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Abstract
Purpose of Review Highlight significant developments that have recently been made to enhance our understanding of how snow
responds to climate forcing and the role that snow plays in the climate system.
Recent Findings Widespread snow loss has occurred in recent decades, with the largest decreases in spring. These changes are
primarily driven by temperature and precipitation, but changes in vegetation, light-absorbing impurities, and sea ice also
contribute to variability. Changes in snow cover can also affect climate through the snow albedo feedback (SAF). Recently,
considerable progress has been made in better understanding the processes contributing to SAF. We also highlight advances in
knowledge of how snow variability is linked to large-scale atmospheric changes. Lastly, large-scale snow losses are expected to
continue under climate change in all but the coldest climates. These projected changes to snow raise considerable concerns over
future freshwater availability in snow-dominated watersheds.
Summary The results discussed here demonstrate the widespread implications that changes to snow have on the climate system
and anthropogenic activity at large.

Keywords Snow . Climate variability . Climate change . Feedbacks . Earth systemmodels

Introduction

Terrestrial snow cover is a crucial component of the earth
system, having major impacts on the surface energy budget,
water resources, and the ground thermal regime. At its peak
each winter, snow covers approximately 47 million km2,
about 40% of the Northern Hemisphere (NH) land [1], and
over three times the maximum extent of Arctic sea ice. Snow
can also be present for nearly 9 months of the year at high
latitudes [2•]. Snow cover’s naturally high reflectivity has a
large-scale cooling influence on climate [3], which, when al-
tered, can be an important driver of extratropical climate

change [4, 5]. The low thermal conductivity of snow also
helps to insulate ground temperatures with implications for
permafrost conditions [6] and soil moisture [7]. Additionally,
snow is a vital source of freshwater to nearly one-fifth of the
world’s population [8, 9]. It acts as a natural reservoir, storing
water until the warmer seasons when demand is high for ag-
ricultural and other uses [10•]. Changes to the timing of spring
snowmelt are linked to both subsequent summer heat ex-
tremes [11] and wildfire activity [12]. Beyond this, anomalous
snow cover can also indirectly influence large-scale atmo-
spheric circulation on weekly seasonal timescales [13, 14].
These processes are associated with direct human impacts,
such as the link between anomalously high Eurasian snow
and extreme haze conditions over the East China Plains [15],
and higher dust concentrations in East Asia [16]. Lastly, snow
supports winter tourism, a major revenue stream in many
countries with abundant snow-covered regions [17, 18].

For these reasons, it is essential to monitor changes in snow
associated with warming temperatures and precipitation
changes, and attempt to better understand the mechanisms at
play. Here, we critically assess recent literature to address the
following questions: what is the current understanding of how
snow (extent and mass) is changing and how it will evolve
under further anthropogenic warming? What are the driving
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mechanisms behind these changes? What have we learned in
recent years about the role of snow in the climate system and
the mechanisms behind snow-atmosphere interactions? How
well do climate models capture these processes and the ob-
served changes in snow? What is the outlook for this topic
going forward? Since seasonal snow primarily resides in the
NH, that is our focus here. We seek to understand the radiative
and hydrological impacts of changes in snow cover extent
(SCE), which is the area covered by snow, and snow water
equivalent (SWE), which represents the amount of freshwater
stored in the snowpack.

How Is Snow Changing?

One of the first attempts to connect observed snow cover
variability with climate change was documented by
Groisman et al. [19]. They identified mean annual SCE de-
creases of ~ 10% over the prior two decades (1972–1992),
with high spring melt rates having major implications on the
radiation balance. Two decades later, continuing declines in
SCE are observed both regionally and hemispherically, with a
strong trend toward decreased SCE in the spring and fall [20•,
21], and the strongest reductions occurring in May and June
[22–25]. The most recent estimates show May and June SCE
decreasing at rates of 3.1% and 13.6% per decade over the
past half-century (1967–2018) [2•] based on the NOAA snow
chart climate data record (NOAA CDR) [26]. While the
NOAA CDR provides the longest data record, it is difficult
to properly assess observational uncertainty from a single
dataset. In a recent assessment using an ensemble of 7
datasets, Thackeray et al. [25] found that spring (March–
June) SCE declined at a rate of approximately 3.3 ± 1.2%
per decade from 1981 to 2010. The large observational uncer-
tainty arises from uncertainties relating to the satellite re-
trievals, the performance of physical snow models, and biases
in reanalysis-based forcing used in some products. During
October, a positive trend in the NOAA CDR is inconsistent
with all other products [20•, 27], illustrating the importance of
using an observational ensemble whenever possible.
Furthermore, various long-term datasets indicate a robust
trend of later snow onset (2 days/decade) across the high
Arctic [21].

