45 0.48
Std. deviation 0.39 0.25 1.34 2.15 2.01 1.88
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If a method fails to retain the correct number of factors in a replication, the result is 
considered biased. Assuming the correct number of factors under a certain condition 
is q , retaining q − 1 or fewer factors denotes underfactoring, while retaining q + 1 or 
more factors indicates overfactoring. Both underfactoring and overfactoring are biased. 
The mean bias was defined as the mean absolute difference between the estimated and 
the true number of factors across all replications, with the ratio of underfactoring (or 
overfactoring) as the proportion of underextraction (or overextraction) across all rep-
lications. Correspondingly, the mean bias of underfactoring (or overfactoring) is the 
mean absolute difference between the estimated and the real number of factors across 
all underfactoring (overfactoring) cases.

3.3  Results

3.3.1  Overall Comparisons

Table  1 summarizes the overall performance of the three methods. On a general 
note, PA outperformed all other methods with the lowest average mean bias (0.76). 
BA-maxLoading had an average mean bias of 1.12, followed by K1 with 1.49. BA-
cutoff resulted in a mean bias ranging from 1.80 to 2.12, making it the most biased 
method.

The direction and extent of bias varied among methods. BA-maxLoading had the 
lowest ratio of underfactoring (5%), while K1 had the lowest mean bias of underfac-
toring (0.38). However, both tended to overextract factors, getting an average of 1.45 
and 1.99 more factors than expected in 32% and 36% of cases, respectively. PA, on 
the other hand, underestimated the number of factors by 1.03 in 29% of cases, and 
rarely overestimated. BA-cutoff also tended to overfactor, with a large bias in both 

Fig. 4  Performance in identifying the number of factors depending on sample size n
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under- and overfactoring cases. The accuracy of the identified number of factors fol-
lowed a similar pattern: PA identified the correct number of factors in 71% of cases, 
followed by BA-maxLoading (58%) and K1 (56%).

In terms of stability, PA and K1 produced stable results with an average standard 
deviation of 0.25 and 0.39, respectively. In contrast, BA-maxLoading and BA-cutoff 
exhibited relatively large standard deviations. Note that as the cutoff value increased, 

Fig. 5  Estimates of the number of factors depending on the number of factors q

Fig. 6  Estimates of the number of factors depending on the number of variables per factor p∕q
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the standard deviation of BA-cutoff decreased, leading to more conservative and sta-
ble estimates across replications.

We now illustrate how individual factor, such as sample size and the existence of 
cross-loading, influences the performance of different methods.

3.3.2  Sample Size

Figure  4 shows the result of the average accuracy (left) and average mean bias 
(right) of factor extraction depending on sample size n . As anticipated, increasing 
the sample size enhances the accuracy and reduces the mean bias across all exam-
ined methods, which aligns with the principle that a larger dataset contains more 
information and aids in more effectively identifying the correct number of factors.

Among the evaluated methods, PA consistently delivered superior performance. 
BA-maxLoading ranked as the second most effective method when n < 400 , sug-
gesting it could be well-suited for small and moderate datasets. BA-cutoff was gen-
erally less precise. However, it is interesting to note that its accuracy across various 
threshold values tended to converge at larger sample sizes. Overall, the mean bias of 
K1 and BA-maxLoading seems more sensitive to changes in sample size compared 
to the other two methods.

3.3.3  Number of Factors

Figure 5 displays the average accuracy and mean bias of factor extraction with dif-
ferent numbers of factors q . As the number of factors increased, PA and K1 were 

Fig. 7  Estimates of the number of factors depending on factor loadings �
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Table 2  Performance of the three methods for identifying the number of factors with without ( cr = 0 and 
with cross-loadings cr = 0.1)

