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Abstract Aerosol effects on mixed-phase clouds (MPCs)
are more complex than in warm clouds because aerosol
particles can act both as cloud condensation nuclei and as
ice nucleating particles and more microphysical pathways
exist. Stratiform MPCs are most prevalent in the Arctic
where cloud top cooling enables heterogeneous ice forma-
tion and in orographic terrain where large updrafts prevail.
Recently, aerosol effects on stratiform MPCs have also
been considered in global climate models. The estimated
effective aerosol radiative forcing due to aerosol-cloud and
aerosol-radiation interactions (ERFaci+ari) at the top-of-
the-atmosphere (TOA) in stratiform warm and MPCs, which
is an update of the estimate given in the fifth assessment
report (AR5) of the Intergovernmental Panel of Climate
Change, is −1.2 W m−2 with a 5–95 % range between −0.8
and −2.0 W m−2. Since AR5, only one new estimate of
ERFaci+ari including aerosol effects on both stratiform and
convective clouds of −1.4 W m−2 has been published. In all
cases, ERFaci+ari is dominated by changes in the shortwave
TOA radiation with changes in the longwave TOA radiation
amounting to 0.15 W m−2.
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Introduction

Emissions of anthropogenic aerosols and their precursor
gases have substantially increased since pre-industrial times.
Some anthropogenic aerosols, such as sulfates, nitrates,
and some organic aerosols, are hygroscopic or hydrophilic.
They are good cloud condensation nuclei (CCN) and with
that influence the microphysical properties of warm clouds,
denoting clouds consisting purely of liquid water. An
increase in CCN leads to more cloud droplets. If the same
amount of water vapor condenses on more cloud droplets,
the cloud droplets cannot grow as large and will be smaller.
The total cross-sectional area of the polluted (anthropogeni-
cally influenced) cloud thus is higher and reflects more
solar radiation back to space. This effect is known as the
Twomey effect [96] or radiative forcing due to aerosol-cloud
interactions (RFaci, [9]).

In addition, rapid adjustments occur that further mod-
ify the radiative budget at TOA through changes within the
atmosphere or at the surface. These adjustments operate on
timescales that are much shorter than the timescale of global
warming and are distinguished from feedbacks which oper-
ate through changes in climate variables as a response to a
change in surface temperature. In a cloud that consists of
smaller cloud droplets, the droplets are less likely to collide
and coalesce, which retards precipitation formation [1]. If
such a delay increases the cloud’s lifetime or causes faster
evaporation of the small droplets is still unclear [37]. Other
fast adjustments include changes in the phase of the cloud or
changes in its coverage. These adjustments are included in
the effective radiative forcing due to aerosol-cloud interac-
tions (ERFaci, being the sum of RFaci and fast adjustments).
The majority of the estimates of ERFaci from global cli-
mate models (GCMs) is more negative than RFaci alone

http://crossmark.crossref.org/dialog/?doi=10.1007/s40641-017-0059-9&domain=pdf
http://orcid.org/0000-0001-8885-3785
mailto:ulrike.lohmann@env.ethz.ch


Curr Clim Change Rep (2017) 3:32–44 33

[55]. In the global annual mean ERFaci+ari that includes
also the radiative forcing due to aerosol-radiation interac-
tions (ari) was estimated to be −0.9 W m−2 in IPCC AR5
[9] with an uncertainty range of −0.1 to 1.9 W m−2. Since
then, a number of new estimates has been published using
state-of-the-art GCMs, all of which arrive at a more nega-
tive ERFaci+ari [13, 23, 24, 31, 44, 61, 83, 86, 104]. Even
the study that is based on satellite observations reports an
ERFaci+ari of −0.95 W m−2 [12], which is at the upper
end of the satellite-based estimates in IPCC AR5 [9].

