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Abstract Emergent constraints are physically explainable
empirical relationships between characteristics of the current
climate and long-term climate prediction that emerge in col-
lections of climate model simulations. With the prospect of
constraining long-term climate prediction, scientists have
recently uncovered several emergent constraints related to
long-term cloud feedbacks. We review these proposed emer-
gent constraints, many of which involve the behavior of
low-level clouds, and discuss criteria to assess their credi-
bility. With further research, some of the cases we review
may eventually become confirmed emergent constraints,
provided they are accompanied by credible physical expla-
nations. Because confirmed emergent constraints identify a
source of model error that projects onto climate predictions,
they deserve extra attention from those developing climate
models and climate observations. While a systematic bias
cannot be ruled out, it is noteworthy that the promising
emergent constraints suggest larger cloud feedback and
hence climate sensitivity.
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What Is an Emergent Constraint?

When combined with the power of human mind to assess the
physical plausibility of their predictions, comprehensive cli-
mate models are the most powerful tools available to predict
future climate and its response to radiative forcings such as the
anthropogenic increase in greenhouse gases. Unfortunately,
model predictions for key metrics of climate change do not
converge to a single value. The most prominent example is the
climate sensitivity, defined as the equilibrium warming
resulting from a doubling of carbon dioxide. It varies by at
least a factor of 2 in the most recent collection of models used
for climate change assessment [37], much as it has in all past
model collections.

Especially when models diverge, scientists use their insight
to assess the relative credibility of model predictions. Often,
they appeal to the principle that models unable to predict past
climate variations skillfully should not be trusted for future
climate predictions. However, with past climate variations such
as the global warming of the past century or glacial-interglacial
transitions of the Pleistocene, there are uncertainties in the ob-
served forcing as well as the response. In addition, past climate
forcings differ in important ways from that resulting from
changes in carbon dioxide alone. Thus, past climate variations
are an incomplete lens through which to judge the credibility of
a climate model’s future predictions. And while they may help
constrain other model responses, they do not offer the ability to
appreciably narrow the range of climate sensitivity estimates
beyond that of the models [18, 23, 24, 32].

The climate of the past few decades is observed well enough
to characterize the mean state, variability, and trends of key
climate variables such as temperature. Although less direct than
verifying the models against past climate response to external
forcing, a more basic principle is the idea that models failing to
reproduce these statistics should not be trusted for future climate
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prediction. Past attempts following this line of reasoning typi-
cally suggest climate sensitivities between 3 and 4 K [17, 22, 26,
34]. But which aspect of the current climate is important for its
climate prediction? It seems intuitive that realistic simulation of
the current climate for variable x (temperature, clouds, or some-
thing else) would lead to a more believable prediction of the
change in x. But there is no evidence that this has to be true, and
the processes shaping future response in x may be quite distinct
from those shaping x in the current climate. For example, the
water vapor, lapse rate, surface albedo, and cloud feedbacks
determining climate sensitivity are not the most important pro-
cesses determining the current climate’s geographical and sea-
sonal temperature distribution, a common observational target
for climate model development. This raises the question as to
whether there is any better way to decide which quantities of the
current climate are relevant for climate change.

The so-called emergent constraints answer this question by
examining the collective behavior that emerges unexpectedly
in climate model ensembles such as those assembled for the
third and fifth phases of the Coupled Model Intercomparison
Project (CMIP) [25, 39]. Specifically, an emergent constraint
is a physically explainable empirical relationship between
intermodel variations in a quantity describing some aspect of
recent observed climate (termed the current climate predictor
and hereafter referred to as the predictor) and the intermodel
variations in a future climate prediction of some quantity (the
future climate predictand and hereafter referred to as the
predictand). Once combined with an observational estimate
of the predictor, the predictand may be constrained provided
(a) the observational uncertainty does not encompass the en-
tire intermodel spread and (b) the predictand is a single-valued
function of the predictor. A constraint may be possible in the
case where the observed value falls outside the range of model
results, if there is sufficient confidence that the relationship
between predictor and predictand holds outside the model
range. This case may be of particular interest, as it indicates
a systematic bias in the model ensemble.

Because the empirical relationship between predictor and
predictand may be fortuitous, it should not be termed an
emergent constraint unless accompanied by a plausible phys-
ical explanation. Other criteria, to be proposed below, are also
important in ensuring that the physical explanation is robust.
Accordingly, we divide proposals for emergent constraints
into three categories: (1) “potential emergent constraints,”
which are simply statistical diagnoses of relationships be-
tween predictor and predictand; (2) “promising emergent
constraints,” for which there is also a suggested specific
physical basis for the predictor—predictand relationship; and
(3) “confirmed emergent constraints,” for which there is ev-
idence that the physical underpinnings of the predictor—
predictand relationship are credible.