Large documented SWE losses have been reported across
the NH [28, 29]. Mudryk et al. [30] show that recent decreases
in winter SWE are evident across five different datasets from
1981 to 2010, while more strongly negative spring trends
occur in 4 of 5 datasets (Fig. 1). These reductions are evident
when data are continentally averaged, but there remains a
large amount of variability in the spatial trend patterns.
Because of the high spatial variability when it comes to
SWE, we will focus on studies that assess regional changes.
For example, station data across Europe shows that there has

been a widespread mean snow depth decrease of ~ 12% per
decade from 1951 to 2017, with the strongest trends at lower
latitudes [31]. Similarly, SWE has decreased substantially
across much of the Western United States [32–37].
According to Mote et al. [36], 92% of all long-term stations
exhibit decreasing trends over the last six decades, with an
average decline in April 1 SWE of 15–30%. It has recently
been proposed that the decline in Western US SWE would be
even more dramatic if not for contemporaneous atmospheric
circulation changes that have acted to limit warming-induced
snow loss [38]. Elsewhere, peak SWE trends of − 5 to − 10%
per decade are found across Eastern and Northern Canada
since 1981 with isolated pockets of increased SWE in the west
where local spring cooling has occurred [39]. The latter is
likely indicative of natural variability over the relatively short
trend period. Lastly, in high-mountain Asia most catchments
exhibit sharp decreases in spring and summer SWE [40].
Trends in snow mass can be more difficult to track in moun-
tainous areas, but it is believed that the largest observed de-
creases are found in mid-elevation zones, which typically
store the greatest snow water totals [40].

The general exception to this widespread snow loss pattern
is in parts of the Arctic, where rising temperatures, which
increase the moisture-holding capacity in the air, are driving
increased precipitation in both solid and liquid phases
(discussed more below) [41]. It is believed that increased
snowfall in sufficiently cold climates may be capable of off-
setting shorter snow seasons [42]. Robust analyses in these

Fig. 1 Adapted fromMudryk et al. 2015. Trends in Northern Hemisphere
SnowWater Mass (SWM) for five datasets over 1981–2010. The average
trend of the four reanalysis-derived datasets over alpine regions has been
added to the trend of the GlobSnow product. A 30-day running mean is
used to smooth the data. Statistically significant trends (at the 95th con-
fidence interval) are shown with solid lines, while non-significant trends
are dashed. Units are × 1015 kg/decade. © American Meteorological
Society. Used with permission
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remote areas can be difficult, but increased SWE is evident for
the coldest climates in Northern Scandinavia [31, 43•], where-
as this trend is not evident across much of Northern Canada
[39], possibly due to the large variability and short data record
available there.

How Will Snow Change in the Future?

It is virtually certain that large-scale losses in terrestrial snow
across the NH will be observed by the end of the twenty-first
century. (The following examples are for high-emission sce-
narios unless otherwise stated [44].) Increasing surface tem-
peratures will push the onset of the snow season later and
promote an earlier melt period [42], with the greatest changes
in spring. For example, the snow season around 1500m across
the Alps is projected to start 2–4 weeks later and end 5–
10 weeks earlier than it does currently [45]. Similarly, NH
SCE is projected to decline drastically in the shoulder seasons,
with spring snow loss of − 3.7 ± 1.1% per decade from the
CMIP5 models under a high-emission scenario [25, 46]. The
largest reduction of SCE is expected at the southern snow line,
where winter temperatures are close to freezing in the current
climate [46]. There are, however, a number of factors that
contribute to the fairly large model uncertainty seen in these
projections. Much of the intermodel variability in SCE trends
stems from differences in simulated future warming (especial-
ly for early-spring trends) and the climatological SCE (espe-
cially for late-spring trends) [25]. In addition, differences in
future precipitation, climate feedbacks, and vegetation chang-
es can all play a role.

