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Abstract While the representation of clouds in climate models
has become more sophisticated over the last 30+ years, the ver-
tical and seasonal fingerprints of Arctic greenhouse warming
have not changed. Are the models right? Observations in recent
decades show the same fingerprints: surface amplified warming
especially in late fall and winter. Recent observations show no
summer cloud response to Arctic sea ice loss but increased cloud
cover and a deepening atmospheric boundary layer in fall. Taken
together, clouds appear to not affect the fingerprints of Arctic
warming. Yet, the magnitude of warming depends strongly on
the representation of clouds. Can we check the models? Having
observations alone does not enable robust model evaluation and
model improvement. Comparing models and observations is
hard enough, but to improve models, one must both understand
why models and observations differ and fix the parameteriza-
tions. It is all a tall order, but recent progress is summarized here.
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Introduction

Climate change in the Arctic is a visible reality, with Arctic sea
ice [1] and the Greenland ice sheet [2] melting. The goal of
this review is to highlight recent advances in Arctic cloud and
climate research from both observations and modeling per-
spectives. Two guiding questions are addressed: What are
important recent advances in scientific understanding of
Arctic clouds in a warming world? andWhat tools have made
these advances in cloud-climate research possible and could
lead to future advances? This review builds on a recent com-
prehensive review paper on Arctic cloud processes and resil-
ience [3] and on a pioneering Arctic cloud-climate review
paper [4]. Wherever possible, emphasis will be placed on
how the tools for understanding Arctic cloud-climate process-
es have changed since the early days of climate modeling [5]
and satellite observations [6].

Why Are Clouds Important to Arctic Climate?

By the late twenty-first century, greenhouse gas emissions
dominate over internal variability and model physics as the
primary source of uncertainty in future climate projections [7].
But, within a given emissions scenario—clouds exert control
on future Arctic climate trajectories in two ways. First, on a
global scale, cloud feedbacks and cloud-aerosol interactions
dominate climate model uncertainty in global warming drivers
[8]. Arctic sea ice loss and global mean temperature are pos-
itively correlated on climate timescales [9]. In other words,
more global warming implies more Arctic sea ice loss.
Therefore, processes controlling global warming drivers also
control Arctic warming and ice melt. Second, on a local scale,
Arctic clouds exert a strong influence on Arctic climate feed-
backs. Both Winton [10] and Meehl et al. [11] traced model
uncertainty in Arctic warming and sea ice loss trajectories to

This article is part of the Topical Collection on Climate Feedbacks

* Jennifer E. Kay
jennifer.e.kay@colorado.edu

1 Department of Atmospheric and Oceanic Sciences and Cooperative
Institute for Research in Environmental Sciences (CIRES),
University of Colorado-Boulder, Boulder, CO, USA

2 Department of Atmospheric and Oceanic Sciences, University of
Wisconsin—Madison, Madison, WI, USA

3 LMD/IPSL, Univ. Pierre and Marie Curie, Paris, France
4 NASA Langley, Langley, VA, USA
5 NASA Jet Propulsion Laboratory, California Institute of Technology,

Pasadena, CA, USA

Curr Clim Change Rep (2016) 2:159–169
DOI 10.1007/s40641-016-0051-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s40641-016-0051-9&domain=pdf


disparate representations of shortwave Arctic feedbacks in-
cluding clouds. Cloud influence on Arctic climate goes be-
yond just cloud feedbacks because clouds regulate the
strength of other Arctic feedbacks. For example, positive
shortwave surface albedo feedbacks are larger in magnitude
when clouds are optically thin than when clouds are optically
thick [e.g., 12]. Beyond radiative feedbacks, clouds produce
precipitation, which strongly influences the Arctic climate
state (e.g., insulating and albedo impacts of snow on sea ice
[13•]). No doubt, the influence of clouds on Arctic climate is
multi-faceted.