Stratiform mixed-phase clouds (MPCs) or layers of
mixed-phase in nimbostratus clouds can be found at temper-
atures between 0 and −38 ◦C and contain both supercooled
liquid water and ice. More precisely, Korolev et al. (2003)
defined MPCs as clouds in which the ratio of the ice water
content to the sum of the liquid water and ice water content
was measured to be between 0.1 and 0.9 [48]. Convec-
tive clouds with a large vertical extent and cold cloud top
temperatures can also have a mixed-phase region. These
clouds and possible aerosol effects on them are discussed in
the “Aerosol Effects on Deep Convective Clouds” section.
The majority of precipitation in mid-latitudes originates in
clouds containing ice [68] but melts to raindrops or drizzle
drops on the way to the ground. While precipitation from
pure ice clouds (e.g., high cirrus clouds) rarely reaches the
ground, the precipitation-forming clouds are mainly MPCs
(stratiform and convective) in which ice crystals quickly
grow to precipitation-sized particles and leave the cloud.
Because of the larger sizes of ice crystals and their smaller
index of refraction as compared to cloud droplets, even
for the same water content ice clouds are optically thinner
than liquid water clouds. Taking into account that precip-
itation reduces the water content of glaciated clouds, they
are optically much thinner and reflect much less shortwave
radiation back to space than liquid water clouds. This effect
is partly compensated by a reduced emission in the long-
wave. In short, knowledge about the size distribution of
cloud droplets and ice crystals in MPCs is important both
for the hydrological cycle and the radiation budget.

In this article, I will first discuss the microphysical
processes in MPCs (“Aerosol Effects on Stratiform and
Shallow Convective MPCs”), then discuss anthropogenic
aerosol effects on stratiform MPCs (“Aerosol Effects on
Stratiform and Shallow Convective MPCs”), orographic
MPCs (“Aerosol Effects on Orographic MPCs”), and on
deep convective clouds (“Aerosol Effects on Deep Convective
Clouds”) before discussing global estimates of ERFaci+ari
in the “Aerosol Radiative Forcing Due to Aerosol-Cloud
and Aerosol-Radiation Interactions” section and finishing
with conclusions.

Microphysical Processes and Aerosol Effects
in MPCs

MPCs are thermodynamically unstable because the satu-
ration vapor pressure over ice is smaller than over super-
cooled liquid water. If the environmental vapor pressure
lies between the saturation vapor pressure of supercooled
water and ice, then the ice crystals grow at the expense of
the evaporating water droplets. This process is called the
Wegener-Bergeron-Findeisen (WBF) process [4, 21, 100].
The result of this process can be observed in so-called hole
punch clouds [30, 71] (Fig. 1), where in the wake of an air-
craft penetrating the supercooled liquid cloud, locally the
temperature decreases sufficiently for ice formation. Due to
the WBF process, ice crystals have grown large enough to
sediment out of the cloud.

The effect of anthropogenic aerosols on MPCs is much
more uncertain than on warm clouds because more micro-
physical processes exist and also changes in the liquid phase
can influence MPCs. For instance, a delay of the warm
rain process due to more and smaller cloud droplets as dis-
cussed above keeps more condensate in the cloud so that
more latent heat can be released upon freezing. This effect

Fig. 1 Hole punch cloud. Photograph taken and reproduced with per-
mission of Joel Knain (http://apod.nasa.gov/apod/ap040112.html). For
more explanations about hole punch clouds please refer to Heymsfield
et al., 2010 [29] and 2011 [30]
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is partly compensated by the additional weight of the con-
densed water that reduces the buoyancy inside the cloud.
The net increase in buoyancy in polluted as compared to
clean clouds has been made responsible for the invigora-
tion of deep convective clouds [81] and been referred to as
the thermodynamic indirect effect [15]—see the “Aerosol
Effects on Deep Convective Clouds” section.

In addition to changes in the number concentration and
size of cloud droplets, changes in MPCs can be triggered
by a change in the number concentration of anthropogenic
aerosols can act as ice nucleating particles (INP). INP differ
from CCN in that they need to have active sites that can sta-
bilize ice germ formation. The identity of what constitutes
an active site is still unknown and area of active research
[40]. Many previous studies have suggested that INP need
to be solid or crystalline and typically have diameters larger
than 0.1 μm [62, 75], examples of which are mineral
dusts [34, 72], biological particles such as bacteria, fungal
spores, and pollen [16], but can also be biogenic particles
from the ocean surface, oxidized biogenic forest emissions,
or macromolecules from plant and ocean matter [76, 77, 102].

So far, it is neither known if carbonaceous aerosols
are good INP nor if anthropogenic activity has increased
the INP concentration. If soot aerosols, agricultural dusts,
industrial metal particles, ashes, and/or biomass burning
particles were good INP, then INP would have increased
through anthropogenic activity causing an increase in the
ice crystal number concentration (ICNC) assuming the
macroscopic conditions causing cloud formation remain
unchanged. Due to the WBF process, an increase in ICNC
leads to a faster glaciation of supercooled liquid clouds
and MPCs, an increase in precipitation, a decrease in cloud
cover, and a reduction in reflected shortwave (SW) radia-
tion [51]. This so-called glaciation effect buffers some of
the initial perturbations in warm clouds through a decrease
in the coverage and water content of the overlying clouds in
the mixed-phase temperature range between 0 and −38 ◦C.
In addition, ice crystals and snow flakes from these clouds
accrete with cloud hydrometeors (cloud droplets and ice
crystals) in lower-lying clouds and reduce also their water
content. Suggestions for such a buffering were found
in preliminary studies with the Norwegian Earth System
Model (NorESM) [44] and can be explained theoretically
[26].