Decreases in SWE are also expected across much of the
hemisphere, although the magnitude differs greatly by region.
Mid-century snow reductions are greatest across the Western
US (~ 45%), while changes of 20–30% are likely across
Europe, Eastern North America, and Western Canada plus
Alaska [47]. Smaller SWE loss is projected across central
Asia (~ 10%) and Northern Canada (~ 5%) [47, 48], but agree-
ment between model simulations is low in Northern Canada
due to the dual influences of increasing winter snowfall and
warming [39]. The exception to this decreasing trend is ex-
tremely cold climates such as Siberia, where SWE is projected
to increase by mid-century for both middle- and high-
emission scenarios [21, 47, 48]. This is because temperatures
duringmost of the snow season remain cold enough for a large
fraction of precipitation (which increases drastically) to fall as
snow [41]. Sospedra-Alfonso and Merryfield [49] show that
these areas reside below the − 20 °C winter isotherm in the
current climate, where SWE is nearly insensitive to tempera-
ture variability.

Because of the major implications that changing SWE has
for water resources, numerous studies have assessed the out-
look for specific regions, often using high-resolution

modeling frameworks. Despite their geographic differences,
many of them reach the same conclusion: we can expect dra-
matic declines in SWE. For example, Marty et al. [45] use
regional model simulations to show that a decrease in future
snowpack across the Alps is projected for all elevations, time
periods, and emission scenarios. They find that areas below
1200 m are the most vulnerable and may see complete snow
loss by the end of the century. Similarly, large decreases are
expected across Northern Europe, with the exception of the
highest elevations in Northern Scandinavia [50]. When it
comes to North America, the future of Western US snowpack
has been the focus of many recent studies [51, 52•, 53]. Fyfe
et al. [52•] find mid-century losses of up to 60% in a high-
emission scenario, whereas Rhoades et al. [53] estimate a
more conservative 20–40% loss. The coastal mountain ranges
are expected to experience the greatest impacts. Recent studies
focusing on the Sierra Nevada suggest that snowpack declines
ranging from 60 to 85% are likely by the end of the twenty-
first century [54–57]. These large projected decreases are also
expected for other mountainous regions featuring
Mediterranean climates (e.g., Pyrenees, Atlas), where mid-
century mean SWE could decline by 40–60% [58].

Changes to snow accumulation and melt will drastically
impact runoff characteristics, with major impacts in semi-
arid regions that are dependent on mountain snow. In many
locations, we can anticipate decreased summer flows, higher
streamflow earlier in the water year as a result of decreased
snow storage, an earlier start to the melt season, and greater
occurrence of winter rainfall [59, 60]. Changes to runoff pat-
terns will likely be shaped by a combination of latitude and
elevation, which determine the magnitude of the change in the
proportion of precipitation falling as snow and the shift in melt
timing. Decreasing snowfall will reduce the role that the
snowpack plays as a natural reservoir (preserving water in
frozen form during the warm phase of the seasonal cycle when
demand is increased) with large implications on water avail-
ability during summer [9, 60]. One somewhat unexpected
result is the suggestion that seasonal snowmelt may occur
more slowly in a warmer world [61•] since an earlier start to
the melt season coincides with a time of lower incoming solar
energy. Additional changes to the winter snowpack may also
stem from an altered risk of rain-on-snow events, which are
projected to become more frequent at high elevations in the
Western US [62] and less frequent across the Eastern US [63].
These rain-on-snow events can encourage flooding with im-
portant implications for water resources.

Drivers of Change

Here, we discuss the primary drivers of past and future chang-
es in terrestrial snow. The most evident factor controlling
snow cover variability is near-surface air temperature over

Curr Clim Change Rep (2019) 5:322–333324



land areas. It is well known that NH land is rapidly warming,
with high-latitude surface temperatures increasing at the
fastest rate globally [4, 64]. These temperature changes have
the largest impact during the shoulder seasons, where clima-
tological temperatures are closer to the freezing point. This
coincides with the time when recent extratropical warming
has been the largest (fall and spring) [20•]. The sensitivity of
SCE to warming is approximately 1.9 × 106 km2 lost for each
degree of extratropical land warming on hemispheric scales
(Fig. 2) [24, 25, 27]. Snow in the mid-latitudes—where the
majority of the world’s snowlines are located—appears to be
most sensitive to climate warming [20•]. Consistent with this,
Pederson et al. [34] suggest that recent Western US snowpack
depletion is primarily driven by warmer spring temperatures,
but that natural variability from large-scale teleconnections
also plays a role. Additionally, snowpack loss over Western
Canada and hemispheric snow cover retreat have both been
attributed to anthropogenic forcing [65••, 66].