Unfortunately, today’s climate models do not agree on the
answer to a basic Arctic cloud and climate question: What is
the net cloud feedback in the Arctic in response to anthropo-
genic forcing? To illustrate this point, we describe two studies
that use simulations from the last Coupled Model
Intercomparison Project (CMIP5 [14]) to assess Arctic climate
feedbacks in a multi-model framework. The first study,
Zelinka et al. [15], reports a negative Arctic cloud feedback
in CMIP5 over the Arctic Ocean (their Fig. 9) due to increased
cloud optical depth, not increased cloud amount (their Fig. 8).
Using different methods, a second study, Pithan et al. [16•],
found that the CMIP5 mean Arctic cloud feedback is slightly
positive but that the individual models do not agree on the sign
of the Arctic cloud feedback (their Fig. 3). The disparate re-
sults from these two studies underline the difficulty to even
diagnose cloud influence on Arctic climate in climate models
and, in turn, the need for better constraints on Arctic clouds.

Interestingly, the sign of the Arctic cloud feedback is not a
first-order control on the seasonal and vertical pattern of
Arctic amplification. Indeed, multiple lines of evidence sug-
gest the basic pattern of Arctic amplification is relatively in-
sensitive to Arctic cloud feedbacks. For example, early cli-
mate models did not allow for cloud feedbacks because they
prescribed clouds using observations, e.g., as zonal monthly
means in Manabe and Stoeffer [5]. In contrast, today’s climate
models include cloud feedbacks because cloud formation and
evolution are predicted based on dynamic interaction with the
fully coupled climate system. Yet, despite this difference in
cloud feedback inclusion, the seasonal and regional warming
pattern response to increased greenhouse gases in climate
models today (e.g., as summarized in [18]) matches models
used in the early days of coupled climate modeling (e.g.,
Manabe and Stoeffer [5]). Also of importance, the long-
modeled pattern of amplified lower-tropospheric warming es-
pecially in fall and winter is in agreement with recent obser-
vations [19, 20]. Consistent with the notion that clouds do not
explain Arctic amplification patterns, Pithan et al. [16•] found
that lapse rate feedbacks and surface albedo feedbacks explain
the basic pattern of Arctic amplification in CMIP5. Also rel-
evant, Kay et al. [12] and Pithan et al. [16•] both found that
local feedbacks, not advective feedbacks, explain Arctic sur-
face warming in response to increased greenhouse gases.

Even though the basic pattern of Arctic greenhouse
warming appears relatively insensitive to clouds, it remains
important to understand cloud processes and to constrain
cloud influence on Arctic warming magnitude. This review
highlights recent advances in Arctic cloud-climate research
and is organized as follows: We start by describing how and
why new observations are revolutionizing our understanding
of Arctic cloud-climate processes. We then discuss that the
best path forward for improved understanding of Arctic
clouds and their role in the climate system is a two-way street
between models and observations. We conclude by looking
forward towards new opportunities in Arctic cloud and cli-
mate science.

Observational Advances for Arctic Clouds over the Last
Decade

Awell-regarded geologist professed that scientific discoveries
occur when one can Bassociate oneself with new observations
of what appear to be prominent yet unexplored or poorly un-
derstood features of Earth^ [21]. We agree with this assess-
ment, and build on it here. We propose a simple equation to
predict scientific discovery: dramatic change + new observa-
tions = new discoveries. The record-setting Arctic sea ice loss
and Greenland melting certainly provide dramatic change,
especially over the last decade with many new records being
set—but what are the new observations that have fueled dis-
covery? We argue new satellite observations from the A-train,
and in particular, the spaceborne radar CloudSat [22] and lidar
platform Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) [23] have completely trans-
formed Arctic cloud-climate studies. The A-train satellite con-
stellation [24] enables investigation with multiple coincident
measurements and therefore lends itself to process under-
standing. Collocation of A-train measurements with ancillary
data from reanalysis is beginning [25]. A-train observations
complement field campaigns and long single-point time series
at ground-based Bsupersites^ in the Arctic. The longest
supersite record is from Barrow, Alaska as a part of the
Atmospheric Radiation Measurement program [26, 27], but
supersites in Eureka [28] and Summit, Greenland [29] are also
important sources of new cloud and radiation observations.
These supersites, when combined with airborne and shipborne
observations from individual field campaigns, have provided
invaluable insights into Arctic cloud processes and have
helped test theory as summarized in [3]. A-train observations,
especially those from CloudSat and CALIPSO, provide
spatio-temporal context for the process understanding gained
from supersites and field campaigns. This spatio-temporal
context is especially important given the dearth of observa-
tions over the increasingly ice-free Arctic Ocean and the melt-
ing Greenland ice sheet. For many years, new discoveries
emerged from the analysis of ground-based, ship-based, and
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airborne observations but the past decade ushered in a new era
of satellite observations that we argue here have transformed
Arctic cloud-climate studies.