The earliest emergent constraint may be that for the snow-
albedo feedback [13, 29]. A strong linear relationship exists

between (a) intermodel spread in the seasonal cycle change in
surface albedo over Northern Hemisphere land per degree
surface warming and (b) the change in surface albedo over
Northern Hemisphere land per degree surface warming in
simulations of climate warming resulting from increases in
greenhouse gases (Fig. 1). Both these quantities are surrogates
for snow-albedo feedback strength in their respective climate
contexts. Considering an observational estimate of the season-
al cycle change, a temperature sensitivity of surface albedo in
the middle range of model results would seem to be more
likely. The underlying physical assumption is that the modeled
processes of how land surface albedo changes with the large
warming during the seasonal cycle are manifest for the smaller
warming associated with climate change. Lines of evidence
have been developed to support the idea that simple land sur-
face physics are the source of model spread in this feedback.
For example, in the contexts of both seasonal cycle and cli-
mate changes, the response is controlled mainly by the simu-
lated surface albedo in snow-covered areas; models with larg-
er albedos when snow is present produce stronger surface
albedo responses in both contexts through simple thermody-
namics [28]. In addition, model differences derive from nearly
the same snow-covered locations in both seasonal cycle and
climate change cases, eliminating the possibility that area-
averaged response could be realistic through compensating
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Fig. 1 Scatterplot of the change in surface albedo Acyg per degree of
surface temperature A7, warming for Northern Hemisphere land
masses in the context of climate change versus that in the context of the
seasonal cycle from CMIP3 (blue circles) and CMIP5 models (red
circles). The dashed line is the best-fit regression line, and the correlation
coefficients for each model ensemble are indicated in the lower right
corner. The thin vertical line is the observed estimate for the seasonal
cycle, and the gray shading surrounding this line is the statistical uncer-
tainty of the observed estimate. (Redrawn from [13, 29])
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changes in different regions [29]. The available evidence sup-
ports the idea that a simple physical mechanism underpins the
correlation between predictor and predictand in this case. For
this reason, we label the snow-albedo feedback case a con-
firmed emergent constraint.

Given its overwhelming importance, climate sensitivity has
proven an attractive predictand for research on emergent con-
straints. Since cloud feedbacks are a leading contributor to
intermodel spread in climate sensitivity [37], emergent con-
straints for climate sensitivity necessarily include clouds either
directly or indirectly. However, cloud processes are signifi-
cantly more complex than that involved in snow-albedo feed-
back. For this reason, we begin by suggesting reliability
criteria that could be used to gauge the significance and cred-
ibility of any proposed emergent constraint for cloud feed-
backs. Then, we review recently proposed emergent con-
straints for cloud feedbacks; in doing so, we offer our subjec-
tive assessments of how well each constraint satisfies our
criteria. We also discuss the conditions favoring the discovery
of emergent constraints. The final section discusses the impli-
cations of emergent constraints for model development, ob-
servational science, and climate prediction.

Reliability Criteria for Emergent Constraints

With the appearance in the literature of many new potential
emergent constraints for cloud feedbacks (Table 1), we need a
rational way to judge whether an emergent constraint is prom-
ising or perhaps even can be confirmed or is just a fortuitous
correlation without any significance. We offer the following
reliability criteria as a way to apply scientific rigor to the
assessment of conclusions deduced from the collective behav-
ior of models sharing a common goal (i.e., climate simulation)
but different means (i.e., cloud parameterizations).

Strong Physical Basis

Foremost is the need for a physical explanation of the empir-
ical relationship between predictor and predictand. The phys-
ical understanding should explain in a specific manner why
the predictor relates to the predictand. It should account for
how differences in model structure contribute similarly to
spread in the predictor and predictand. The physical under-
standing should also explain why the relationship exists (or
does not hold) across the timescales spanning the current cli-
mate and future climate change (e.g., daily, seasonal, interan-
nual, or interdecadal). Having a clear physical explanation
will help identify whether a model matching the observed
value of the predictor does so for the right reason and not
through compensating errors.

The challenges here are twofold. The first is identifying a
physical mechanism. Ideally, this should point to specific
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physical parameters, parameterizations, or their interactions.
Furthermore, the physical understanding should permit quan-
titative explanation of intermodel variations in both predictor
and predictand. Ideally, it should also be possible to assess
which model parameterizations are more reliable through
comparison with observations. In the case of clouds, large-
eddy simulations (LES)—simulations by limited area models
that resolve the fine-scale circulations forming clouds—may
help with formulating a physical mechanism. However, one
must be mindful that LES cannot substitute for real-world
observations.

Having a hypothesized physical explanation leads to new
investigations that address the second challenge of demon-
strating that the physical mechanism is at work in the model
ensemble. This requires either in-depth diagnostics or model
experimentation or both. For diagnostics, the existing model
archives are often insufficient or incomplete. For clouds, ex-
amples of necessary diagnostics include parameterization-
specific quantities such as tendencies for individual processes
related to large-scale cloud microphysics and macrophysics,
shallow convection, deep convection, turbulence, and large-
scale dynamics [27].