If, however, the main effect of anthropogenic activity
were a coating of INPs with acids (sulfuric acid, nitric acid),
this would reduce their ice nucleating ability and result in
fewer ice crystals that grow to larger sizes and sediment
more readily without converting the whole MPC into an
ice cloud [25]. Alternatively, ice may only form at colder

temperatures. In any case, this so-called deactivation effect
causes an increase in the amount of supercooled liquid water
and operates in the same direction as ERFaci for warm
clouds. The deactivation effect seems to dominate over the
glaciation indirect effect in some GCMs [33, 91].

Aerosol Effects on Stratiform and Shallow
Convective MPCs

Stratiform MPCs are prevalent in the Arctic [67, 89] and
in orographic terrain [28, 50, 57]. In situ observations and
surface remote sensing suggest that clouds in the mixed-
phase temperature range in mid-latitudes tend to consist
almost entirely of ice or of liquid water [10, 11, 48]. This
agrees with satellite observations over the Southern Ocean
and North Pacific, which have shown that the most common
cloud types are clouds with supercooled droplets at their
tops [6, 65]. Glaciated cloud tops at temperatures warmer
than −20 ◦C are rare. A large portion of cloud tops remains
ambiguous from the MODIS satellite, which means they
could be MPCs or have signals from multiple cloud layers
[65]. On a global scale, the fraction of supercooled water
in MPCs at various temperatures from the ECHAM6 and
different versions of the CAM GCM has been compared to
CALIOP satellite estimates. None of the models captured
the observed variation in the supercooled fraction with tem-
perature correctly but either simulated too small or too high
values at all temperatures [46]. This is partly related to dif-
ferences in INP concentrations and partly to differences in
the involved parameterized microphysical processes.

Increasing the supercooled liquid water in shallow con-
vective clouds substantially reduced the bias in the absorbed
shortwave radiation in the present-day climate over the
Southern Ocean in the CAM5 GCM [42]. An error in the
fraction of supercooled liquid water in stratiform MPCs
in the present-day climate also has consequences for pro-
jections of global mean temperature at the time of CO2

doubling [94]. If ice in MPCs is overestimated in the
present-day climate, a larger portion of that will be found
in the liquid phase in a warmer climate. This overesti-
mates the negative cloud phase feedback that partly offsets
global warming. If the bias of the amount of ice in MPCs is
reduced, the cloud phase feedback will be smaller and the
temperature at the time of CO2 doubling will be higher [94].

On a regional scale, low-level MPCs were studied exten-
sively in the Arctic, where they occur frequently and are
persistent [67, 78, 89, 103]. MPCs may be stabilized due
to anthropogenic activity due to the deactivation effect [25]
such that the sulfate-induced inhibition of freezing leads to
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fewer and larger ice crystals both in MPCs and pure ice
clouds [27]. Aerosol effects on Arctic MPCs have received
lots of attention because MPCs play a central role in Arc-
tic climate change and sea ice loss [41]. The effect of
anthropogenic aerosols on Arctic MPCs is not limited to
the reflection of shortwave radiation, but also affects the
longwave radiation by increasing the longwave emissivity
[2, 22, 59].

Evidence of RFaci is sometimes visible in terms of ship-
tracks [17] even though the global coverage of shiptracks of
0.002 % [87] is very small due to the special environment
that they need to form in. Also, not all shiptracks show an
increase in albedo, because of fast adjustments. The effec-
tive radius decreases by about 20 % in warm cloud and
MPC shiptracks, because the water vapor is distributed over
more cloud particles, which limits their growth (Fig. 2). Due
to buffering in MPCs, the increase in albedo seems to be
smaller than in shiptracks in warm clouds. Of the nearly 300
shiptracks evaluated by Christensen et al. [14], the albedo
increase amounts to less than 2 % in shiptracks in MPCs as
compared to the 8 % increase in warm clouds (Fig. 2). The
smaller albedo increase is caused by the significantly larger
precipitation formation rate in the ice phase via the glacia-
tion indirect effect that leads to a decrease of the total water
path of 16 % as compared to suppression of precipitation in
the warm phase and almost no change in the total water path
(Fig. 2).