Many new observations are available sowhy are the nearly
10 years of active satellite observations from CloudSat and
CALIPSO especially transformative for Arctic cloud-climate
research? CloudSat and CALIPSO have three unique advan-
tages in polar regions. First, they are active sensors that ob-
serve cloud vertical structure. Polar clouds are geometrically
and optically thinner than their lower latitude cousins, en-
abling CloudSat and CALIPSO to pass through the atmo-
sphere with less attenuation and return usable signals close
to the surface. As a result, vertical hydrometeor structure is
observed by CloudSat and CALIPSO in polar regions and
with much deeper penetration through the atmosphere than
at lower latitudes. Second, polar cloud phase is not well
known, and the processes underlying phase transitions in cur-
rent and warming climate are hard to observe and predict from
first principles. Thus, CALIPSO cloud phase observations are
especially important in polar regions [30] and have been vet-
ted against in situ airborne measurements [31]. Third, polar
hydrometeors cover surfaces with highly variable albedos and
albedos that are changing in a warming world (e.g., as a con-
sequence of sea ice loss). CloudSat and CALIPSO are
Bsurface-blind^ when it comes to albedo and do not suffer
from the same passive instrument retrieval challenges over
bright and cold surfaces. Given these three unique observa-
tional advantages and the global climate importance of polar
regions in a warming climate—CloudSat and CALIPSO are
advancing our understanding of polar clouds and precipitation
processes and their impact on the global climate system. There
is no doubt that CloudSat and CALIPSO, in concert with other
satellite and ground-based observations, have advanced un-
derstanding and modeling of polar cloud and precipitation
processes in a warming world. Affiliated discoveries are
many, but we highlight three discoveries here.

Discovery no. 1: Importance of Liquid-Containing Clouds
for Arctic Climate

Discovery no. 1 is the first-order importance of supercooled
liquid clouds for surface radiative fluxes over the Arctic
Ocean [30] and over Greenland [32••]. To illustrate this dis-
covery, Fig. 1 shows the distribution of liquid-containing
clouds over the Arctic from nearly a decade of CALIPSO
observations. Liquid-containing clouds are present in all sea-
sons and in all locations. Using a year of ground-based obser-
vations, Shupe and Intrieri [33] were the first to report the
frequent occurrence of and importance of liquid clouds for
Arctic radiation budgets (their Fig. 4). Before CALIPSO ob-
servations, we had no way to know if the single-year single-
drifting-point results of Shupe and Intrieri [33] were represen-
tative of the entire Arctic. Similarly, Bennartz [34] first

emphasized the importance of liquid-containing clouds and
in particular, the sensitivity of the ice sheet melt to detailed
cloud properties for Greenland melting. Miller et al. [35]
quantified cloud radiative forcing at Summit, Greenland, and
the importance of liquid clouds. But, it was the CALIPSO
cloud phase observations that revealed the ubiquitous pres-
ence of this influential cloud type over the entire Arctic, in-
cluding the Arctic Ocean and Greenland.

Beyond revealing the ubiquitous presence of liquid-
containing clouds, when combined with A-train and other
complementary observations, radiative transfer calculations
have been used to directly assess the influence of liquid-
containing and all clouds on radiation budgets (e.g., as was
done for the Arctic Ocean [36] and for Greenland [32••]).
Figure 2 shows the annual cycle of the cloud radiative effect
(CRE) at the surface and the top-of-atmosphere (TOA) over
the Arctic Ocean [37]. CRE is calculated as the difference
between the all-sky and clear-sky fluxes. The CRE calcula-
tions show clouds cool the Arctic Ocean during summer but
warm the Arctic Ocean during winter. Due to the large
downwelling longwave radiation at the surface, longwave
cloud heating is larger at the surface than at the TOA. As a
result, there is a net cloud warming at the surface but a net
cloud cooling at the TOA. Differencing the TOA and the
surface CRE provides an estimate of cloud influence on the
atmosphere. Taking this difference shows that Arctic clouds
strongly cool the Arctic atmosphere by 22 Wm−2, in contrast
to the global mean where clouds warm the atmosphere by
2 Wm−2.

