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Abstract For decades, researchers have endeavored to better
predict the incidence of vector-borne disease on a planet with
a changing climate. Methods, though imperfect, have ad-
vanced considerably and led to the tantalizing prospect of
forecasting the emergence of diseases such as malaria and
dengue in new locations. This paper presents some of these
recent advances and considers them in the context of their
prospective aim: to prevent harm from vector-borne disease.
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At various points in our species history, microbes have brought
us to extinction’s door, and despite major progress in combat-
ting infectious diseases in recent decades, around 200 million
people will fall sick with malaria, and nearly twice as many
with dengue fever, this year. Millions more will contract other
vector-borne diseases. No wonder, then, that much concern
followed from initial suspicions [e.g., 1] and early research
suggesting that climate change might foment conditions favor-
able to vector-borne disease transmission [e.g., 2, 3].

Yet, a look into the most current and scientifically informed
crystal ball to discern the future of human vector-borne disease
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would at best yi\eld hazy results, even if much less hazy than in
the past, owing to research over the past several decades that
has deepened understanding about vectors, pathogens, and cli-
mate change itself. This paper explores recent advances in
vector-borne disease modeling relevant to climate change
and considers future directions for modeling vector-borne dis-
ease emergence as climate change unfolds.

Better Knowledge of Bugs and Better Models
of Disease

Models of future distributions of vector-borne disease endeavor
to predict where and, often, when infections may occur. Over
the past 20 years, these models have been honed based upon
new knowledge of the many components that determine disease
spread; whether this has come with increased accuracy remains
unclear. However, many developments have given cause for
optimism that disease incidence model accuracy is improving.

Consider models of malaria transmission and handling of
temperature. Such models for a long time largely ignored tem-
perature effects on mosquito development, this despite the
knowledge that climate change was pushing temperatures up-
ward and that adult mosquito populations depend strongly on
juvenile (i.e., egg, larva, and pupa stage) survival. Anopheles
gambiae larvae, for example, have shown that warmer aquatic
larval temperature is associated with higher adult mortality [4].
Based upon this and other data obtained in a lab, Beck-Johnson
et al. developed a malaria transmission model that incorporates
all stages of the mosquito life cycle. Their model predicted peak
abundance of infective mosquitoes at lower temperatures as
compared to temperature-independent models, demonstrating
the importance of factoring in temperature effects on mosquito
development. The authors further compared their results to en-
tomological inoculation rate data from 14 African countries to
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demonstrate the better fit of their model output to field data as
compared with traditional models of malaria transmission [5].

Discoveries about insects’ and pathogens’ biological re-
sponses to climate variables, such as temperature, have led
to other refinements in model design. Early malaria transmis-
sion models relied on daily or, in some instances, monthly
average temperatures to assign risk for disease incidence and
spread [e.g., 2, 6, 7]. But average temperatures may belie
important effects of daily temperature fluctuation.

A series of studies has investigated how temperature fluc-
tuation—above and beyond mean temperature—affects para-
sites and vectors. Paaijmans and colleagues, for example, have
shown that daily temperature variation influences determinants
of malaria transmission intensity, such as parasite infectivity,
parasite growth and development, as well as mosquito devel-
opment and survival. Anopheles stephensi, an Asian malaria
vector, grew to adulthood faster and was more likely to survive
until adulthood when temperature fluctuated £6 °C around a
mean of 20 °C in contrast to those reared at constant temper-
ature. However, at a mean temperature of 27 °C, temperature
fluctuation resulted in longer development and fewer survivors
into adulthood [8]. In this study, the authors also demonstrated
that sporozoites of Plasmodium chabaudi, a rodent malarial
parasite, were more likely to disseminate from mosquito vec-
tors under varying temperatures at lower mean temperature
(18 °C) and were not observed to disseminate from oocysts
at all at higher mean temperature (26 °C). Whether these find-
ings hold true for human malarial parasites is not yet known.