Bold numbers highlight the best-performing methods for each evaluation criterion

cr = 0 K1 PA BA_maxL BA_0.20 BA_0.25 BA_0.30

 Mean bias 1.86 0.22 1.20 2.36 2.19 2.10
 Ratios of underfactoring 0.04 0.12 0.05 0.28 0.34 0.40
 Ratios of overfactoring 0.43 0.00 0.38 0.33 0.26 0.21
 Mean bias of underfactoring 0.16 0.49 0.65 2.75 2.80 2.86
 Mean bias of overfactoring 2.02 0.07 2.08 3.54 3.22 2.90
 Accuracy 0.53 0.88 0.57 0.39 0.40 0.39
 Std. deviation 0.42 0.17 1.38 2.50 2.29 2.07

cr = 0.1

 Mean bias 1.13 1.29 1.04 1.88 1.66 1.49
 Ratios of 

underfactor-
ing

0.21 0.46 0.05 0.05 0.05 0.06

 Ratios of 
overfactor-
ing

0.21 0.00 0.35 0.49 0.44 0.40

 Mean bias of 
underfactor-
ing

0.60 1.57 1.42 1.82 1.92 1.98

 Mean bias of 
overfactor-
ing

0.87 0.00 1.90 2.89 2.75 2.59

 Accuracy 0.58 0.54 0.60 0.46 0.51 0.54
 Std. deviation 0.36 0.33 1.29 1.81 1.74 1.68

Fig. 8  Estimates of the number of factors depending on inter-factor correlations �
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less likely to identify the number of factors correctly, while BA-maxLoading and 
BA-cutoff became more accurate. Specifically, BA-maxLoading outperformed K1 
when q ≥ 5 and exceeded PA when q ≥ 6 . Therefore, BA-maxLoading seems to be 
more suitable for conditions with a large number of potential factors, while K1 and 
PA might be applied when the number of potential factors is small.

3.3.4  Number of Variables Per Factor

Figure  6 reveals the effect of the number of variables per factor p∕q on factor 
extraction. As shown in the left plot, all methods, except K1, exhibited improved 
accuracy with larger p∕q . K1 experienced a dramatic decrease in accuracy when 
p∕q > 4 . A similar trend can be found in the right plot, where K1 had an aver-
age mean bias of around 1.1 when p∕q = 2 , but an average mean bias larger than 
3 when p∕q = 10 . Therefore, researchers should avoid using K1 to identify fac-
tors when there are numerous variables and a few potential factors. The average 
mean bias of both BA-maxLoading and BA-cutoff peaked when p∕q = 4 and then 
began to decline. Thus, the bass-ackward method might be preferable in  situa-
tions with a higher variable-to-factor ratio.

Fig. 9  User interface of the online application
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Fig. 10  Outputs of the online application, page 1 of 2



 L. Tong et al.

1 3

3.3.5  Size of Factor Loadings and Cross‑Loadings

Figure  7 illustrates the performance of factor extraction methods according to 
the size of the factor loadings � . All methods performed better as � increased, 
which is expected since larger factor loadings make the factors easier to identify.

Table 2 presents the performance of factor extraction methods with and with-
out cross-loadings. Comparing the two tables, we found that PA was the best 
method without cross-loading, achieving the highest accuracy of 88%. However, 

Fig. 11  Outputs of the online application, page 2 of 2
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its performance deteriorated with small cross-loadings, where its accuracy 
dropped to 54%. Meanwhile, the other three methods performed better under the 
conditions with cross-loadings, with BA-maxLoading becoming the best method 
with an accuracy of 60%. Hence, PA is most suitable for conditions without 
cross-loadings, and BA-maxLoading is preferable when cross-loadings exist.

3.3.6  Factor Correlations

Figure  8 shows the performance of factor extraction methods when the factor 
correlation � varies. As illustrated in the left plot, when � increased, PA became 
less accurate, and was outperformed by BA-maxLoading when � = 0.3 . The rea-
son might be that higher correlations between factors increase the complexity 
of the real data, making the comparison between real data and parallel data less 
effective. In contrast, BA-cutoff became more accurate with larger factor corre-
lations, likely because it takes inter-level factor correlations into account.