Discovery no. 2: Increased Absorbed Shortwave
Radiation Associated with Sea Ice Loss During Summer

Discovery no. 2 is the apparent lack of evidence for summer
cloud feedback in response to Arctic sea ice loss. Building on
the discovery of reduced cloud cover during the record-
breaking 2007 summer sea ice loss, Kay et al. [38] and Kay
and Gettelman [39] found no evidence for summer cloud feed-
back in response to Arctic sea ice loss from analysis of 3-year
A-train observations (2006–2008) (their Fig. 8; see also Kay
and L’Ecuyer [36]; Fig. 8). Kay and Gettelman [39] explain
this lack of a summer cloud response to summer sea ice loss
using near-surface static stability and air-sea temperature gra-
dients. Over the Arctic Ocean, temperature inversions and
weak air-sea temperature gradients limit atmosphere-ocean
coupling during summer ([39]; Fig. 5). The relatively high
static stability and weak air-sea gradients during summer limit
upward turbulent fluxes of moisture and heat. As a result, the
summer boundary layer overlying the Arctic Ocean is unaf-
fected by converting ice-covered ocean into ice-free ocean.

The lack of a summer cloud response to newly open water
is consistent with large increase in absorbed shortwave radia-
tion associated with sea ice loss [36, 41, 42] in TOA radiation
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measurements from Clouds and Earth’s Radiant Energy
System (CERES) satellite [17]. To illustrate this result,
Fig. 3 contains maps of solar radiation gains and sea ice loss
over the period 2000 to 2015. The largest sea ice loss regions
have the largest absorbed shortwave radiation increases. In a
warming Arctic during summer and peak incoming solar in-
solation, one bright surface (disappearing sea ice) is not being
replaced with another bright surface (clouds). The combina-
tion of TOA radiative flux observations from CERES with
surface-blind cloud observations from CloudSat and
CALIPSO is powerful for quantifying the absence of a sum-
mer shortwave cloud feedback in response to sea ice loss.

Discovery no. 3: Fall Clouds Respond to Arctic Sea Ice
Loss

Discovery no. 3 is the increased fall cloud cover and boundary
layer deepening in response to Arctic sea ice loss [39, 43–45].
In contrast to summer, Kay and Gettelman [39] found that
turbulent transfer of heat and moisture promotes low cloud
formation over newly open water during fall. Arctic boundary
layer also deepened over newly open water in fall. The rela-
tively low static stability and strong air-sea gradients during

fall permit upward turbulent fluxes of moisture and heat and
additional low cloud formation over newly open water. The
study period was short (3 years), and a climatological assess-
ment of observational constraints on cloud-sea ice feedbacks
is desperately needed. Nevertheless, this study underscores
the importance of understanding physical processes before
analyzing trends and averaging geographically and/or
seasonally.

Because of their seasonal timing, discovery nos. 2 and 3
suggest cloud changes resulting from sea ice loss play a minor
role in regulating ice-albedo feedbacks at its peak during sum-
mer but may contribute to a cloud-ice feedback in fall.
Schweiger et al. [46] note that any fall cloud feedback might
not be very influential because of the compensating shortwave
cooling and longwave warming impacts of clouds. In summa-
ry, summer and fall Arctic cloud changes resulting from sea
ice loss most likely have a relatively small influence on sur-
face energy budget and sea ice changes, but more analysis and
observations are needed to directly measure physical mecha-
nisms and quantify cloud-sea ice interactions in all seasons.
For example, increased cloud cover in winter only influences
longwave radiation and therefore should lead to positive
longwave cloud-sea ice feedbacks.