Precipitation also plays a critical role in driving changes in
snow, particularly for SWE. There is a general consensus
among projections from models that total precipitation and
precipitation intensity will increase across high latitudes as
the climate warms [67–69], primarily through hydrologic bal-
ance as evaporation increases into warmer air. However,

historical precipitation changes are difficult to track due to
the highly variable nature of precipitation over short distances
and large observational uncertainties [70]. Additionally, sev-
eral satellite-derived products do not observe at high latitudes
(e.g., TRMM, PERSIANN), and atmospheric reanalyses are
often inconsistent across these regions [71, 72]. Despite these
issues, previous assessments have suggested that high-latitude
precipitation has increased by between 2.7 to 5.8 mm/decade
over the period of 1951 to 2008 [73, 74]. Increased precipita-
tion may not directly translate to greater snowfall, however, as
warming shortens the snow season and alters the fraction of
precipitation that falls as rain and snow [41, 47]. Over most of
the extratropics, the fraction of snowwill decrease significant-
ly [47, 75]. Similarly, studies suggest that precipitation is the
main factor controlling snowpack variability in cold moun-
tainous areas above ~ 1500 m [76, 77]. This is because loca-
tions above this elevation tend to be sufficiently cold to sup-
port snowfall even during anomalously warm periods.
Similarly, on a hemispheric scale, there appears to be a mean
winter temperature threshold of roughly − 5 °C, below which
precipitation is the main driver of SWE and above which
temperature is the dominant factor [49]. Thus, the strong in-
terrelation between these factors makes it difficult to generally
rank their relative importance to SWE variability.

Snowmelt can be accelerated through deposition onto the
surface of light-absorbing particles such as black carbon (BC)
and dust. The direct radiative forcing from BC deposition on
the snowpack is estimated at 0.04 W m−2, while the effective
climate forcing is roughly three times larger because the
warming associated with the reduced snow albedo promotes
additional snow cover loss [78]. Atmospheric BC concentra-
tions increased dramatically following the industrial revolu-
tion, and the largest source is currently from biomass burning
[79••]. Recent increases in Western US wildfires are also
linked to locally increased deposition of light-absorbing par-
ticles [80•]. Similarly, atmospheric dust concentrations ap-
proximately doubled over the twentieth century [81] likely
as a result of human land use practices and increased rates of
soil erosion under more frequent drought conditions [79••].
Increasing dust on snow concentrations in recent years has
helped drive earlier snowmelt and runoff in the Western US
[82–84] and the European Alps [85]. Therefore, the accumu-
lation of light-absorbing impurities alters snowmelt dynamics
and contributes to observed variability in snow and runoff.

High-latitude snow cover is in close proximity to Arctic sea
ice, which itself has experienced significant losses over recent
decades [86, 87]. The close nature of these two environments
makes it plausible that changes to one may impact the other. In
particular, receding ice cover along the Arctic coast reveals
more openwater which can act as a largemoisture source [88].
Model simulations suggest that the greatest contribution to
future Arctic precipitation increases stems from intensified
local surface evaporation over newly open ocean [89].