Direct model experimentation is a more powerful way
to demonstrate whether the hypothesized physical basis of
an emergent constraint correctly describes the essential
physics underlying ensemble behavior. For example, if
the physical explanation involves the parameterization only
of a single process, current climate and climate change
simulations could be performed with alterations to that
parameterization. Even if a single process cannot be iso-
lated, some support for a physical mechanism could come
through testing the processes likely to be involved, such
as cloud physics, convection, turbulence, or radiation.
Testing can involve perturbing fixed parameters [21, 26]
or replacing whole parameterizations in a single model
[49, 55]. Coordinated multi-model experiments such as
those organized by the Cloud Feedback Model Intercom-
parison Project [3] disable or alter various model compo-
nents, such as the parameterizations of convection or
cloud radiative effects [10, 11]. Because they sample
greater model structural diversity, such experiments are
potentially more valuable than those involving perturba-
tions to a single model. Ultimately, all model experimen-
tation is convincing only when simultaneously connected
to a physical mechanism that explains how the model
changes contribute similarly to intermodel variations in
the predictor and predictand.

A plausible physical explanation is by far the most impor-
tant criterion for an emergent constraint. However, when a
physical explanation is only partially developed, the following
two subsidiary criteria can also be considered, in the sense that
if they are satisfied, they make it more likely that a compelling
physical explanation exists.
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Table 1

Recent promising and potential emergent constraints for cloud feedbacks

Reference Current climate predictor

Future climate predictand

Primary missing factor

Promising emergent constraints

Gordon and Klein [12] The sensitivity of extra-tropical low-level

cloud optical depth to temperature

Qu et al. [30] The sensitivity of subtropical marine low-level

cloud cover to sea surface temperature

Sherwood et al. [33] The strength of cloud-scale and large-scale

lower tropospheric mixing over oceans

Potential emergent constraints

Volodin [47] Difference in cloud amount between tropics
and southern middle latitudes
Volodin [47] Subtropical relative humidity in the middle

troposphere and the boundary layer
Trenberth and Fasullo [41] Net radiation error for the Southern Hemisphere

Klocke et al. [21] Shortwave cloud radiative effect in subsidence
regions with moderate lower tropospheric
stability

Middle tropospheric relative humidity in

subtropical subsidence zones

Fasullo and Trenberth [9]

Klein et al. [20]
distributions of cloud height and reflectivity

Su et al. [38]
distributions of zonal mean cloud fraction and
relative humidity

Zhao [55] Precipitation efficiency of moist convection

Tian [40] Precipitation and mid-tropospheric humidity
bias characteristic of the double intertropical
convergence zone

Tsushima et al. [46]

Extra-tropical low-level cloud
optical depth response to
greenhouse gas-induced
warming

The twenty-first century change in

subtropical marine low-level
cloud cover

Equilibrium climate sensitivity

Equilibrium climate sensitivity
Equilibrium climate sensitivity

Equilibrium climate sensitivity

Equilibrium climate sensitivity

Clarification as to which candidate
physical mechanisms are dominant

Demonstration of how the candidate
physical explanation accounts for
predictor variations

Demonstration that the predictor explains
variations in low-level clouds better
than equilibrium climate sensitivity

Credible physical explanation
Credible physical explanation

Credible physical explanation
Credible physical explanation and

Skill metric for the simulation of the climatological Net and shortwave global mean

Skill metrics for the simulation of the climatological

Liquid water path in tropical stratocumulus regime ~ Climate warming change of liquid

CMIP ensemble confirmation

Equilibrium climate sensitivity Credible physical explanation

Credible physical explanation
cloud feedback

Equilibrium climate sensitivity Credible physical explanation

Global mean cloud feedback

Equilibrium climate sensitivity

CMIP ensemble confirmation

Credible physical explanation

Credible physical explanation
water path in tropical
stratocumulus regime

The Primary missing factor column contains a subjective quality remark identifying what we see as the leading deficiency preventing classification as a

confirmed emergent constraint

Robustness to Choice of Model Ensemble

Except in the unlikely case that modeling groups had simul-
taneously learned of an emergent constraint and substantially
removed intermodel spread in the associated predictor, one
would expect a confirmed emergent constraint to be manifest
in the various collections of climate models (e.g., Coupled
Model Intercomparison Project phase 3 (CMIP3) and
CMIP5). Indeed, when the same correlations between predic-
tor and predictand appear in different ensembles, it indicates
that the physics underpinning the correlations is robust. Note
that in the case of snow-albedo feedback discussed above, a
nearly identical correlation between predictor and predictand
was found in CMIP3 and CMIPS (Fig. 1), providing further
evidence that this is a confirmed emergent constraint.

In the absence of a physical explanation, one must view
with suspicion an emergent constraint that appears in a
perturbed parameter ensemble of one climate model but not
in the structurally more diverse CMIP ensembles, as

happened for Klocke et al. [21]. Conversely, if a strong rela-
tionship between predictor and predictand can be identified in
the CMIP ensembles but not in a perturbed parameter ensem-
ble, it still may become a confirmed emergent constraint. This
is only true if it can be shown that the perturbed parameter
ensemble fails to exhibit the relationship because variations in
a single model’s parameters do not adequately vary the phys-
ical process underpinning the emergent constraint in the
CMIP ensemble.