Also cloud-resolving model simulations of Arctic clouds
showed smaller albedo increases in MPCs than in warm
clouds [49]. Observations during the Indirect and Semi-
Direct Aerosol Campaign (ISDAC) campaign in April 2008
were used to test various aerosol indirect effects in MPCs
by correlating different cloud properties to the total accumu-
lation mode aerosol concentration above and below cloud
[35]. There were indications that in some instances, mix-
ing of aerosol particles into the cloud from above caused
a glaciation indirect effect. Other cases suggested that sec-
ondary ice crystal production becomes less efficient because

the number of cloud droplets large enough to cause splin-
tering decreases with increasing aerosol load. The riming
indirect effect (see below) did not seem to play a major
role [35].

Little research has so far been conducted on possi-
ble aerosol effects on MPCs in the storm tracks of both
hemispheres. Of the few studies that exist in the North
Pacific, where these effects should be strongest due to
the high anthropogenic emissions in East Asia, the results
remain inconclusive as to whether or not anthropogenic
aerosols noticeably increase precipitation from extratropical
cyclones [39, 99, 105].

Aerosol Effects on Orographic MPCs

Orographic clouds and precipitation can be particularly
prone to strong aerosol-cloud-precipitation interactions [38,
70, 80, 106] because the time for precipitation development
is limited to the ascending branch of mountain flow. At
the same time, the time for precipitation formation is con-
strained by the strong dynamical forcing of the orography.

Observations taken on top of Jungfraujoch in the Swiss
Alps show persistent MPCs in those cases in which the
updraft velocities are high enough to exceed saturation with
respect to liquid water. This allows simultaneous growth of
supercooled liquid droplets and ice crystals [57]. However,
as the ICNC exceeds the concentration of INP by orders of
magnitude, no influence of anthropogenic aerosols on the
persistence of MPCs could be deduced.

Decreasing snowfall rates with increasing anthropogenic
aerosol loads have been observed in the Rocky Mountains
through correlations of the snowfall rate with sulfate con-
centrations [8] and by comparing two case studies with a
similar liquid water content [7]. The authors suggested that
this anticorrelation is caused by a reduction in the colli-
sion efficiency of snowflakes with smaller cloud droplets,
which reduced the riming rate, and referred to it as a

Fig. 2 Bar chart of cloud
property changes due to ship
pollution for warm (T > 0 ◦C)
and cold (T < −5 ◦C) cloud
tops. Figure adapted from
Christensen et al. (2014) [14].
Statistics are based on the
fractional change (in %)
between the polluted and
unpolluted clouds using 297
ship tracks. Solid error bars
denote the 5–95 % confidence
interval. The dashed bar is
truncated to fit inside the figure
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riming indirect effect. As riming leads to efficient precipi-
tation formation in MPCs, a retardation of riming prolongs
the development of precipitation and can cause some pre-
cipitation to spill over to the leeward side of the mountain
[84, 106]. In a comparison of different numerical models,
neither a decrease in riming was a robust result nor did an
increase in aerosols necessarily lead to a reduction in pre-
cipitation [69]. Given the large scatter in the data [8], the
model findings do not necessarily contradict the measure-
ments. This is because the effect of anthropogenic aerosols
on cloud microphysics and orographic precipitation not only
depends on the temperature of the MPCs and the concen-
trations of CCN and INP, but also on the synoptic situation
and cloud dynamics and how these processes are described
and interact with each other in numerical models [18, 20,
60, 69, 70].

In GCM simulations, the riming indirect effect was found
to be of minor importance [52]. Instead, the increased cloud
optical depth due to pollution aerosols reduced the solar
radiation and hence the temperature at the Earth surface and
within the atmosphere. This in turn led to more ice in the
atmosphere and hence more snowfall.

Aerosol Effects on Deep Convective Clouds

In addition to the aerosol effects on stratiform MPCs
introduced above, a thermodynamic effect has been sug-
gested [15, 79, 81]. Whereas in pristine deep convective
clouds, cloud droplets collide and coalesce into sediment-
ing raindrops, in a polluted cloud precipitation formation via
collision-coalescence is suppressed (Fig. 3). Instead, cloud
droplets are advected into higher levels with colder temper-
atures. Once they reach temperatures below 0 ◦C, they can
freeze. The freezing temperature depends on the size of the
cloud droplets, such that smaller droplets homogeneously
freeze at colder temperatures than larger drops [75] because
the chance of forming a critical ice embryo increases with
increasing droplet size. This is relevant if heterogeneous
nucleation and the WBF process are not fast enough to
cause glaciation of the cloud in the mixed-phase region.
This can be the case in continental deep convective clouds
where supercooled droplets were found down to −37.5 ◦C
[82]. Also, heterogeneous freezing depends on the droplet
size because larger droplets have a higher chance to contain
more or better INPs.