Fig. 2 SCE versus temperature (Ts) trends for individual months from
October to June for individual realizations from CMIP5 (gray), the
Community Earth System Model (red), and Canadian Earth System
Model (blue) ensembles. Least products regression line (solid) with
95th confidence bounds (shading) shown based on CMIP5 trends; dashed
lines indicate twice the standard deviation of residuals. Squares indicate
individual monthly observation-based trends for the Ts ensemble mean
versus the SCE ensemble mean (green) and for the Ts ensemble mean
versus NOAA Climate Data Record trends (brown). Regression slopes
(sensitivities) and R2 values are colored according to the ensemble with
twice the standard error on the regression slopes (β) in parentheses (from
Mudryk et al. 2017). Reprinted with permission from John Wiley and
Sons
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Finally, snow accumulation may be impacted by changing
vegetation on longer timescales, particularly in the Arctic.
Arctic snow accumulates to the height of the prevailing
ground vegetation after which it is redistributed by wind to
topographic depressions and drifts [90, 91]. Despite improved
process understanding, estimates of sublimation loss during
blowing snow events remain a key uncertainty in the mass
budget of the Arctic snowpack. Increased shrub cover influ-
ences snow capture and soil temperatures [92, 93], but chang-
es in vegetation cover across the Arctic (at the coherent re-
gional scales needed to impose an impact on the hydro-
climatic system) are not uniform and the drivers are poorly
understood [94]. A recent assessment of North American veg-
etation found that nearly 30% of Canada and Alaska has ex-
perienced significant greening from 1984 to 2012, while only
3% had experienced robust browning [95]. Vegetation chang-
es can also influence spring snowmelt via changes to albedo
(α) [80•, 96].

Snow-Climate Feedbacks

Long-term changes in snow cover influence the climate sys-
tem primarily through the snow albedo feedback (SAF). SAF
is characterized by the reduction in surface albedo associated
withmelting snow, which increases shortwave surface absorp-
tion and amplifies warming [97–100]. (Note that SAF can also
operate in the reverse direction in a cooling climate.) This
process also occurs each spring when seasonal warming is
enhanced by albedo decreases associated with seasonal snow
retreat (referred to as the seasonal SAF) [99]. SAF makes up
approximately half of the NH surface albedo feedback [3, 98,
101], which includes changes to sea ice. SAF is the largest
climate feedback operating over the NH extratropics during
the melt season [102, 103]. However, because of its limited
extent and seasonal timing, it is not as important on a global
scale as the water vapor and cloud feedbacks [104]. The global
mean SAF is ~ 0.1 W m−2 K−1 [5], whereas the global mean
water vapor and cloud feedbacks are ~ 1.2 W m−2 K−1 and ~
0.5 W m−2 K−1 [104], respectively. Despite this, SAF and the
larger surface albedo feedback are key drivers of Arctic am-
plification [105–107], although there remains some debate as
to where exactly it ranks in terms of the biggest contributors
[108, 109]. Meanwhile, SAF is central to amplification of
warming at mid- to high altitudes [110, 111] and over NH
extratropical land [5].

The observed or simulated SAF can be calculated through a
differential equation relating changes in near-surface air tem-
perature and albedo to changes in the shortwave radiation,
which quantifies the change in net shortwave radiation (Qnet)
at the top of the atmosphere as a result of changes in surface
albedo caused by a temperature perturbation (Eq. (1)).

∂Qnet

∂T s
¼ ∂Qnet

∂αs

Δαp

ΔT s
¼ −Q

∂αp

∂αs

Δαs

ΔT s
ð1Þ

One factor in this equation relates planetary albedo changes
with surface albedo variability (∂αp/∂αs), while a second fac-
tor relates changes in surface albedo and near-surface air tem-
perature (Δαs/ΔTs) [99]. This latter term is commonly used to
approximate SAF strength because it explains most of the
intermodel variability in SAF [5, 112]. SAF can also be quan-
tified using the radiative kernel method [103], which uses the
radiative response to a 1% perturbation of albedo calculated in
a climate model to translate the albedo sensitivity (Δαs/ΔTs,
units % K−1) into climate feedback (units W m−2 K−1).

The SAF process in the earliest general circulation models
(GCMs) was far too sensitive [113, 114] due to a lack of sophis-
tication in their representation of the land surface (snow-covered
surface albedo did not vary with vegetation). After decades of
development, the current generation of earth system models
(ESMs) is equipped with highly detailed land components,
which represent a vast array of geophysical processes. In recent
comparisons of ESMs with estimates of SAF derived from ob-
servations of the seasonal cycle, studies have shown that the
ensemble mean agrees well with observations across the NH
extratropics. However, there is a threefold intermodel spread,
which has not decreased much over the past decade [5, 112].
This spread is consequential as it explains a significant portion
of the variability in projections of future NH landwarming [5]. In
an effort to reduce SAF spread in future generations of ESMs,
recent studies have explored the reasons why model estimates
vary so greatly. The sensitivity of surface albedo to temperature
changes (Δαs/ΔTs) is primarily driven by two physical mecha-
nisms: snow cover loss (SNC) and temperature-dependent snow
changes, such as metamorphism (TEM) [99]. SNC accounts for
the decrease in surface albedo that occurs with the transition from
snow-covered to snow-free conditions (revealing a less reflective
surface). On the other hand, TEM relates to the change in snow
albedo for fixed snow cover, which takes place as the snowpack
ages. It has been shown that thesemechanisms can explain nearly
all of the total SAF [112]. The SNC component is the dominant
factor across the entire NH, but the exact contribution varies
depending on the methodology used to calculate these compo-
nents (60–80% of the total) [5, 112]. The TEM component can
be large on a regional scale, for example, over the Tibetan Plateau
[115], but the dominance of SNCon the hemispheric scalemeans
that the contrast between snow-covered and snow-free surface
albedo is of great importance to SAF variability.