4  Software

As demonstrated in our simulation study, the bass-ackward method has advantages 
in identifying the number of factors under certain conditions. BA can be conducted 
using the function bassAckward() in the R package Psych (Revelle and Revelle 
2015). To provide a user-friendly tool for researchers who are not familiar with R, 
we have developed a web application that can compute and visualize the hierarchical 
factor structure of a dataset. The application was developed based on PHP (Bakken 
et al. 2000) and R (R Core Team 2021).

As is shown in Fig. 9, the online tool supports several data formats (SPSS, SAS, 
Excel, CSV). Users may select a subset of variables to analyze by entering the cor-
responding column numbers and denote certain value(s) as missing data by enter-
ing these values. For the BA method, both the BA-cutoff and the BA-maxLoading 
criteria are supported. A self-defined cutoff value is required if users choose to use 
BA-cutoff.

Once the form is submitted via the “calculate” button, the web application will 
return the EFA results within a few seconds (Figs. 10 and 11). All three methods 
discussed in this paper will be applied to determine the number of factors from the 
given variables. Additionally, based on the selected BA criterion, a visualized factor 
tree structure will appear at the top of the page. In the hierarchical tree, nodes with 
the same color represent inherited factors from top down, and the edges with deci-
mal values attached denote factor correlations across adjacent factor levels. Detailed 
outputs of BA will be provided, including both factor correlations and factor loading 
matrices.

The computation of the hierarchical factor structure is conducted based on the R 
package Psych (Revelle and Revelle 2015), with two major enhancements. First, it pro-
vides suggestions for the number of factors that should be retained based on the BA-
maxLoading criteria. Second, it automatically calculates the inheritance relationship 
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within the factor structure and presents each inheritance from the top down with differ-
ent colors (Fig. 2). The output was rendered with the R package DiagrammeR (Iannone 
and Iannone 2022). The web application can be accessed at https:// websem. psych stat. 
org/ apps/ bass/.

5  Discussion and Conclusion

In this paper, we investigated three methods for identifying the correct number of 
factors: the K1 rule, parallel analysis, and the bass-ackward method. We began by 
briefly introducing their historical development, advantages, and limitations. Subse-
quently, a Monte Carlo simulation study was conducted to evaluate and compare the 
performance of these three approaches for retaining the correct number of factors.

Based on the simulation results, PA is generally the best method. It produced 
the most accurate estimates with the smallest mean bias under most conditions, 
even when the sample size was small. In particular, it approached 100% accuracy 
with a substantial number of variables and limited latent factors. However, its 
efficacy diminishes with increased cross-loadings and factor correlations and was 
outperformed by BA-maxLoading under some circumstances. Another concern 
about PA is that it underfactored in 29% of conditions, which can have more del-
eterious effects than overfactoring (Montoya and Edwards 2021). This finding is 
consistent with previous research by Turner (1998).

K1 performed poorly under most conditions. It was sensitive to the change of 
a variety of parameters and only worked well under conditions with large sample 
sizes, large factor loadings, and few variables per factor. Unlike PA’s underfactor-
ing, K1 overfactored in 32% of conditions. K1 was intended to provide an upper 
bound rather than the exact number of identified factors (Hayton et  al. 2004). 
Therefore, we suggest not to use this rule to retain factors, or only to use it as an 
assistance under certain circumstances, such as when cross-loading exists.

One of the primary purposes of this paper was to evaluate the efficiency of the 
bass-ackward approach in identifying the correct number of factors across differ-
ent conditions. Using different termination criteria, the BA method was discussed 
with BA-maxLoading and BA-cutoff. BA-maxLoading stood out for its robust 
performance, particularly in complex scenarios with high inter-factor correlations 
or cross-loadings, which are common in real-world datasets. It is also recom-
mended for conditions with a moderate sample size, a large number of poten-
tial factors, and large factor loadings. Additional advantages include lower com-
putational demands and enhanced interpretability due to its hierarchical output. 
However, in contrast to PA, which tends to underfactor, BA-maxLoading tends to 
overestimate the number of factors. Issues with algorithmic convergence further 
impact its reliability, and Heywood cases occurred when it tried to extract a rela-
tively large number of factors. Therefore, we recommend using PA together with 
BA-maxLoading when deciding the number of levels of the final factor structure.

