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Abstract Since the early twenty-first century, improve-
ments in understanding climate variability resulted from the
growth of the ocean observing system. The potential for
a closure of the Earth’s energy budget has emerged with
the unprecedented coverage of Argo profiling floats, which
now provide a decade (2006-2015) of invaluable informa-
tion on ocean heat content changes above 2000 m. The
expertise gained from Argo and repeat hydrography sections
motivated the extension of the array toward the ocean bot-
tom, which will progressively reveal the poorly known deep
ocean and reduce the uncertainty of its presumed 10-15 %
contribution to the 2006-2015 global ocean warming trend
of 0.65-0.80 W m~2. The sustainability and synergy of
various observing systems helped to corroborate numerical
models and decipher the internal variability of distinct ocean
basins. Due to unique observations of the circulation in the
North Atlantic, particular attention is paid to heat content
changes and their relationship to dynamic variability in that
region.
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Introduction

Observational data show an unequivocal warming of the
Earth’s climate system since the mid-twentieth century [57].
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Every past decade has been warmer than its predecessor,
and the year 2015 now stands as the warmest ever recorded
[67]. This positive temperature trend at the Earth’s surface is
driven by a radiative imbalance at the top of the atmosphere
(e.g. [2]), which is widely attributed to human activities
and the increased concentration of greenhouse gases in the
troposphere (e.g. [70]). The global surface signal is, how-
ever, being constantly modulated by natural fluctuations
of the climate system acting over a wide range of spatial
and temporal scales (e.g. volcanic eruptions, solar cycles,
oceanic circulation). For instance, those natural changes
can significantly reduce the increase in global mean sur-
face temperature over periods of decades (e.g. [45]), and
mislead the wider community regarding the fate of global
warming [68].

The observational record, however, is becoming com-
plete enough to ascertain the on going rise of the Earth’s
energy content. Amongst the heat reservoirs, the global
ocean plays a critical role in capturing heat from the atmo-
sphere and slowly redistributing it around the globe. More
than 90 % of the anthropogenic heat entered the ocean dur-
ing 20062015 at a rate of 0.65-0.80 W m~2[57,72]. For a
few decades, global and regional ocean variability have been
increasingly revealed by the synergy of several observing
systems maintained and coordinated by strong international
collaborations. The repeat of full-depth hydrography sec-
tions [66], the remote detection of sea-level changes [10],
the systematic sampling of the upper ocean by profil-
ing floats [59] and the maintenance of trans-basin moored
arrays [43] became the heart of our current understanding of
the ocean’s role in climate change. They have, for instance,
validated numerical models that provided complete expla-
nations of the recent surface warming slowdown at global
scale (e.g. [19, 74]), and also explained regional patterns
of heat content changes (e.g. [7]). Important observational
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gaps, however, remain, with the Achilles’ heel of climate
studies residing in the under-sampled deep ocean and its
uncertain contribution of 10-15 % to recent changes in
the global heat and sea-level balances [51]. The systematic
observation of the deep and abyssal layers at sufficient res-
olution is needed to average out vertical rearrangements of
the heat field and hence capture the anthropogenic warming
more effectively. The emergence of a Deep Argo array [30]
represents a significant step forward in that direction.
Abraham et al. [1] provided a comprehensive review
of the observing systems used to assess temperature and
oceanic heat content (OHC) changes in the ocean, and
detailed the major OHC indices and their uncertainties from
five decades of in situ measurements (1960-2011). Here, we
(1) review recent findings on the twenty-first century OHC
variability revealed by the growing observational record,
(2) report innovative approaches for elucidating regional
mechanisms of OHC variability from in situ measurements
(North Atlantic focus) and (3) inform on the upcoming
opportunities for closing the global energy budget.

The Unabated Heating of the Upper Ocean
The Global Picture Drawn by the Argo Array