Several studies have since taken the approach of evaluating
snow-covered surface albedo in regional and global models to
better understand its controls. Thackeray et al. [116] investigate
the specific structural and parametric sources of SAF bias across
the CMIP5 ensemble. They find that the most common issues
relate to the representation of vegetation characteristics, snow
cover, and snow albedo. Several ESMs have large biases in
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vegetation distributions and densities [96, 117], which can lead to
overestimated SAF in cases where leaf area index is too low, or
underestimated SAF where leaf area index is too high. Beyond
this, there is a clear relationship in models between canopy snow,
the seasonal cycle of surface albedo, and the strength of SAF
[118, 119]. Additionally, a subset of ESMs relies on outdated
parameterizations for snow cover [116, 120] and the way in
which snow-vegetation masking is resolved [99]. Other
process-based studies have pointed to the depiction of sub-grid
scale lakes as a factor in snow-covered surface albedo biases, but
only for a single model [121]. Thus, a wide variety of factors has
recently been uncovered as contributing to model uncertainty in
SAF, but we see biases in vegetation characteristics and snow-
vegetation interactions as having the greatest impact.

In recent years, we have also seen greater use of regional
models to evaluate SAF in areas of complex terrain [122, 123].
The improved representation of topography in these models can
better capture the distribution of snow across elevation ranges,
with impacts on the seasonality of SAF [122]. These studies
consistently find that SAF contributes to future alpine warming,
which is otherwise missed by ESMs and statistical downscaling
techniques [124]. Winter et al. [123] show that the contribution
from SAF to end-of-century spring/summer warming in the Alps
is around 10% during snowmelt, whereas analysis over the
ColoradoHeadwaters region shows an average enhancement that
is about three times larger (which translates to a warming in-
crease of about 1.5 °C) [122]. Similar area averages are not
provided byWalton et al. [124], but they use a different approach
to illustrate that SAF can enhance end-of-century warming by
more than 2 °C locally in the US Sierra Nevada. The incorpora-
tion of SAF into regional modeling projections is therefore an
important development.

Lesser feedback comes from the dependence of outgoing
longwave radiation on land surface temperature. The presence
of snow cover keeps the ground temperature around the freezing
point, but when snow cover recedes, the temperature can in-
crease, thus emitting more longwave radiation [97]. This nega-
tive feedback acts to mute some, but not all, of the positive
radiative effect of SAF. Other possible feedbacks include chang-
es in cloud cover induced by melting snow and changes to tur-
bulent heat fluxes associated with changes in snow cover. These
processes are less studied but are also highly variable between
models [97, 125].

Snow-Atmosphere Coupling

While the importance of snow as a contributor to surface radia-
tive feedbacks is unquestioned, a more controversial line of re-
search has examined the potential for terrestrial snow anomalies
to drive variability in the large-scale atmospheric circulation,
raising the prospect of an additional source of subseasonal-to-
seasonal predictability. Awidely studied example emerged from

the work of Cohen and Entekhabi [126], who first reported a
strong correlation between observed interannual variations in
the spatial extent of September–November mean Eurasian snow
cover, and the leading mode of NH atmospheric variability (the
Arctic Oscillation or AO) in the following winter (December–
February mean).