Freezing releases latent heat aloft and invigorates these
cloud systems [47], but also in the lower levels of the cloud
more latent heat is released by enhanced condensational
growth [88, 93]. This is partly counteracted by the reduced
buoyancy due to increased water loading. Ice crystals form-
ing in upper levels grow into precipitation-sized particles
that fall against the updraft. At temperatures above 0 ◦C,

they melt and consume latent heat. For the same amount
of surface precipitation, the polluted cloud has a larger
upward heat transport because more precipitation originates
via the ice phase. The larger heat transport results in an
invigoration of the convective clouds with overall more pre-
cipitation, despite the slower conversion of cloud droplets
to raindrops. The more numerous but smaller ice crystals in
polluted clouds that sediment slower were found to increase
the cloud cover of the stratiform anvil in the mature and
dissipating stages of deep convective clouds [19]. This may
lead to an increased reflection of shortwave radiation as
shown in Fig. 3.

Model simulations using a cloud system-resolving model
show that either a weakened or an enhanced response of the
surface precipitation rate of an idealized supercell storm to
polluted conditions (realized by increasing the cloud droplet
number concentration from 50 to 750 cm−3) can be found
[66]. If the polluted supercell storm produces more or less
surface precipitation depends on how the cold pool strength
changes in response to pollution, which in turn depends
on how the cloud microphysical and thermodynamic pro-
cesses are modified in different simulation set-ups. The cold
pool strength is larger in those simulations that produce a
larger convective mass flux and more surface precipitation.
Differences in the response of deep convection to aerosol
perturbations simulated by increasing the cloud droplet
number concentration from 100 to 2500 cm−3 using two dif-
ferent state-of-the art cloud microphysical schemes within
the WRF high-resolution model point to the importance of
the treatment of snow and graupel (being one-moment in
one scheme and two-moment in the other). The opposite
responses in liquid water and ice mass of the polluted deep
convective cloud compared to the clean cloud using these
schemes show deficiencies in our understanding of convective
processes and our ability to parameterize them well [101].

Aerosol Radiative Forcing Due to Aerosol-Cloud
and Aerosol-Radiation Interactions

In IPCC AR5, GCM estimates of ERFaci+ari have been
stratified into those that only include aerosol effects on
warm stratiform clouds and those that went beyond that. In
the category that included also aerosol effects on MPCs, the
estimates ranged between −0.3 and −2 W m−2 [9]. Part
of this range can be explained by differences in the impor-
tance of the glaciation vs. the deactivation effect (see section
Microphysical Processes and Aerosol Effects in MPCs) in
different GCM simulations. Six studies considering aerosol
effects on MPCs have been published since IPCC AR5,
with best estimates of ERFaci+ari between −0.9 and
−2.5 W m−2, i.e., covering a similar range but with more
negative values than prior to AR5. Thus, the overall range
of ERFaci+ari has increased.
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Fig. 3 Evolution of deep convective clouds developing in the pristine (top) and polluted (bottom) atmosphere. Figure courtesy of Fabian Mahrt
modified from Rosenfeld et al. (2008) [81]

A study conducted with CAM3+ coupled to the IMPACT
aerosol module obtained an even more negative ERFaci+ari
of −2.8 W m−2 (compared to −2.5 W m−2) in case that
marine organics do not serve as INP [104]. Such a reduction
of ERFaci+ari caused by additional INP is consistent with
the glaciation indirect effect discussed above.

In sensitivity simulations with CAM5 where different
aspects of aerosol-cloud interactions were changed, a much
larger global influence of the WBF process on MPCs was
found than to differences in the ice nucleation scheme [23]
(see Fig. 4 entries “Ice Nucleation” vs. “WBF process”).
In order to correctly simulate precipitation processes, it is
important to place more emphasis on growth by accretion
than by autoconversion as achieved most physically by treat-
ing precipitation prognostically [24]. This favors growth by
accretion, which is independent of the cloud droplet number
concentration, and hence reduces ERFaci+ari. The influ-
ence of prognostic precipitation on ERFaci+ari is, however,
smaller than using different autoconversion rates (Fig. 4

compare entries “Prog Precip” vs. “Autoconv”), a different
activation scheme (Fig. 4 entry “Activation”) or by changing
the WBF process. The largest sensitivity was obtained when
CAM5.3 was coupled to the turbulent and shallow convec-
tion scheme CLUBB that considers aerosol effects on shal-
low convective clouds (Fig. 4 entry “CLUBB”). ERFaci+ari
from the CAM5.3 sensitivity experiments ranged between
−0.7 and −1.6 W m−2.