BA-cutoff also showed unsatisfactory accuracy and therefore is not recommended 
as an independent approach for factor retention. However, it has the potential to be 
integrated with BA-maxLoading or other techniques to produce improved outcomes 

https://websem.psychstat.org/apps/bass/
https://websem.psychstat.org/apps/bass/
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(Forbes 2023), e.g., applying a conservative cutoff threshold to help reduce the risk 
of overfactoring. In addition, given the interpretable hierarchical structure produced 
by the Bass-Ackwards approach, both BA termination criteria can be fine-tuned to 
suit specific research contexts. More research can be done on exploring the combi-
nation of these methods to achieve accurate and robust results.

To summarize the simulation results and to aid researchers in selecting the appro-
priate method in specific contexts, we offer the following recommendations based on 
typical scenarios encountered in factor analysis. For datasets with a large number of 
variables and low to moderate factor correlations, PA is the most reliable choice due 
to its high accuracy and low mean bias. In contrast, when dealing with complex data 
structures that exhibit high inter-factor correlations, cross-loadings, or a large number 
of potential factors, BA-maxLoading is preferable for its robust performance and lower 
computational demands. For smaller sample sizes, where underfactoring is a big con-
cern, combining PA with BA-maxLoading can provide a balanced approach, leverag-
ing the strengths of both methods. Overall, practitioners should consider the specific 
characteristics of their data and the strengths and weaknesses of each method to make 
an informed decision.

It should be noted that the K1 rule and PA methods rely on eigenvalues, contrast-
ing with the tree-based approach of the BA method. While eigenvalue-based meth-
ods generally withstand non-normality better than MLE-based methods, they are still 
vulnerable to distribution non-normality. PA demonstrates superior performance and 
acceptable results under moderate non-normality (Li et al. 2020). Conversely, the BA 
method, which does not require specific assumptions about variable distribution, has its 
response to non-normality still under examination.

For future directions, researchers may consider the evaluations of the bass-ackward 
approach on more complex datasets, particularly under conditions such as non-normal-
ity of data distribution, which could yield valuable insights. Additionally, case studies 
demonstrating the application of this method can further elucidate its practical utility 
and limitations. Meanwhile, better termination criteria with higher accuracy and time 
efficiency can be explored to make bass-ackward a more powerful approach for factor 
analysis in psychological research.

Appendix 1: Simulation Results on Data Without Noises

See Figs. 12, 13, 14, 15, and 16; Tables 3 and 4.
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Fig. 12  Performance in identifying the number of factors depending on sample size n

Fig. 13  Estimates of the number of factors depending on the number of factors q
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Fig. 14  Estimates of the number of factors depending on the number of variables per factor p∕q

Fig. 15  Estimates of the number of factors depending on factor loadings �
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Fig. 16  Estimates of the number of factors depending on inter-factor correlations �

Table 3  Overall performance of the three methods for identifying the number of factors

K1 PA BA_maxL BA_0.20 BA_0.25 BA_0.30

Mean bias 1.48 0.76 1.08 1.72 1.56 1.48
Ratios of underfactoring 0.12 0.28 0.05 0.16 0.19 0.22
Ratios of overfactoring 0.32 0.00 0.35 0.39 0.34 0.29
Mean bias of underfactoring 1.21 0.89 1.32 1.73 1.72 1.74
Mean bias of overfactoring 1.42 0.04 1.93 3.17 2.93 2.69
Accuracy 0.57 0.72 0.60 0.45 0.47 0.48
Std. deviation 0.37 0.23 1.30 2.10 1.97 1.84
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