The controversy surrounding this link centers around the need
for a robust physical mechanism to explain not only the snow-
AO relationship but also the time delay of multiple months be-
tween the snow anomalies and the AO response. A mechanism
involving a strengthening Siberian High, upward propagation of
a Rossby wave teleconnection into the polar stratosphere, and
subsequent downward propagation of stratospheric circulation
anomalies into the troposphere, was first proposed by Saito
et al. [127], and many studies since then have attempted to dis-
entangle this mechanism using observations and models
[128–132]. An important issue is that multiple generations of
climate models have been unable to spontaneously reproduce
snow-AO connections in their internal variability [133, 134],
and models have had to be perturbed by unrealistically large
snow anomalies to generate a realistic-looking AO response
(e.g. [129]). As summarized in Henderson et al. [135••] recent
work suggests strongly that the observed snow-AO link is non-
stationary [136] and may be modulated by other sources of cli-
mate variability such as the Quasi-Biennial Oscillation and/or the
Pacific Decadal Oscillation [137].

On a related theme, for more than a century, anomalous
Himalayan snow cover has been linked with variations in the
Indian summer monsoon. Blandford [138] originally proposed
the idea after observing several years where higher winter/spring
snowfall was followed by drier conditions over India associated
with a weakened monsoon. Since then many studies have pur-
sued this link, with earlier work confirming Blandford’s original
hypothesis (e.g. [139]), while more recent work has shown that
the relationship appears to have weakened or even changed sign
[140, 141]. Some authors have also proposed that the snow-
monsoon link is not robust and/or may be explained through a
connection to ENSO [142]. The apparent non-stationarity and
contradictory results from observational analyses have motivated
substantial modeling efforts to elucidate the mechanisms under-
pinning the snow-monsoon link. Turner and Slingo [143] con-
firmed Blandford’s hypothesis using a suite of sensitivity exper-
iments with an atmospheric GCM and showed that the monsoon
circulation is weakened due to a reduced meridional temperature
gradient in years of high Himalaya snow. Incorporating this
mechanism into a seasonal forecast system through improved
initialization of Himalayan snow has been shown to delay the
simulation of the onset of the Indian monsoon by approximately
1 week [144].

Finally, the coupling between snow and the atmosphere is
typically strongest during spring melt. Snow anomalies are
thought to produce a lasting impact on the surface climate
through a delayed effect caused by excessive soil moisture from
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melting snow [145]. Recent work suggests that non-stationarity
in the snow-monsoon link may be caused, in part, by compen-
sating effects between increased albedo and excess soil moisture
during high-snow years [146]. However, other authors have con-
cluded that snow cover anomalies do not influence soil moisture,
or the Indianmonsoon, due to the short timescale of soil moisture
feedbacks [147]. It is clear that substantial “memory” in the land
surface of climatemodels is provided by soil moisture anomalies,
which in cold regions during spring/summer are intrinsically
linked to melting snow [148]. Yet, it remains an open question
whether, and to what extent, such memory exists in the real
climate system, and how/if it can be harnessed to improve un-
derstanding and/or predictability.

How Well Do Climate Models Capture These
Changes?

ESMs from the fifth phase of the Coupled Model
Intercomparison Project (CMIP5) tend to underestimate recent
extratropical reductions in spring SCE, with the ensemble mean
being about 20% weaker (− 2.5 ± 1.0% per decade from 1981
to 2010) [25]. A similar conclusion was also reached for the
early-spring period [46]. The discrepancy between ESMs and
observations is thought to be greatest for June SCE [24], al-
though observational uncertainty is larger than April and May
during this month [20]. Recent studies have also evaluated why
climate models underestimate observed trends. The main cul-
prit appears to be an underestimation of the amount of snow
loss that occurs with warming (defined as snow cover sensitiv-
ity) (Fig. 2). Mudryk et al. [20•] show that the largest differ-
ences in snow cover sensitivity take place in mid-latitude and
alpine areas. Models also underestimate the amount of boreal
spring land temperature change [46]. During late spring, model
underestimates of climatological SCE may also be impacting
the trends [25].

It is more challenging to assess model simulations of recent
SWE changes on a hemispheric scale because of larger observa-
tional uncertainties in potential precipitation forcing of SWE
trends and the coarse resolution of ESMs. The Community
Earth System Model (CESM) underestimates observed losses
in winter-spring over North America and like observations ex-
hibit a mixed response over Eurasia [28]. On a more regional
scale, Fyfe et al. [52•] show that a different model well captures
decreases in peak SWE across the Western US from an average
of reanalysis products, despite overestimating climatological
SWE. The overestimation of climatological SWE also appears
in much of the CMIP3 and CMIP5 ensembles across the rest of
the NH [42, 149]. Therefore, ESMs are capable of qualitatively
capturing SWE trends, but their overly simplistic underlying
topography likely limits their usefulness for understanding
large-scale SWE changes.