No Obvious Multiple Influences

It is difficult to establish the robustness of an emergent con-
straint for predictors or predictands subject to multiple inde-
pendent influences. An illustrative example is the case of
equilibrium climate sensitivity. This predictand depends on
a number of mostly independent feedbacks (and forcing),
and each of these contributes to intermodel variance [50].
We do not believe that it is appropriate to seek an emergent
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constraint for climate sensitivity. This is because even if one
could find predictors correlated with climate sensitivity, the
physical underpinnings of the relationship could only be truly
diagnosed through further analyses of individual feedbacks
and their individual physical links with the predictor. More-
over, if one takes such a potential emergent constraint at face
value, one risks declaring a model that agrees with observa-
tions to be realistic even though it has compensating errors in
the underlying feedbacks. Another interpretative problem
could arise when constraints with different predictors corre-
sponding to distinct influences on the same predictand yield
apparently contradictory results. For these reasons, it is most
valuable to seek emergent constraints that target individual
processes, such as snow-albedo feedback or specific aspects
of cloud feedback.

Because global mean cloud feedback depends on indepen-
dent feedbacks from many cloud types (e.g., high and low
clouds, tropical and extra-tropical clouds), we also judge that
it is very unlikely that there would be a confirmed emergent
constraint for the total cloud feedback. In fact, the requirement
that an emergent constraint can only be confirmed if accom-
panied by a single credible physical explanation suggests a
very different scenario: Many emergent constraints will prob-
ably be required to ultimately make a difference in a quantity
influenced by complex factors, such as overall cloud feedback
or the spread in climate sensitivity. In this connection, we
believe that the snow-albedo feedback example is also instruc-
tive. The physics of the emergent constraint are simple, and
this may not be unrelated to the fact that a reduction in spread
of the temperature sensitivity of surface albedo in snow-
covered regions would only incrementally reduce spread in
global climate sensitivity. Consistent with this view, the prom-
ising examples we have chosen to highlight in this paper are
modest in scope, targeting a minimal number of cloud pro-
cesses. Also, each of the promising examples shows some
potential that further research would reveal a single mecha-
nism generating most of the correlation between the predictor
and predictand, leading to a confirmed emergent constraint.

A Comment About Correlation Strength

Because emergent constraints rely on statistical correlations
across a model ensemble, one might be tempted to also consid-
er statistical aspects such as correlation strength, the number of
independent models, and insensitivity to outlier models in judg-
ing the reliability of an emergent constraint. Of course, without
a physical explanation, statistical aspects alone cannot be the
basis for emergent constraint reliability, given the ever-present
possibility that an emergent constraint could arise through a
fortuitous correlation. Indeed, Caldwell et al. [8] have shown
that after accounting for the lack of model independence, the
distribution of correlation coefficients of a large ensemble of
predictors with CMIP5 equilibrium climate sensitivity is
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indistinguishable from that arising by chance alone. Thus, even
large correlations can arise by chance in an ensemble.

At the same time, when the number of independent models is
large, high correlations may be strong indicators that a physical
explanation does underpin the correlation and is waiting to be
diagnosed. In addition, a higher correlation between the predic-
tor and predictand will correspond to a larger spread reduction
in the future climate projections when an emergent constraint is
found, and models are eventually constrained with it. Thus, a
high correlation is desirable and even necessary if the emergent
constraint is to have practical value, and the promising examples
we discuss below in Examples of Emergent Constraints for
Cloud Feedbacks section involve reasonably high correlations.

Examples of Emergent Constraints for Cloud
Feedbacks

Here, we describe recently proposed emergent constraints re-
lating to cloud feedbacks. We begin with a detailed description
of three examples that we place in the “promising” category.
Following this, we present other emergent constraints that we
deem “potential” and then discuss the conditions favoring
discovery of new emergent constraints.

Low-Level Cloud Optical Depth

Building on earlier work [42, 43], Gordon and Klein [12]
identified an emergent constraint for the climate change re-
sponse of the optical depth of low-level clouds, a quantity
proportional to a cloud’s reflectivity. In this case, the predictor
is a model’s sensitivity of optical depth to local surface tem-
perature derived from variability at timescales of daily to in-
terannual in a number of different latitudinal bands. The
predictand is the relative amount of optical depth change in
amodel’s climate change simulation (see Fig. 2a for the results
from middle latitudes). Distinguishing by latitude is necessary.
It turns out that the change in optical depth for local temper-
ature increases is generally positive when clouds are cold (for
example, at middle and high latitudes), while it only changes
by a small amount and is generally negative when the clouds
are warm (for example, in the tropics). This differing behavior
is present both in the climate change simulations and in the
current climate. The increase in low-level cloud optical depth
with warming for cold clouds is of limited importance glob-
ally but makes an important contribution locally to the nega-
tive shortwave cloud feedbacks robustly found in climate
models at middle and high latitudes [52].