(a)  DJF Total (b)  MAM Total (c)  JJA Total (d)  SON Total 

CALIPSO Cloud Cover (%)

0 4010 3020 50 9060 8070

(e)  DJF Liquid (f)  MAM Liquid (g)  JJA Liquid (h)  SON Liquid

Fig. 1 CALIPSO-GOCCP cloud cover observations: a DJF total, b
MAM total, c JJA total, d SON total, e DJF liquid-containing, f MAM
liquid-containing, g JJA liquid-containing, and h SON liquid containing.

Observations are from June 2006 to December 2015 using CALIPSO-
GOCCP version 2.9. Figure updated from Cesana et al. [30], who plotted
data from June 2006 to December 2011
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Despite Advances—Observational Challenges Remain

Despite the discoveries enabled by recent new observations,
many observational challenges remain. One major challenge is
that Arctic cloud feedbacks resulting from Arctic cloud changes
alone are hard to isolate. There are large non-cloud influences
on CRE, the most common measure of cloud in- fluence on
climate (Fig. 2). Non-cloud influences on CRE include surface
albedo [47] and water vapor [48]. It is well known that surface
albedo has a dominant influence on wheth- er clouds warm or
cool the surface asmeasured using CRE.As a result, a change in
surface albedo can change the CRE sign even if there are no
changes in the cloud properties themselves. For example, when
Arctic Ocean becomes ice-free, the shortwave cooling effect of
clouds as measured by CRE increases due to the reduced sur-
face albedo. While methods exist to separate non-cloud influ-
ence on CRE in models (e.g., [49–51]), reliably using these
methods with Arctic observations remains challenging.

Another challenge is that while TOA radiative fluxes are
more easily observed and incorporated into feedback frame-
works, the TOA perspective does not tell the whole story.
Arctic sea ice and land ice respond to the surface energy bud-
get, which differs from the TOA radiative fluxes. Why? First,
unlike at the TOA, scattering between the clouds and the sur-
face influences the downwelling shortwave radiation at the
surface. In a warmer world with more open water and less
sea ice, there is less multiple scattering between the bright
clouds and the surface. As a result, there is less downwelling
shortwave radiation in a warmer world with less sea ice (e.g.,

DeWeaver et al. [52], Frikken andHazeleger [53]). Importantly,
because these downwelling shortwave radiation reductions are
driven by surface albedo reductions, they occur even if the
clouds remain identical (i.e., if there is no cloud response to
summer sea ice loss as suggested by discovery no. 2 above).
Second, unlike at the TOA, increased low cloud cover has a
large influence on downwelling surface longwave radiation.
Consequently, the increased fall boundary layer cloud cover
over open water associated with sea ice loss (discovery no. 3
above) may have a small impact on TOA longwave radiation
but may also lead to large increases in surface downwelling
longwave radiation.

Unfortunately, direct observations of surface radiation over
the Arctic Ocean remain few and far between. Therefore, the
best path forward to quantify the influence of clouds on surface
radiative fluxes is observationally constrained radiative transfer
calculations [e.g., 37, 54]. Though these calculations are
strongly guided by in situ and remote sensing observations,
many assumptions must be made to calculate fluxes.
Constraining radiative transfer calculations over the Arctic is
challenging with the limited cloud and atmospheric tempera-
ture and humidity profiles that are available. One particular
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Fig. 3 Arctic maps of observed summer (JJA) 2000–2015 trends: a top-
of-atmosphere absorbed shortwave radiation from CERES-EBAF [17]
and b sea ice fraction from SSF1deg edition 3 dataset
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challenge is measuring cloud liquid water path, which is known
to have a large influence on surface radiative fluxes [34, 36,
55]. At present, no spaceborne satellite is able to directly mea-
sure liquid water path in polar regions. CALIPSO provides
useful observations related to liquid water path including the
occurrence frequency of opaque clouds and cloud phase.
CloudSat measures radar reflectivity, but estimating liquid wa-
ter path based on radar reflectivity requires estimating two un-
knowns (drop size, drop number) with one measurement (radar
reflectivity). Passive microwave is the best available constraint
on total column cloud liquidwater path, but satellite microwave
retrievals do not work over ice-covered surfaces [56].