The first deployments for the Argo array of autonomous
profiling floats were made in 2000. The array reached its
target fleet size in 2007 with 3000 floats sampling the top
2 km of the water column on a nominal 10-day cycle [59].
Today, in 2016, the Argo database provides more than a
million profiles of temperature (and salinity) with nominal
accuracy of 0.002 °C for temperature and 2.4 dbar for pres-
sure [1]. More than 80 % of the profiles in the current (to
2016) Argo database were obtained after 20006, and the ear-
lier description of the 0-2000 m OHC was consequently
found to depend strongly on the choice of climatological
references in data-sparse regions [9, 20, 39]. Undersam-
pled areas, particularly located in the southern Hemisphere,
may have significantly biased low the estimates of global
OHC trends between 1970 and 2004 [16]. The uncertain
nature of the multi-decadal record was further highlighted
by the difficulty of correcting significant biases in expend-
able bathythermograph measurements, which represented
the main source of upper-ocean temperature profiles before
the launch of Argo [23, 40]. Overall, the OHC curves prior
to the mid 2000s have large error-bars, and the year-to-year
variations typically show limited agreement with the net
TOA fluxes estimated from satellite products [38, 64]. It is
therefore for about a decade (since the Argo fleet neared
completion) that the observing system has been adequate for
the global analysis of upper OHC changes, although a per-
sistent spread between the various 0-2000 m OHC estimates
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still hampers a robust closure of the current Earth energy
budget [71].

Through comparison of three Argo analyses, the global
OHC trend above 2000 m during the period 20062015 was
estimated as 0.50-0.65 W m~2 over the effectively sampled
ocean (Fig. |—from [72]). As expected, the global warming
rate shows its strongest magnitude in the first few hundred
meters of the water column and the interannual variability
above 500 m shows pronounced changes that control the
global temperature variations at the air-sea interface [60].
Those upper OHC changes reflects in large part the El-
Nifio/Southern Oscillation (ENSO) and its influence on the
horizontal tilt of the equatorial thermocline in the Pacific. In
addition to this interannual signal, the shift from a positive
to a negative phase of the Pacific Decadal Oscillation in the
early 2000s significantly cooled the Eastern Pacific, which
reduced the positive trend in global mean surface tempera-
ture while increasing subsurface heat uptake (e.g. [17, 28,
45]). It is now widely accepted that the global mean surface
temperature is a poor indicator of the global heat gain (e.g.
[50]).

The most recent OHC trend (2006-2015) was marked
by a clear hemispheric asymmetry, with the southern hemi-
sphere heating much faster than northern latitudes [60]. A
full understanding for such a striking warming of the South-
ern Hemisphere extra-tropics across the three oceans is,
however, still missing. The inhomogeneous radiative forc-
ing by ozone and aerosols may have played a role [61],
so did internal ocean variability. In fact, the horizontal
distribution of the OHC trend in the upper layer empha-
sizes substantial redistribution of heat driven by the intrinsic
dynamics of each ocean basin. Amongst them, a strong
OHC rise in the Indian Ocean stood out, with a temperature
trend between 2006 and 2015 accounting for 50-70 % of
the global OHC trend above 700 m [49]. Such a rise in the
Indian Ocean’s OHC presumably originated in the western
Pacific following a dynamical response to a shift toward a
negative phase of the Interdecadal Pacific Oscillation, and a
subsequent intensification of the heat transport through the
Indonesian Archipelago [35].

Moving down through the water column, the contribu-
tion of the intermediate layer (700-2000 m) to the global
OHC change above 2000 m was about 50 % of the full
water column during 2006-2015 (Fig. 2), that is 20 % higher
than the long-term (1955-2010) estimation of [36]. This
recent and ongoing increase in the sequestration of heat
below the upper layer has been supported by model-based
analysis [22] and linked to a combination of multiple under-
lying mechanisms driven by the local modes of atmospheric
variability [69]. In particular, the significant warming of
the North Atlantic and Southern Ocean in the depth range
of Labrador Sea Water and Antarctic Intermediate Water
[8] reinforced the idea of a strong link between convective
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processes, meridional overturning cells (MOC) and interme-
diate/deep heat storage (e.g. [15, 31, 45, 56, 58, 73]). This
link has received increased attention from the observational
community in recent years, through the development of
sustained observing systems and innovative methodologies.

Observational Insights into the Regional Dynamics: an
Atlantic ‘Lead’

Direct and sustained observations of the ocean circulation
are difficult tasks, and there exist very few observational

records capable of linking ocean dynamics and decadal vari-
ability of the climate system. Ocean reanalysis (ORA) that
assimilate in situ and satellite data in a dynamical and statis-
tical way can be used to provide such a link with satisfactory
degrees of consistency (e.g. [4]). Yet, the multitude of
assimilation-based analysis has to be interpreted in the light
of poor observational constrains below the upper layer and
large spreads between models due to the different dynamic
schemes employed [52]. These sources of uncertainties and
model biases are being tackled within the ocean reanaly-
sis inter-comparison project [5], but their understanding will
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also rely on valuable observations that infer the dynamics of
OHC changes.