At middle latitudes, the correlation is quite high. While
observations in the form of Fig. 2a are not yet available, the
satellite observations from Tselioudis et al. [42] also show the
same tendency of a positive temperature derivative at cold
temperatures and a weak or negative one at warm
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Mid-Latitude Low-Level Cloud Optical Depth and Water Content
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Fig. 2 Relationship in CMIP3 and CMIP5 models between the climate
change response of mid-latitude low-level cloud optical depth (7j,y,) pre-
dicted from current climate variability on the abscissa with the actual
simulated climate change response on the ordinate (/eff). More specifical-
ly, the “Response Predicted from Current Climate” is equal to the product
of'the derivative of the natural logarithm of 7, with respect to surface air
temperature derived from current climate variability with the ratio of
simulated mid-latitude (35-55°) to global-mean surface air temperature

temperatures. However, except perhaps at the coldest temper-
atures, the models have a positive bias relative to these obser-
vations (see Fig. 1 of Gordon and Klein [12]). This suggests
that models increase cloud optical depth too much with
warming. The shortwave effects of low-level cloud optical
depth changes outweigh their longwave effects at the top of
the atmosphere. Thus, simulated low-level cloud feedbacks
resulting from optical depth changes should be less negative.

The increase in optical depth with temperature for cold
clouds may stem from fundamental thermodynamics. The adi-
abatic cloud liquid water content increases appreciably with
temperature at cold temperatures [1]. Consistent with this rea-
soning, the cloud water content of low-level clouds also ex-
hibits “emergent constraint” like behavior (Fig. 2b). At cold
temperatures, the multi-model mean temperature derivative of
water content derived from current climate variability is close
to that predicted by thermodynamics theory assuming
adiabaticity [12]. Other factors, such as the change from ice
or mixed-phase cloud to more liquid dominant clouds [44],
may contribute to intermodel spread and the models’ positive
bias with respect to observations.

At warm temperatures, the water content-induced change
under adiabatic conditions becomes very small. Correspond-
ingly, models do not generally exhibit optical depth increases
with warming. The models’ small optical depth decreases with
warming, and even larger decreases in observations must re-
sult from a different mechanism. Taking guidance from
models that resolve cloud processes, LES of subtropical stra-
tocumulus suggest the decreases in cloud optical depth with
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increase (75 4) in CO»-induced climate warming simulations. The “Actual
Climate Change Response” is defined as the mid-latitude change in the
natural logarithm of 7, actually simulated under CO,-induced climate
warming normalized by the increase in global mean surface air tempera-
ture. Each green circle displays the value of a single CMIP3 or CMIP5
climate model. The dashed line is the linear regression line, and the dotted
line indicates a one-to-one reference line. As in the left panel but for in-
cloud water content (CWC) (right). (Redrawn from [12])

warming are due to cloud thinning. The thinning results from
greater efficiency of convective mixing with dry air above the
boundary layer upon warming [6, 7, 31]. Climate models may
underestimate the observed decrease in optical depth with
warming for warm low-level clouds because this mechanism
is too weak or absent. At higher latitudes, the absence of this
mechanism may also contribute to the models’ positive bias to
the increase in optical depth with warming. Indeed, to fully
accept this as an emergent constraint, future research is needed
to isolate the relative roles of adiabatic water content changes,
phase partitioning, and convective mixing in contributing to
intermodel variations in the temperature sensitivity of optical
depth. This is needed to be sure that if a model were tuned to
match the observed temperature of sensitivity of optical depth,
it would be for the right physical reasons.

Subtropical Marine Low-Level Cloud Cover

Changes in cloud cover are more important contributors to
intermodel spread in cloud feedbacks than changes in cloud
optical depth [52]. Studies have consistently found the differ-
ing climate responses of subtropical and tropical marine
boundary layer clouds to be most responsible for intermodel
spread in global mean cloud feedback [4]. For these clouds,
Qu et al. [30] identified a potential path to an emergent con-
straint through examination of intermodel spread in climate
model simulations of low-level cloud cover (LCC) changes
over subtropical subsidence regions, where stratocumulus
and cumulus predominate.
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Qu et al. [30] analyzed the LCC changes from twenty-first
century climate model simulations with the following frame-
work:

aLCC
OEIS |go7

xAEIS+aL£

ASST
3SST |, < 2%

ALCC =

In this equation, A refers to the climate change over the
twenty-first century in climate model simulations, whereas the
partial derivatives are sensitivities of LCC to two large-scale
environmental parameters: the estimated inversion strength
(EIS, [51]) of the temperature inversion capping the boundary
layer and sea surface temperature (SST). These sensitivities are
derived from interannual variability in current climate simula-
tions. This model is similar to that used by Gordon and Klein
[12] for optical depth changes discussed in a. Low-Level Cloud
Optical Depth section, except that it includes an additional en-
vironmental parameter, EIS. Nonetheless, it turns out that the
EIS parameter is of secondary importance, as most intermodel
variance in the twenty-first century LCC change can be ex-
plained by the SST term and the SST sensitivity (Fig. 3). It is
possible to derive a satellite-based observational estimate for the
sensitivity of LCC to SST, using interannual variability over the
last 30 years. If the models agreed with these observations, their
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Fig.3 Scatterplot of the sensitivity of low-level cloud cover (LCC) to sea
surface temperature (SS7) on the abscissa versus twenty-first century
LCC changes divided by twenty-first century SST changes on the ordi-
nate averaged over the five primary subtropical marine stratocumulus
regions. Solid line in each diagram represents a least-squares fit regression
line with CMIP3 models color-coded in blue and CMIPS models in red.
Correlation coefficients for each model ensemble are indicated in the
lower right corner. Note that the sensitivity of LCC to SST is calculated
as a partial derivative holding the value of the estimated inversion
strength fixed. The thin vertical line is an observational estimate derived
from interannual variability, and the gray shading surrounding this line
is the statistical uncertainty of the observed estimate. (Redrawn from
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twenty-first century LCC decreases would be in the larger end
of the model range, favoring more absorption of solar radiation
in the future, and larger climate sensitivities. Earlier work by
Bony and DuFresne [2] on the correlation between interannual
variability of shortwave cloud radiative effect and SST (their
Fig. 4) also hinted that the feedback from subtropical low-
level clouds should be toward the larger end of model results.
This framework has an underlying assumption: Since the
timescales associated with low-level cloud formation and dis-
sipation processes are on the order of hours, low-level clouds
must be in statistical equilibrium with large-scale environmen-
tal factors whose inherent timescales are order of days or lon-
ger [36]. There is ample observational evidence for an associ-
ation between LCC and EIS [51], including evidence that the
direction of causation is primarily from EIS to LCC [19],
rather than the reverse. Furthermore, the physical mechanism
by which EIS influences LCC is clear: Stronger inversions
inhibit the mixing of dry free-tropospheric air into the bound-
ary layer, keeping boundary layer relative humidity and thus
LCC higher. However, the physical mechanism by which SST
influences LCC (at fixed EIS) needs further research. One
possibility is that the LCC sensitivity to SST can be viewed
as a surrogate for LCC sensitivity to the vertical gradient in
specific humidity from the surface to above the boundary
layer, given that variations in this quantity ought to be highly
correlated with changes in SST. Indeed, LES analyses suggest
that the increased vertical gradient in specific humidity is es-
sential to the positive low-level cloud feedbacks with SST
warming. Specifically, with the increased turbulent vertical
flux of water within the boundary layer in a warmer climate,
less cloud is needed to produce a given amount of mixing
across the inversion (all under conditions of no large EIS
increases) [5, 7, 31]. If so, this could be the physical
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Fig. 4 Scatterplot of the lower tropospheric mixing index (L7MI) on the
abscissa and the equilibrium climate sensitivity (on the ordinate) from 43
CMIP3 (circles) and CMIPS models (triangles). Symbol color identifies
modeling center of origin. Linear correlation coefficients are given in the
lower left corner of LTMI with the equilibrium climate sensitivity and the
total system feedback, respectively. Two observational estimates for
LTMI with error bars are shown on the abscissa with central values
indicated by the unfilled square and diamond. (From [33])
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mechanism behind the tendency, seen in LES models and
observations, of an LCC decrease with increasing SST, under
conditions of fixed EIS.

Qu et al. [30] also showed that a significant reason some
models underestimate the SST component of the LCC re-
sponse is that they rely on so-called Slingo [35]-like cloud
parameterizations. These parameterizations predict LCC vari-
ations purely in terms of changes in lower tropospheric stabil-
ity (which is closely related to EIS). They are based on obser-
vational evidence that EIS accounts for a significant fraction
of LCC variance in the current climate. However, slaving
LCC to lower tropospheric stability probably inhibits a model
from simulating dependencies on other variables more impor-
tant for the climate change response [6, 30]. It may make the
most sense to parameterize LCC in terms of local relative
humidity or total water relative to saturation and let the resul-
tant sensitivity of the boundary layer physics to environmental
parameters determine how LCC will vary.

Lower Tropospheric Mixing and Climate Sensitivity

Mixing between the boundary layer and the free troposphere
plays a central role in low-level cloud variations. So, it is nat-
ural to ask if there is a relationship between a climate model’s
skill in simulating that mixing and its low-level cloud changes
associated with climate change. Sherwood et al. [33] follow
this line of reasoning. Their emergent constraint also suggests
that climate sensitivity is in the upper end of the model-
simulated range (Fig. 4). To measure simulated lower tropo-
spheric mixing, Sherwood et al. [33] consider both mixing at
cloud scales resulting from parameterized circulations and
mixing resulting from resolved shallow-depth, large-scale cir-
culations. The cloud-scale mixing is measured with an indirect
method focusing on the vertical gradient of temperature and
moisture between 700 and 850 hPa in the West Pacific warm
pool. They argue that greater cloud-scale mixing will result in
this layer being less stable, with a smaller decrease in relative
humidity with height. Large-scale mixing is measured through
the resolved vertical mass flux in circulations encompassing the
boundary layer and the lower troposphere. Such shallow circu-
lations have been observed in the eastern tropical Pacific and
tropical Atlantic [53], and it is in these regions that Sherwood
et al. [33] measure their simulated strength.