Going Forward on a Two-Way Street: Models
Informing Observations

We believe that the best path forward is a two-way street
between models and observations. To some, it may be coun-
terintuitive to start our two-way street discussion with models,
but even flawed models teach us a lot about observational
priorities. What have we learned from climate models that is
useful for observing?

First, models show us that clouds are a first-order control
on the evolution of the fully coupled climate system. While
one might argue that you can learn this lesson from observa-
tions alone, we argue that you need a model to understand the
sensitivity of the fully coupled climate system to clouds. Here,
we provide examples from a global fully coupled climate
model—the Community Earth System Model (CESM)
[57]—to show that clouds do exert important controls on sim-
ulated Arctic climate.

The first example is basic. In the most recent version of
CESM (CESM1-CAM5), Kay et al. [58] found that Greenland
was too cold because of insufficient liquid containing clouds
(their Fig. 7). No doubt that it is difficult to use a climate model
to project Greenland melting if it is too cold in its present state.

The second example relates to Arctic sea ice and model
tuning. The Arctic sea ice edge is maintained by two
primary factors: absorbed solar radiation and the conver-
gence of heat transported by ocean currents [59]. Clouds

are a first-order control on absorbed shortwave radiation
and thus have the potential to impact the sea ice edge and
thickness. We illustrate the influence of clouds, particular-
ly liquid clouds, on Arctic sea ice simulations by compar-
ing two CESM versions that differ only in their atmo-
spheric model components: the Community Climate
System Model version 4 (CCSM4) and CESM1-CAM5.
While the cloud fraction in CESM1-CAM5 is double that
in CCSM4, the clouds in CCSM4 have a lot more cloud
liquid water content than the clouds in CESM1-CAM5
(Table 1; Fig. 4). Underscoring the importance of looking
at more than just cloud fraction, the model with higher
cloud fraction (CESM1-CAM5) has more downwelling
shortwave and less downwelling longwave than the model
with more liquid in the clouds (CCSM4). The adjustment
of surface albedos within observational uncertainty to
compensate for solar radiation differences is often neces-
sary to achieve a credible Arctic sea ice mean thickness.
As discussed by DeWeaver et al. [52] and is evident by
comparing the cloud fraction differences in Table 1, albe-
do adjustment is not as simple as regressing cloud fraction
and absorbed shortwave radiation. Figure 4 shows that the
downwelling shortwave differences between the two
models are compensated by surface albedo differences.
As a result, the net shortwave radiation in the two models
is within 1 Wm−2 and the sea ice fraction is within 0.01
(Table 1). Because CALIPSO observes liquid-containing
cloud (Fig. 1), CALIPSO provides a powerful observa-
tional constraint on Arctic clouds in climate models. For
example, CESM1-CAM5 has too few Arctic liquid clouds
([58], their Fig. 4) suggesting that the high surface albedo
values used in CESM-CAM5 may be compensating for
insufficient liquid cloud and insufficient cloud opacity.

Second, large unpredictable variability in climate sim-
ulated by fully coupled climate models teaches us to be
humble about interpreting short observational records.
Physically based models are flawed, but they also provide
invaluable framework (a Bgrille de lecture^) to refine ob-
servational interpretations, to test hypotheses, and to
quantify the influence of clouds within the fully coupled
climate system. Correlations and trends happen but that

Table 1 Spring (MAM) Arctic
(70–90° N) average values for
2006–2025 in two fully coupled
climate models (model no. 1 =
CCSM4, model no. 2 = CESM1-
CAM5)

Model no. 1 Model no. 2 Difference

Low cloud cover (%) 38 % 73 % −35 %
Total grid-box liquid water path (gm−2) 87 7 80

Downwelling shortwave at the surface (Wm−2) 148 163 −15
Surface albedo (ratio) 0.58 0.74 −0.16
Net shortwave at the surface (Wm−2) 38 39 −1
Downwelling longwave at the surface (Wm−2) 205 196 8

Sea ice fraction (fraction) 0.62 0.62 −0.01
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does not mean they are causal, as discussed in Caldwell
et al. [60]. Climate models simulate large internal vari-
ability on sub-decadal timescales (e.g., [61•, 62]), and

the existence of large internal variability elevates the need
for physical mechanisms when identifying correlations
and trends as causal.
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Going Forward on a Two-Way Street: Observations
Informing Models

What have we learned from observations that is useful for
modeling? Observations are critical for informing models,
but it is not always easy to go from observational advances
to model improvements. We offer some insights here for how
observations can best inform model development and
improvement.