Conclusions

The literature assessed here demonstrates the broad research
interest in how snow is changing and will continue to evolve
under future climate change. There is high confidence that
widespread NH snow loss is occurring [20, 25, 30, 43•], par-
ticularly in spring (Fig. 1). These changes are being primarily
driven by temperature, but a number of other factors also play
a role, including precipitation, vegetation, light-absorbing im-
purities, and sea ice melt. Changes in snow cover can also
feedback on climate through SAF to enhance regional surface
warming. Future snow seasons will very likely be dramatical-
ly shorter as a result of warming, while changes in SWE are
expected to decline across all but the coldest (and high eleva-
tion) regions [45, 47, 52•]. These projected changes lead to
considerable freshwater availability concerns in many densely
populated regions where water supplies may already be
stretched thin [9, 59, 150].

Sparse station data and difficulties monitoring snow from
space make for large differences between various observation-
based estimates of recent change. Furthermore, many of these
datasets rely on reanalysis and snow models rather than direct
surface observations (e.g., [151]). This highlights the need for
better earth observation when it comes to snow mass [152],
particularly in forested areas which make up a large fraction of
the NH extratropics and where snow-vegetation interactions are
strongest, and in mountainous areas where the deepest and most
spatially variable snow occurs. For example, recent work esti-
mates that the mountains of North America store 60% of the
continent’s annual peak snow water [153]. In the meantime, we
encourage the use of amulti-dataset approach to properly capture
the uncertainties associated with observed snow trends.

When it comes to the modeling of snow, we are encouraged
by the greater emphasis on land surface modeling in the past
decade, but note that there are still some essential snow pro-
cesses that are not commonly represented, such as blowing
snow. The representation of many other processes dates back
several decades and is still often too simple (e.g., one-layer
implicit snow schemes, type 4 snow-vegetation masking as
defined by Qu and Hall [99]). For many snow-related questions
in areas of intense topography, inherent limitations in ESMs
due to their coarse resolution (at least 100 km by 100 km) make
it necessary to consider alternative regional modeling ap-
proaches. Recent developments in variable-resolutionmodeling
are particularly encouraging for answering questions relating to
mountain snowpack [53]. Forthcoming analysis of CMIP6 out-
put will determine whether reduced uncertainty in model pro-
jections of snow will emerge from the latest generation of earth
system models. Additionally, ongoing collaborative modeling
efforts should provide a significant advance in our knowledge
of the role snow plays in the climate system. For example,
ESM-SnowMIP is an international effort specifically aimed at
this purpose. It will provide insight into the processes and
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characteristics that need to be improved in modeling of snow at
both local and global scales [154•].

Given the aforementioned limitations and uncertainties,
what can be done to improve projections of future snow from
ESMs? Since projected SCE trends are predominantly con-
trolled by NH extratropical land surface temperature changes
[25], taking steps to ensure reduced intermodel variability in
warming should help narrow the spread in model projections
of future snow cover. An important contributor to the spread in
extratropical land warming is SAF. Therefore, taking steps to
reduce uncertainty in seasonal SAF, which should translate to
reduced spread under climate change [5], is essential. We have
known of the large SAF spread across ESMs for more than a
decade. Although many ESMs did make notable improve-
ments to better represent SAF from CMIP3 to CMIP5 [116],
there has been little spread reduction in SAF from one ensem-
ble to the next. This highlights the need for better communi-
cation of these and similar findings to individual modeling
centers. There is a variety of further model development relat-
ed to snow and land surface modeling going from CMIP5 to
CMIP6 [116], but it remains to be seen if these activities lead
to greater realism in SAF and reduction in SAF spread.

In closing, snow is a critical component of the NH ecology
and climate and is a significant freshwater resource for a sig-
nificant fraction of the world’s population. Robust monitoring
of snow cover and snow mass variability and change, contin-
ued model development, and well-constrained projections of
future snow conditions are required to ensure societal and
ecosystem resiliency.
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