In simulations with the ECHAM6 GCM coupled to the
HAM2 aerosol scheme that include aerosol effects on strat-
iform warm and MPCs, the sensitivity of ERFaci+ari to
aerosol processing, i.e., how important it is to account
for the number of aerosol particles that are incorporated
into cloud droplets and ice crystals during activation,
nucleation, scavenging, and collisions, was investigated
[73]. Aerosol processing reduced ERFaci+ari by 0.1 to
0.4 W m−2 to −1.1 respectively −0.9 W m−2 depend-
ing on the stability function used in the turbulence scheme.
Using ECHAM5-HAM2, it was shown that treating subgrid
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Fig. 4 Percentage change of
ERFaci+ari in response to
various aspects that influence
aerosol-cloud interactions.
Figure modified from
Gettelman (2015) [23]

scale variability by introducing stochastic subcolumns in the
calculations of cloud droplet activation and autoconversion
(collision-coalescence of cloud droplets to form raindrops)
reduced ERFaci+ari by 0.3 W m−2 to −1.3 W m−2 [95].

Because of the long timesteps in GCMs, most micro-
physics scheme only treat cloud water and ice as prognostic
variables and diagnose the amount of precipitation every
timestep. Recently, some climate modeling groups started

to treat precipitation prognostically [24, 74, 86]. Because
fast falling raindrops can violate the Courant-Friedrichs-
Lewy criteria, GCMs with prognostic precipitation use
sub-time stepping at least for sedimentation. The effect of
sub-stepping cloud micro- and macrophysics (cloud fraction
and condensation/deposition) on ERFaci+ari was investi-
gated with CAM5.3 [24]. It was found that ERFaci+ari
is more sensitive to sub-stepping cloud macrophysics than

Fig. 5 Estimates of ERFaci+ari
[W m−2] that include
aerosol-cloud interactions in
stratiform warm and MPCs (red
symbols) and in stratiform and
convective clouds (green
symbols). In the upper panel
best estimates are shown as
symbols and if sensitivity
experiments were conducted, the
minimum and maximum
estimates are connected by
vertical lines. In the lower
panel, the statistics are derived
based on the best estimates from
each study and where available
the SW and LW contributions
are shown. “x” denotes the
average, the white horizontal
line the median, the end of the
boxes the 25–75 % range, and
the end of the whiskers the
minimum-maximum range. A
list of the ERFaci+ari estimates
with the respective references in
the order of occurrence is
provided in Table 1
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cloud microphysics and that prognostic precipitation lowers
ERFaci+ari by 2–33 % as compared to diagnostic precipita-
tion. On the contrary, prognostic precipitation in ECHAM5-
HAM increases ERFaci+ari by 0.3 W m−2, despite a 25 %
reduction in the increase in liquid water path in response
to anthropogenic aerosols [86]. However, the difference in
ERFaci+ari between prognostic and diagnostic precipita-
tion in ECHAM5-HAM is within the interannual variability.

Taking the average ERFaci+ari of the best estimates of
those climate model simulations that include aerosol effects
on MPCs (red diamonds in Fig. 5) yields −1.2 W m−2,
which is significantly more negative than estimated in IPCC
AR5 [9]. It agrees with the ERFaci+ari estimate from the
GCMs used in the coupled atmosphere-ocean model inter-
comparison project 5 (CMIP5) [31] of −1.2 W m−2, which
as a whole reproduce the observed warming of the twentieth
century being dominated by increases in greenhouse gases
and aerosol particles [5]. Sensitivity simulations conducted
with a given GCM include variations of model’s resolution,
the parameterization schemes for cloud microphysics (e.g.,

prognostic vs. diagnostic precipitation) and other processes
(coupling to turbulence scheme, impact of natural aerosol
emissions or effect of aerosol processing), or the parameter-
ization of a specific process, like the ice nucleation scheme
or autoconversion rate. The effect of such sensitivity studies
is shown as vertical lines in Fig. 5. For most GCMs, esti-
mates of ERFaci+ari from sensitivity studies vary less than
1 W m−2 except for the ones with the ECHAM6-HAM2
GCM [73] where increasing the vertical resolution had the
largest effect (Table 1).