We start with a simple important rule that is obvious,
yet frequently ignored. Observations best inform models
when observations and models can be consistently com-
pared. Yet, making robust comparisons between models
and observations is actually really hard to do. In fact,
with the exception of the most basic integrated quanti-
ties, directly comparing climate model output to observa-
tions can be highly misleading. Why? Geophysical pa-
rameters in climate models and observations are not the
same due to a number of fundamental differences be-
tween the modeled and retrieved quantities, including
finite observational detection thresholds, differences in
sampling, scale, and even the physical representation of
the relevant processes.

For clouds, recent work has shown the immense value
of simulators to make scale-aware and definition-aware
comparisons between observations and models (e.g., [40,
58, 63–66]). Figure 5 shows an example of the value of
the CALIPSO simulator [63] when evaluating Arctic
clouds in the Community Atmosphere Model version 5
(CAM5) [67]. If one were to naively compare the model
cloud fraction (labeled BCAM5^) to CALIPSO observa-
tions (labeled BCALIPSO^), one would conclude that the
model is very biased with twice as much winter cloud as
the CALIPSO observations. If instead one makes fair and
consistent Bapple-to-apple^ comparisons between the
CALIPSO-simulated model cloud fraction (labeled
BCAM5_CALIPSO^) and the CALIPSO observations,
the conclusion is shockingly different—the model bias

during winter is much smaller and the model seasonal
cycle also better matches the observations. It is not sur-
prising that the CAM5-produced cloud cover is more
than the CALIPSO-simulated cloud cover. In the Arctic,
CAM5 has optically thin clouds that the CALIPSO-
GCM-Oriented CALIPSO Cloud Product (CALIPSO-
GOCCP) [68] does not include. Making a fair compari-
son means using the same definition of clouds. In this
example, CAM5_CALIPSO and CALIPSO can be com-
pared because they both define cloud as an object detect-
ed by a spaceborne lidar that has a scattering ratio great-
er than 5.

The Bparameterization way of thinking^ is the only
way to improve models using observations. Changing
the equations that are being used to represent physical
processes is the only way to improve the model physics
using observations. Sometimes, the reasons that climate
models produce incorrect clouds are pathological. For
example, parameterizations designed for lower latitudes
are used globally without being tested at high latitudes.
In this case, extending the physical process representa-
tion to make the assumptions appropriate for all regions
can be a simple fix (e.g., [69]). Often, identifying ways
to improve models using observations is really hard. To
make progress, it is often advantageous to work with
instantaneous correlations not the temporal mean (e.g.,
as has been done in [70, 71]). Indeed, co-locating instan-
taneous data is a powerful tool for understanding param-
eterization flaws at a process level that should be more
frequently exploited to connect observations with model
development and improvement.

Conclusions

Advances in our understanding of Arctic clouds and cli-
mate have been fueled by the effective combination of
observing and modeling tools. For the Arctic cloud and
climate research, the nearly 10 years of satellite radar and
lidar observations provided by CloudSat and CALIPSO
has been especially transformative. The future is bright
with many planned observations from more satellites with
active remote sensing instruments (e.g., EarthCARE [72])
from new platforms such as unmanned UAVs [73] and
from in situ field experiments (e.g., Multidisciplinary
Drifting Observatory for the Study of Arctic Climate
(MOSAIC) drifting ship field campaign 2018–2019).
Continued work on the two-way street of making
process-level connections between models and observa-
tions is essential, and thankfully, this work is blossoming
into new research discoveries and advances in our under-
standing of Arctic clouds and climate.
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