Due to its major role in the meridional and vertical rear-
rangement of heat, the Atlantic became in the last decade a
targeted field for innovative observational experiments. The
establishment in 2004 of the RAPID-MOCHA observing
system to measure the MOC at 26° N has led to unprece-
dented views on the internal dynamics of a critical ocean
basin in the climate system [65]. In addition to detecting
a MOC weakening over a decade of magnitude exceeding
the strength predicted by climate models [63], the RAPID
time-series proved the close relationship between short-term
changes in oceanic heat transport (30 % AMOC reduction in
2009/10) and rapid OHC events in the North Atlantic sector
(~1.3 x 10 J lost between 25° N and 45° N) [7]. Promis-
ing use of altimetry data for retracing past MOC changes at
26° N have been proposed [18], while alternative method-
ologies based on coastal sea-level changes along the US east
coast demonstrated the hypothesized multi-decadal corre-
lation between circulation changes and upper OHC in the
mid-latitude North Atlantic [44]. The dominant role of heat
transport convergence in driving long-term OHC changes in
the North Atlantic was also deduced through comprehen-
sive analyses of ORA models [26, 73]. These multi-decadal
OHC changes exert a strong influence on surface tempera-
ture patterns such as the Atlantic Multi-decadal Oscillation
[11], which subsequently drive turbulent heat fluxes at the
air-sea interface and associated atmospheric responses [24].
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At higher latitudes, an exceptionally long hydrogra-
phy time series (1975-present) of full-depth temperature
and salinity in the northeastern Atlantic also showed sig-
nificant interannual and decadal OHC fluctuations likely
to be driven by circulation changes [27]. The observed
upper cooling of the eastern subpolar gyre during the most
recent years (2006-2014) derived from repeat hydrography
appeared in line with Argo-derived trends [13], and sug-
gested an on going eastward expansion of cold subpolar
waters and a southward retreat of warm subtropical waters
(e.g. [12, 25]). A similar hydrography time series in the
western subpolar gyre has recently revealed the return of
intense deep convection in the winter of 2013/14, generat-
ing a new vintage of Labrador Sea Water (LSW) currently
spreading within the subpolar gyre [33] and affecting the
heat content of the intermediate and deep layers (e.g. [42]).
The intensity of deep convection in the Greenland and Ice-
landic seas conversely shows a multi-decadal decline, with
potential implication for the properties of the densest water
masses filling the Atlantic bottom layer [48].

During the summer of 2014, the North Atlantic’s observ-
ing system made another step change with the deployment
of a mooring array in the Labrador Sea, Irminger Sea and
Iceland basin (‘Overturning in the Subpolar North Atlantic
Program’—OSNAP—http://www.o-snap.org). The OSNAP
array will reveal the mechanisms governing changes in
the subpolar overturning circulation, and complement exist-
ing local indices based on Argo, altimetry and repeat
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hydrography (e.g. [47]). The combination of findings from
RAPID and OSNAP, along with the continuing efforts to
continuously monitor the meridional circulation at south-
ern latitudes [3, 6, 46], will soon provide new insights into
ocean dynamics connectivity and the associated evolution
of the Atlantic OHC.