These findings and others have prompted updated assess-
ments of malarial spread across Africa under climate change,
as previous models did not account for daily temperature range
(DTR). Blanford et al. estimated external incubation period
(EIP) for Plasmodium falciparum using a model that includes
DTR. Consistent with the studies described, they found that at
low mean temperatures excluding variability in temperature un-
derestimates parasite development. The converse also held:
models based on high mean temperature overestimate parasite
development when they omit DTR. In their analysis across the
African continent using hourly, rather than monthly, average
temperatures, the extrinsic incubation period for the malarial
parasite was 100 % or more different in many areas with malaria
endemicity [9]. As many mosquitos spend some time indoors,
the authors also assessed indoor DTR by modeling indoor tem-
peratures based upon available research on the relationship be-
tween outdoor and indoor temperatures. (Outdoor temperatures
were obtained from the National Climate Data Center’s Global
Surface Summary of the Day Database http://www.ncdc.noaa.
gov/). Modeled indoor temperatures had reduced DTRs and a
higher mean, but the relationship between DTR and EIP
remained present though was attenuated.

Other research on the influence of temperature variability
on mosquito development has shown that all malarial mosqui-
toes are (unsurprisingly) not created equally, limiting the
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potential generalizability of Blanford et al.’s findings. Re-
search on three other malarial vectors, Anopheles arabiensis,
Anopheles funestus, and An. gambiae, found that all species
differed in the optimal temperature for maximum develop-
mental rate at the larval and adult, but not pupal, stages in
their life cycles. An. gambiae develops best at cooler temper-
atures, An. arabiensis at warmer temperatures, and An.
funestus somewhere in between. In addition, development rate
and survival of 4n. funestus did worse with fluctuating tem-
peratures whereas An. arabiensis either did the same or better
as temperatures varied [10].

Temperature variation also may influence the likelihood of
dengue virus spread. Lambrechts et al. showed that captive
Aedes aegypti mosquitoes infected with one of two different
dengue serotypes died sooner when exposed to higher DTRs
[11]. They also found that DTR effects on mosquito infection
and human transmission were dependent on mean temperature
in a thermodynamic model of dengue. At a mean temperature
of 18 °C, DTR had little or no effect on infection or transmis-
sion. At mean temperatures below 18 °C, larger DTRs were
associated with greater probability of transmission; at mean
temperatures above 18 °C, larger DTRs had the opposite ef-
fect, presumably due to temperatures exceeding the upward
temperature limits of dengue virus reproduction.

In addition to these findings related to DTR bring to
modeling future disease transmission under climate change,
they call out the still largely uncertain consequences of climate
change for DTR. The most recent IPCC report expressed me-
dium confidence that the DTR is shrinking worldwide but
enough uncertainty remains, including recent evidence that
DTR to render interpretation of the above findings on disease
transmission difficult.

There have been two studies adding further ripples to ma-
laria modeling in recent years. The first addresses how best to
account for malarial parasites and their mosquito vectors al-
tering their development and biting rates, respectively, in re-
sponse to temperature. The timing of an Anopheles first blood
meal after emergence changes with temperature, ranging from
a few days to 2 weeks [e.g., 11][12]. The joint modeled effect
of this finding, along with temperature effects on mosquito
feeding frequency and EIP of the parasite, results in a 20—
60 % decrease vectorial capacity as compared to conventional
models. Interactions between time to sporozoite maturity and
waiting for the next blood meal may also reduce odds of
transmission across all viable temperatures, though the signal
is noisier as duration of EIP and feeding interval move in and
out of phase [13].

The second comes from a study by Garske et al. that
modeled air temperatures based upon the better quantified
(both temporally and spatially) land surface temperatures, as
air temperatures are more likely to accurately predict parasite
and mosquito parameters relevant to malaria transmission.
They found substantial differences between land and air day
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and night temperatures, which translate into markedly differ-
ent values for determinants of malaria transmission, including
mosquito lifespan, EIP, biting rate, and temperature suitability
index [14]. These findings are consistent with previous re-
search on Culex mosquitos showing that assessing tempera-
ture in the places mosquitos inhabit at various points of day
matters to accuracy of EIP [15].

All Over the Map?

Even as more knowledge about fundamental drivers of disease
transmission grows, ways of incorporating that knowledge
into models varies. Consider recent papers that model the
future distribution of Aedes albopictus, a vector for dengue
fever and chikungunya.