Combining somewhat arbitrarily normalized measures of
cloud-scale and large-scale lower tropospheric mixing, a low-
er tropospheric mixing index (L7M]I) is defined as the predic-
tor. This index is found to have a positive correlation with
models’ climate sensitivity as well as their total feedback pa-
rameter for the climate system. Observational constraints on
LTMI are derived using radiosonde data from selected stations
in the West Pacific warm pool for the cloud-scale mixing
component and re-analyses produced by two numerical
weather prediction centers for the large-scale mixing

component. Although the use of re-analyses adds uncertainty,
the observational values of LTMI given by Sherwood et al.
[33] are in the larger half of model estimates. This suggests the
low-level cloud component of climate sensitivity is in the
upper half of model results.

The physical explanation offered for this emergent con-
straint is as follows: In the tropics, both shallow and deep
circulations ventilate the boundary layer. The deep circula-
tions are responsible for most global precipitation. The asso-
ciated latent heat release balances atmospheric radiative
cooling. Upon warming, the radiative cooling increase limits
the precipitation increase and associated water vapor deple-
tion from the boundary layer by deep circulations to only 2—
4 % per Kelvin [16]. On the other hand, water vapor deple-
tion by shallow cloud-scale circulations is not subject to an
energetic constraint, since these circulations do not contribute
appreciably to total precipitation. Instead, it increases with the
product of the lower tropospheric mixing rate and boundary
layer specific humidity. If one assumes that the rate of lower
tropospheric mixing remains fixed as the climate warms, then
the depletion of water vapor by shallow circulations will in-
crease with boundary layer-specific humidity. This increase
follows Clausius—Clapeyron, around 7 % per Kelvin of
boundary layer warming.

These arguments imply that as the climate warms, shallow
circulations assume a larger role relative to that of deep circu-
lations both in depleting boundary layer water vapor and
balancing the addition of water vapor by evaporation from
the ocean surface (whose increase is limited to 2—4 % per
Kelvin). This leads to a relative humidity reduction in the
boundary layer and a low-level cloud decrease. Since the
strength of this reduction will be proportional to the amount
of lower tropospheric mixing, models with greater lower tro-
pospheric mixing will exhibit a greater decrease in relative
humidity and low-level cloud as the climate warms.

Sherwood et al. [33] provide some evidence for this mech-
anism by examining water vapor tendencies in the few models
providing the necessary output. However, a full demonstration
of this mechanism is not possible with existing multi-model
archives. For example, multi-model diagnostics on the relative
amounts of water vapor depletion by shallow and deep con-
vection are not generally available. Also, it would be useful to
perform a complete diagnosis of the boundary layer moisture
budget in selected climate models and/or construct a toy mod-
el to illustrate how the amount of boundary layer drying with
climate warming relates to low-level convective mixing
strength. Separately, Zhang et al. [54] provide indirect evi-
dence for the small-scale mixing component of the Sherwood
mechanism. They configured climate models as single-
column models driven by expected large-scale environmental
changes for low-level clouds. They found that models with
more active shallow convection parameterizations simulate
more positive low-level cloud feedbacks.
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In addition, future work for this emergent constraint should
demonstrate that LTMI is better related to low-level cloud
feedbacks rather than climate sensitivity (following our “no
obvious multiple influences” criterion). In fact, Sherwood
et al. [33] found the opposite, namely that the correlations of
LTMI with the climate changes in low-level clouds were
smaller in magnitude than the correlations with climate sensi-
tivity. This is troubling since the physical explanation involves
low-level clouds directly and not climate sensitivity, a
predictand subject to multiple influences.

Other Emergent Constraints for Cloud Feedbacks

The three promising emergent constraints discussed above
may eventually become confirmed emergent constraints. They
each have candidate physical explanations associated with
them that are credible, even if work remains to determine
which mechanisms are dominant and why. Other emergent
constraints related to cloud feedbacks (either directly or indi-
rectly) have also recently appeared in the literature (Table 1).
We categorize these constraints to be potential but not yet
promising, primarily because they lack the beginnings of a
convincing physical explanation. Many also fail our subsidi-
ary criteria by not being robust to the choice of model ensem-
ble or by targeting climate sensitivity, a predictand subject to
multiple influences. An exception is that of Zhao [55] who
offer a well-developed physical argument based upon the pre-
cipitation efficiency of moist convection; this constraint may
become promising or even confirmed if it can be shown to
apply to CMIP-class ensembles and not solely within a multi-
physics ensemble of a single climate model.

It is hard to know a priori how many emergent constraints
there could be, given the serendipitously assembled nature of the
climate model ensembles. For example, there may be redundan-
cies among some predictors [8], and in this regard, one might
expect the constraints of Qu et al. [30] and Sherwood et al. [33]
to be redundant. This is because the SST dependence of low-
level cloud cover might be a surrogate for the amount of cloud-
scale lower tropospheric mixing and the sensitivity of low-level
cloud to changes in the vertical gradient of specific humidity.