An analysis of the CMIP5 models showed that the
decrease in the TOA SW radiation is much higher in
those two models that consider aerosol effects on MPCs
(−1.9 W m−2) than in the four models that only consider
aerosol effects on warm clouds (−1.2 W m−2) [31]. How-
ever, the CMIP5 models often use simpler aerosol schemes
in order to save CPU time than the atmosphere-only GCMs
discussed above. ERFaci+ari from the atmosphere-only
GCMs shown in Fig. 5 simulate an average decrease in the
TOA SW radiation of only −1.4 W m−2 possible due to

Table 1 List of ERFaci+ari estimates [W m−2] shown in Fig. 5
divided into best estimate (best), range, changes in the SW and LW
TOA radiation budget, and the category in which the estimate falls

(with MPCs or with convective clouds (conv.)), if they were used
in AR5 (yes/no) or are post-AR5 (post) estimates and the respective
reference

Cat. Model AR5 Reference Best Range SW LW

MPCs ECHAM4 No Lohmann 2004 [52] −1.00 −0.97 to −1.24 −1.64 0.55

MPCs GATOR-GCMOM No Jacobson 2006 [36] −0.85

MPCs ECHAM4 No Lohmann & Diehl 2006 [54] −1.02 −1.02 to −2.08 −1.32 −0.22

MPCs CAM Oslo No Storelvmo et al. 2008 [91] −0.27 −0.07 to −0.27 −0.15 −0.01

MPCs ECHAM5-HAM No Hoose et al. 2008 [33] −2.04 −1.80 to −2.08 −2.23 0.25

MPCs ECHAM5-HAM No Lohmann & Hoose 2009 [58] −0.95 −0.62 to −1.12 −1.15 0.20

MPCs CAM Oslo Yes Hoose et al. 2010 [32] −1.55 −1.55 to −1.89 −1.49 −0.06

MPCs ECHAM5-HAM Yes Lohmann & Ferrachat 2010 [56] −1.02 −0.87 to −1.12 −1.07 0.05

MPCs GFDL Yes Salzmann et al. 2010 [85] −1.68 −1.99 0.31

MPCs CAM Oslo Yes Storelvmo et al. 2010 [92] −0.81 −0.49 −0.32

MPCs CAM3+IMPACT Post Yun & Penner 2013 [104] −2.52 −2.52 to −2.82

MPCs ECHAM6-HAM2 Post Neubauer et al. 2014 [73] −0.90 −0.90 to −2.30 −1.36 0.46

MPCs CAM5-MG1/2 Post Gettelman 2015 [23] −1.08 −0.70 to −1.61 −1.36 0.25

MPCs CAM5-MG2-MAM3 Post Gettelman et al. 2015 [24] −0.97 −0.82 to −1.23 −1.24 0.28

MPCs ECHAM5-HAM2 Post Sant et al. 2015 [86] −1.60 −1.30 to −1.60 −1.80 0.10

MPCs ECHAM5-HAM2 Post Tonttila et al. 2015 [95] −1.28 −1.28 to −1.59 −1.55 0.27

Conv. GISS No Menon & Rotstayn 2006 [64] −2.41

Conv. CSIRO No Menon & Rotstayn 2006 [64] −3.41

Conv. GISS No Menon & DelGenio 2007 [63] −0.43

Conv. ECHAM5-HAM Yes Lohmann 2008 [53] −1.50 −1.70 0.20

Conv. GISS No Unger et al. 2009 [97] −2.10

Conv. GISS Yes Koch et al. 2009 [45] −1.38

Conv. MM5 Yes Wang et al. 2011 [98] −1.05

Conv. CAM5-CLUBB Post Gettelman et al. 2015 [24] −1.40 −1.48 0.00
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their more sophisticated aerosol schemes. In the two CMIP5
models that consider aerosol effects on MPCs, the longwave
(LW) radiation is reduced by 0.7 W m−2 [31], which again
is much larger than the averaged change in outgoing LW
radiation of 0.15 W m−2 from the atmosphere-only GCMs
shown in Fig. 5. Note, however, that changes in the LW
radiation range from −0.3 to +0.5 W m−2, i.e., the clouds
become either more or less transparent to LW radiation in
response to anthropogenic aerosols or experience a decrease
or increase in cloud height, respectively.