Proestos et al. sought to project regional and global
A. albopictus distribution in 2050 using the ECHAMS/
MESSy2 atmospheric chemistry (EMAC) general circulation
model at high spatial and temporal resolution. Fuzzy logic was
used to meld a series of predictors into a composite habitat
suitability index. Predictors included average rainfall, average
annual temperature, minimum winter temperature, maximum
summer temperature, and relative humidity." Using the SRES
A2 scenario, they compared a baseline 2000-2009 distribu-
tion to a modeled distribution for 2045-2054 and found that
by 2050, approximately 2.4 billion individuals will potentially
be exposed to A. albopictus using a habitat suitability index
threshold of 70 % [16].

Ogden et al. likewise sought to model regional A. albopictus
distribution by mid-century, but used a different set of habitat
suitability criteria than did Proestos et al. and a different model-
ing strategy. The first they term overwintering that is on a 0-3
ordinal scale based on January temperature and annual precipi-
tation.” The second they named overwintering combined with
annual air temperature which includes an overwintering score
>1 with different thresholds of mean annual temperature (7).
The third criterion, which they named “SIG” because it
employed a sigmoidal transformation of temperature data,

! Average annual rainfall of 200 mm per year; average annual tempera-
ture above 8 °C; minimum winter temperature above —4 °C; summer
maximum temperature below 40 °C; at least 60 days each year with
1 mm or more of rain; average summer relative humidity of at least
30 %; average winter relative humidity of more than 50 %.

2 Overwintering scale: (0) very unsuitable if January temperature (7},,) is
lower than 0 °C and annual precipitation (P,,,) is below 500 mm; (1)
0°C<Tyn<1 °Cand 500 mm<P,,,<600 mm; (2) high when 1 °C<Tj,,<
2 °C and 600 mm<P,,, <700 mm; and (3) very high when 77j,,>2 °C and
Py =700 mm.

3 Overwintering with average temperature provided five-point ordinal
scale: (0) very unsuitable conditions when T, is below 9 °C, (1) low
risk when 9 °C<T,,,,<10 °C, (2) moderate risk if 10 °C<7,,,<11 °C, (3)
highrisk if 11 °C<7,,,<12 °C, and (4) totally suitable conditions if 7,,,>
12 °C.

combined summer temperatures, January average temperatures
and annual precipitation.*

Each criterion had sensitivity and specificity for
A. albopictus distribution of over 90 % for the current mosquito
presence in the USA, though specificity declined substantially
in areas of the USA east of 100 °W where mosquito prevalence
is high but mosquito surveys are rarer. When projected out to
2041-2070 using nine regional climate models with represen-
tative concentration pathways taken from IPCC ARS and the
A2 SRES scenario, these criteria resulted in substantially dif-
ferent geographic distributions. The SIG criterion, in contrast to
the other two, predicted suitability ranging up to 1000 km into
Canada and a marked contraction of habitat in the southeast,
with the latter owing to decreased rainfall and higher tempera-
tures. This may be explained by SIG’s lack of absolute cutoff
for mosquito survival at cold temperatures [17].

The recent paper from Rochlin et al. made use of yet an-
other modeling approach and set of predictors. They chose a
set of six environmental variables,” pared down from an orig-
inal group of 22, based upon collinearity, prior research, and
ultimately those that led to the best fit with current mosquito
distribution and had high Akaike information criterion scores.
They employed a maximum entropy (MaxENT) model and
the SRES B2 and A2 scenarios to assess future distribution of
A. albopictus in the northeastern USA. In their model, mean
winter temperature fared better than minimum January tem-
perature in predicting mosquito distribution, but January pre-
cipitation outperformed overall winter precipitation. The latter
result may reflect precipitation falling as rain or sleet outside
the coldest months. The former result may owe to the insulat-
ing effects of snowfall. Overall, they found that suitable hab-
itat would increase from 5 to 16 % of the entire northeastern
land area by mid-century [18].

These three studies employ valid approaches to determining
future geographic spread of a disease vector, even if they relied
upon different sets of climate variables and models to deter-
mine vector habitat suitability. In the case of A. albopictus, and
perhaps other disease vectors establishing populations in new
areas, the invasive populations may have different sensitivities
to climate in their new habitats [19]. This implies that a single
set of climate criteria may not accurately predict mosquito pres-
ence if applied globally.