Discussion

An interesting aspect of the three promising emergent con-
straints presented above is that they all involve low-level clouds.
Is there any fundamental reason to expect low-level clouds to
exhibit greater propensity for emergent constraint behavior?
Perhaps the boundary layer’s tendency to react quickly to its
local (as opposed to non-local) environmental parameters may
make it easier for the long-term response of low-level clouds to
be predicted from behavior on short timescales. It may be more
difficult to find emergent constraints for other cloud types that
respond more strongly to non-local environmental parameters.

@ Springer

Alternatively, the preponderance of emergent constraints for
low-level clouds may simply stem from the greater attention
given to the feedbacks from low-level clouds; this attention
was stimulated most prominently by Bony and DuFresne [2]
who clearly demonstrated their major role in contributing to
intermodel spread in global mean cloud feedback.

In principle, we do not see why there could not be emergent
constraints for other cloud types. For example, the relationship
between tropical high-cloud altitude and the vertical profile of
clear sky radiative cooling might form the basis for an emer-
gent constraint [15]. However, an emergent constraint for
high-cloud altitude may not be detectable if there is no appre-
ciable intermodel spread in its future climate prediction—a
necessary condition for the existence of an emergent con-
straint. In fact, the large spread in low-level cloud feedback
may be another reason why it has been relatively easy to find
emergent constraints for these clouds.

Finally, we note that two of the three promising emergent
constraints involve the covariance of clouds with temperature
arising from natural climate fluctuations. They are examples of
how concepts associated with the fluctuation-dissipation theo-
rem may be applicable to climate. Aspects of natural cloud
variability may be well suited to be predictors for emergent
constraints, if clouds are a fast response to their local thermo-
dynamic environment and the influence of cloud-controlling
environmental parameters other than temperature, such as in-
version strength or atmospheric circulation, can be separately
identified. Thus, the covariance of cloud with temperature and
other environmental parameters may provide a fruitful pathway
to search for emergent constraints in a wide variety of cloud
responses. Clouds’ fast response to their environment may also
make it possible for emergent constraints to be identified in the
response of clouds to aerosol perturbations. This appears to be
the case for the aerosol cloud lifetime effect [48].

Implications of Emergent Constraints for Climate
Models, Observations, and Prediction

Emergent constraints, if confirmed, have important implica-
tions for climate models, climate observations, and climate
predictions.

Prioritization of Climate Model Development

Emergent constraints point to aspects of a model’s simulation of
current climate that are important for climate prediction. This is
particularly helpful in the area of clouds, for it is difficult to know
which of their many attributes deserve most attention. With an
emergent constraint, modelers can focus on improving the fidel-
ity of the relevant process, knowing that a reduction in
intermodel spread will result when it is simulated under anthro-
pogenic forcing. Of course, it may be challenging to use
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guidance from an emergent constraint if the predictor is not
specific to a piece of model physics but is the outcome of inter-
actions among many pieces. Furthermore, all of this presumes
that model developers will pay attention to emergent constraints.
In this regard, it is worth noting that the diversity across models
in the snow-albedo response to warming did not narrow in
CMIP5 models after the snow-albedo feedback emergent con-
straint was found in CMIP3 models [13], despite the feedback’s
key role in shaping the magnitude of simulated climate change in
heavily populated Northern Hemisphere land masses [14].

Prioritization of Climate Observations

Emergent constraints point to potentially observable predictors
that might constrain model predictions. Some proposed predic-
tors, such as small-scale and large-scale mixing in shallow-depth
atmospheric circulations or the precipitation efficiency of moist
convection, may not be easy to measure. Predictors relying on
the relationship between variables diagnosed from interannual
variability require stable long-term datasets, another practical
barrier. A related issue is the size of the observational uncertainty
relative to intermodel spread. Only when observational uncer-
tainty does not encompass the entire intermodel spread will pro-
jections be constrained. This sets a minimum threshold for ob-
servational length and quality. For the three promising emergent
constraints discussed in this article, a significant number of cli-
mate models lie outside the nominal uncertainty bounds of the
observational estimates, implying that intermodel spread in fu-
ture climate projections can be meaningfully constrained
(Figs. 1, 3, and 4). However, these uncertainty estimates deserve
greater scrutiny from observational scientists, as it is not clear
whether all uncertainty sources have been accounted for.

Narrowing Climate Predictions

Suppose emergent constraints with a solid physical basis and
precise observational estimates are found and applied. How
much trust should then be placed in the constrained climate pre-
diction? One might be reluctant to trust the new ensemble with its
reduced spread, because some deficiency could be present in all
models causing a systematic bias to their predictions. For exam-
ple, feedbacks from middle-level clouds or tropical anvils asso-
ciated with mesoscale convective systems may be missed entire-
ly simply because climate models largely fail to simulate these
clouds [20, 45]. Nonetheless, the constrained model predictions
should be more trustworthy than before, because a source of
model error has been identified and reduced. Emergent con-
straints will never make the models perfect. Instead, they allow
limited community resources to be focused on model biases most
consequential for climate change. So far, when the emergent
constraint technique has been applied to cloud feedbacks, the
results have indicated a potential narrowing of uncertainty and

a shift in the most likely outcomes. Each of the three promising
emergent constraints we discuss here suggests higher values of
cloud feedback and hence climate sensitivity.
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