Until now, the horizontal resolution in GCMs is too
coarse to resolve deep convective clouds and hence, they
need to be parameterized. Because of that, global estimates
of aerosol effects on stratiform and convective clouds are
rather uncertain and range between −0.4 and −3.4 W m−2

with an average of −1.7 W m−2 (green diamonds in Fig. 5),
which is −0.5 W m−2 more negative than aerosol effects on
stratiform warm and MPCs.

Of the eight estimates that include aerosol effects on
stratiform and convective clouds, only four provided a
breakdown into the changes in SW and LW TOA radiation.
These four studies include the three estimates that were used
in AR5 plus one new study [24]. Their averaged ERFaci+ari
of −1.3 W m−2 is rather comparable to the ERFaci+ari of
stratiform warm and MPCs. The averaged SW effect from
these four studies is −1.5 W m−2, which again is only
slightly more negative than the SW effect of aerosols on
stratiform warm and MPCs. The averaged LW effect from
these studies of 0.15 W m−2 is as large as for aerosol effects
on stratiform warm and MPCs.

While in the ECHAM5-HAM GCM evidence for convec-
tive invigoration when including aerosol effects on convec-
tive clouds was found [53], this did not significantly change
ERFaci+ari as compared to a simulation in which aerosol
effects on convective clouds were ignored, i.e., the reflection
of SW radiation from anvils of polluted clouds as shown in
Fig. 3 is negligible.

In a multi-scale modeling framework, where the relevant
cloud-scale circulations are resolved, ERFaci+ari is reduced
by 40% from −1.8 W m−2 down to −1.05 W m−2 [98]
yielding one of the lowest ERFaci+ari estimates in that cat-
egory (Fig. 5). In this framework, the liquid water path
increases much less in response to anthropogenic aerosols
because more buffering mechanisms, such as enhanced
evaporation of the smaller polluted cloud droplets, can take
place. Because a multi-scale modeling framework is compu-
tationally very expensive, other pathways that improve con-
vection in GCMs need to be pursued as well. One promising
approach is the spectral convective parameterization repre-
senting the statistical effects of a heterogeneous ensemble of
cumulus clouds [3] extended with an explicit cloud model
based on a one-dimensional steady-state entraining plume
[43].

Conclusions

Mixed-phase clouds remain one of the least studied cloud
types because they are not as easy to access as warm
clouds and require instrumentation that distinguishes cloud
droplets from ice crystals. However, they are persistent at
least in the Arctic and in orographic terrain. If they are
incorrectly simulated in the present-day climate in global
climate models, that can also affect the global mean warm-
ing in a 2×CO2 climate because of the negative cloud phase
feedback [94].

Since the publication of the IPCC AR5 report [9], six
new global estimates of ERFaci+ari considering aerosol
effects on stratiform warm and MPCs are available
from atmosphere-only GCMs, ranging between −0.9 and
−2.5 W m−2. With that, the average ERFaci+ari on strat-
iform warm and MPCs is −1.2 W m−2, where the contri-
bution of the changes in LW radiation is rather minor with
+0.15 W m−2. This is in line with the recent estimate from
re-analyzing the CMIP5 GCMs [31], but is more negative
than estimated in IPCC AR5 [9] and as obtained from a
simple model [90].

There are only half as many estimates of aerosol effects
on stratiform and convective clouds and they are more vari-
able and uncertain. The average ERFaci+ari from those
models that provide a breakdown in SW and LW radiation
changes of −1.3 W m−2 is comparable to ERFaci+ari con-
sidering aerosol effects on stratiform warm and MPCs. Dif-
ferences between various ERFaci+ari estimates are caused
by different parameterization schemes for cloud micro-
physics and other processes, different aerosol schemes,
different base years for pre-industrial emissions (1750 vs.
1850), and different model resolutions. These uncertainties
need to be reduced and the estimates of ERFaci+ari from
bottom-up estimates need to be reconciled with observa-
tions of the temperature record since pre-industrial times to
increase our confidence in the anthropogenic aerosol forcing.
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Pöschl U, Jaenicke R. Primary biological aerosol particles in the
atmosphere: a review. Tellus B. 2012:64.

17. Durkee PA, Noone KJ, Ferek RJ, Johnson DW, Taylor JP,
Garrett TJ, Hobbs PV, Hudson JG, Bretherton CS, Innis G,
Frick GM, Hoppel WA, O’Dowd CD, Russell LM, Gasparovic
R, Nielsen KE, Tessmer SA, Öström E, Osborne SR, Flagan
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