Perhaps in light of this, or due to better ability to do local
long-term climate modeling, an increasing number of studies

4 Habitat suitability for the third criteria was based upon annual precipi-
tation, (suitability was zero for annual precipitation <450 mm and max-
imum when precipitation was >800 mm): summer temperatures (suitabil-
ity was zero for temperatures <15 or >30 °C and maximum when tem-
peratures were between 20 and 25 °C) and January temperatures (suit-
ability was zero when temperatures were <2 °C, and maximum when
temperatures were >3 °C).

> Mean temperature of coldest quarter, precipitation of wettest quarter,
precipitation of driest quarter, January precipitation, and land use/cover.
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have done regional projections of vector-borne disease trans-
mission. To examine the consequences of using downscaled
versus global climate models on predictions of future malarial
incidence, Paaijmans et al. compared results from raw global
circulation models to downscaled models and found that the
raw models may underestimate transmission of P. falciparum
by as much as threefold in hot and 12-fold in cold extremes
[20].

Evolution Happens

As the research described above attests, the nuances of tem-
perature effects on vector-borne disease transmission raise
hurdles to accurate models. But temperature effects are but
one of many areas of investigation that have added to the
concerns of disease modelers.

Vectors and pathogens may evolve—in some instances rap-
idly—to changing temperature regimes that can alter their
responsiveness, for example, to absolute or relative tempera-
tures [21]. Sternberg and Thomas have summarized available
evidence and theory on the topic of local adaptations of ar-
thropods to climate variation [22].

Aedes japonicus, a possible vector for chikungunya and
dengue based upon laboratory assessment, [23] and native to
Japan and the Korean peninsula, has in the past decade invad-
ed the USA and Europe in locations with similar climates to its
native territory. It has also established populations in Hawaii
and the southeastern USA in climate regimes far different
from its origins. This new geographic and climatological
spread enabled a genetic comparison of populations to assess
for the ability of the mosquito to evolve tolerance to warmer
regimes. Populations that survived in warmer temperatures
lost genetic diversity suggesting that selection occurred for
tolerance to warmer temperatures (though genetic drift cannot
be entirely excluded). Furthermore, comparisons of popula-
tions at high temperatures in Hawaii had fewer rare alleles
than those at low temperatures, suggesting genetic bottlenecks
beyond initial founder effects. In both Hawaii and Virginia,
specimens sampled at 7 and 10 years post-arrival demonstrate
a gradient of decreasing diversity from low-lying, warmer
habitats to cooler, mountainside locales [24].

Among the vector traits that have been shown to evolve in
the face of novel environments has been the critical photope-
riod.® Diapause in mosquitoes, which is a period of hormon-
ally induced dormancy during development triggered by en-
vironmental cues such as hours of sunlight, is a strategy to

® The critical photoperiod is often measured as the number of hours of
light needed to induce egg diapause in 50 % of a population, excluding
eggs that do not enter diapause when exposed to very short-day lengths.
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cope with adverse conditions, such as temperatures that are
too high or low for mosquito survival. Researchers character-
ized the critical photoperiod and diapause incidence across
latitudes in populations of A. albopictus from Japan and the
USA, first in the late 1980s and then again in the late 2000s.
When comparing specimens collected in the 1980s from the
native Japanese populations to the invasive US populations,
higher latitude produced a smaller increment in critical photo-
period in the US as compared to Japanese populations. By the
late 2000s, however, this difference waned: the US mosquito’s
response to latitude became nearly identical to Japanese pop-
ulations. By 2008, US mosquitoes were also more likely to
enter diapause at lower latitudes. Of note, other traits of these
mosquitoes, including body size, wing length, or egg volume,
did not change [25].

Evolution happens and inserts uncertainty—and pos-
sibly surprise—into how disease will respond to chang-
ing climate. Assessing this uncertainty remains an open
field of investigation.

Simpler Systems

As with any scientific inquiry, reductionist approaches have
their benefits and drawbacks, so too with models of infectious
disease transmission under climate change. Though evidence
has suggested, for instance, that climate change has spurred
the move of malaria into populations in the highlands of east
Africa [26], fully excluding the influence of human actions is
difficult. Human intervention for human disease is the norm,
and while humans do intervene in wild animal disease ecosys-
tems, the same cannot be said for many diseases of wild ani-
mals. This affords an opportunity to study these diseases as a
potentially less biased subject to understand how climate
change may affect vector-borne disease.