Tackling Uncertainties: a Deep Ocean Perspective

Our understanding of OHC changes in the deep and abyssal
ocean comes from the synoptic shipboard occupations of
repeat hydrographic sections [66]. While these sections
represent the most accurate component of the observing
system (accuracy of 0.002 °C), they have limited temporal
resolution and spatial coverage. Following the first map-
ping of water masses over the globe by the World Ocean
Climate Experiment (WOCE) [21], the follow-up surveys
coordinated by the “Climate Variability (CLIVAR)” and
the “Global Ocean Ship-based Hydrographic Investigations
(GO-SHIP)” programs have yielded quantifications of the
global and regional deep and abyssal changes in OHC.
Purkey and Johnson [54] estimated a 0.07 + 0.06 W m2
heat flux across the 2000 m isobar during 1993-2006
from hydrography sections occupied in 1990s and 2000s.
The abyssal warming below the 4000 m isobar was esti-
mated as 0.027 & 0.009 W m~2, with the strongest trends
observed in the Southern Ocean and in deep western bound-
ary currents along the northward routes of Antarctic Bottom
Water (AABW) [34, 62]. Both slow advective processes
and comparatively fast wave-like dynamics can lead to deep
and abyssal OHC trends (e.g. [41]). Multiple factors have
accordingly been proposed to explain the decadal warm-
ing of AABW, including freshening of the Ross Sea Shelf
Water and the associated downward heave of isopycnal sur-
faces, as well as wind-driven variability of the Weddell
gyre [32, 53, 55]. Updating the hydrography dataset with
section repeats up to 2015 has enabled a calculation and
comparison of deep and abyssal warming rates during the
1990s and 2000s decades. The comparison of these decadal
changes revealed no statistically significant difference in
the magnitude and structure of the global decadal warm-
ing rate at deep and abyssal levels [14]. However, there are
differences in the regional trends, specifically trend rever-
sals in the deep Atlantic and deep Pacific consistent with
the simulated redistribution of heat during hiatus periods
[45]. Estimations of deep temperature trends from repeat
hydrography during 2003-2012 have been further combined
with the Argo-based analysis of the 0-2000 m layer to
yield a blended estimate of the full-depth ocean heat uptake
(0.71 £ 0.12 W m~2, 10 % found below 2000 m) and a new
representation of its vertical structure from the last decade
of sustained observations (Fig. 2).

The reported uncertainties of hydrography-derived tem-
perature trends below 2000 m remain large. There are
still significant gaps in the sampling coverage that intro-
duce an unknown bias in the above estimates (see for
instance the mismatch between the Argo-derived trend and
the hydrography-derived trend at 2000 m in Fig. 2), and
alternative methodologies based on sea-level and Argo mea-
surements raised further concerns about the significance of
the reported trend in deep ocean and its contribution to the
global planetary energy budget [37]. An emerging technol-
ogy that will bring us closer to the closure of the global heat
budget is Deep-Argo: a new observing system of profiling
floats that will operate deeper than 2000 m [29]. The array
design has been informed by analysis of core-Argo and
repeat hydrographic sections [30]. Specifically, estimations
of temporal and spatial decorrelation scales using full-depth
CTD profiles and Argo-derived time series showed that
an array deployed at 5 latitude x 5 longitude x 15-day
cycle (about 1200 floats) would provide decadal trends of
local temperature and global OHC below 2000 m with
unprecedented accuracy (1 to 26 m °C decade™! and 3 TW,
respectively). The program is at an early stage, priority is
now to monitor the mechanical behaviour of deployed floats
and to assess sensor behaviours and drift to validate the first
temperature and salinity profiles.

Conclusion

The precise quantification and understanding of global and
regional climate change is strongly dependent on how well
the oceans are observed. The systematic sampling of the
upper water column by Argo profiling floats marked a tran-
sition for the historical oceanographic record, until then
hampered by under-sampled areas and instrumental biases
that made any quantification of global OHC changes chal-
lenging. The Argo array has now captured a decade of
temperature changes, including the warming trend driven
by anthropogenic forcing. This upward ocean temperature
trend is being constantly deformed by internal and exter-
nal fluctuations of the climate system acting over a wide
range of spatial and temporal scales. The most recent vari-
ability in global and regional OHC within the upper water
column has been particularly assessed in the context of
a significant slow-down of surface temperature rise, and
focuses were consequently made on vertical rearrangements
of the oceanic heat field. These global rearrangements,
which appear to be dominated by variability in the top 500 m
of the Pacific related to El-Nino type regime shifts, have
been primarily understood from the analysis of numerical
model output. However, innovative observational experi-
ments have effectively elucidated some essential mech-
anisms of regional OHC variability. Amongst the major
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ocean basins, the extensive observation of the North Atlantic
by a sustained moored array in the subtropics and hydrog-
raphy records of unprecedented length at higher latitudes
was used to decipher some links between ocean dynam-
ics (MOC and horizontal gyres) and interannual to decadal
OHC signals.

The repeat of hydrographic sections has demonstrated
the likelihood of a concomitant warming of the water col-
umn below 2000 m, representing about 10—15 % of the
whole oceanic heat uptake, and showing no sign of sig-
nificant intensification during the hiatus era. The uncertain
nature of this deep warming trend has highlighted the
need for a sustained and systematic deep observing sys-
tem that will complement the crucial repeat of shipboard
measurements. The community response is the nascent
Deep-Argo array, which promises to yield, in about a cou-
ple of decades, unprecedented insights into the dynamics
of the abyssal circulation while providing measurements of
the “missing heat” for closing the Earth energy and sea
level budgets.
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