Elevational gradients provide a natural setting to investi-
gate the effects of temperature change on disease prevalence.
In a study from North Queensland, Australia, 403 birds were
tested for the presence of four parasites across an elevational
gradient. Temperature predicted parasite prevalence indepen-
dent of elevation with a 1 °C increase in temperature associ-
ated with a 10 % increase in parasite prevalence. The authors
of this study speculate that birds could respond to more path-
ogen pressure in one of three ways: (1) stronger immunity, (2)
higher mortality and resulting lower populations, or (3) move
to higher elevations [27].

If the example of avian malaria on Hawaii, one of the
better-studied disease introductions, is representative, birds
have largely either succumbed to parasites or had their low-
land habitats destroyed. Hawaiian birds were naive to avian
malaria having been isolated some 3—4 million years ago [28].
Although the avian malarial parasite was likely introduced by
exotic bird introductions on numerous occasions, epizootics
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did not occur until the arrival of Culex quinquefasciatus as
early as 1826 [29]. Atkinson et al. conducted surveys of par-
asite prevalence in eight native and eight non-native bird spe-
cies in three locations on Kauai’s Alaka’i Plateau, where many
of Kauai’s remaining endemic and endangered birds reside, in
1994-1997 and 2007-2013. Overall, the prevalence of infec-
tion doubled from 8.6 to 19.6 %. The steepest increase in
prevalence occurred at the highest elevation (~1350 ft). These
changes were also associated with rising temperature at each
site and decreased precipitation and streamflow, all of which
facilitate mosquito survival. The authors also documented ma-
larial incidence in a sedentary bird, the ‘elepaio, which in-
creased from 17.2 to 27 % across the nearly 20 years of study
indicating that local malaria transmission was responsible for
at least part of the observed increased prevalence. Other re-
search has shown that remaining populations of honey-
creepers, as well as other endemic birds, which have been
decimated by avian malaria, survive at an elevation of
1500 ft or higher, which coincides with lab and field observa-
tions of the thermal limits of parasite sporogony [30].

El Nifio

The El Nifo Southern Oscillation (ENSO) refers to periodic
changes in water temperature in the eastern Pacific Ocean that
occur roughly every 5 years. ENSO cycles have dramatic
effects on weather around the globe. Warmer than average
water temperatures in the eastern Pacific define El Nifo
events, whereas cooler than average temperatures define La
Nifa periods.

Because of the dramatic shifts in weather they produce
around the world, El Nifio events have been used as a model
to understand how climate change-associated extreme weather
events, such as droughts, floods, and heat waves, may alter
infectious disease epidemiology as climate change unfolds.
Recently, however, some evidence has suggested that climate
change itself may be driving more severe El Nifo events,
raising the possibility that El Niflos may be more than just a
natural experiment to understand the infectious disease con-
sequences of climate change [31-33].

Associations of El Nifio with outbreaks of Rift Valley fever,
a vector-borne viral illness that affects both livestock and
humans in East and Southern Africa, have been known since
the 1950s [34]. El Nino favors wet conditions favorable to the
insect vectors of the disease in these regions, and models
based upon Pacific and Indian Ocean sea surface temperature
and the normalized difference vegetation index (a measure of
green land cover, consistent with rainfall in arid regions) have
successfully predicted Rift Valley fever epidemics in humans
and animals months in advance. In the 20062007 El Nifo
season, for example, outbreaks of Rift Valley fever were

accurately predicted 2 to 6 weeks prior to epidemics in Soma-
lia, Kenya, and Tanzania [35].

Links between El Nifo events and vector-borne disease
beyond Rift Valley fever are weaker. El Nifio has had incon-
sistent associations with malarial incidence in African coun-
tries. Some of the strongest associations between El Nifio and
malaria have been identified in South Africa and Swaziland
where available data on incidence are relatively robust though
even in this instance the observed increased risk did not reach
statistical significance. A stronger, though still variable, link to
El Nifio has been found in several studies done in South
America. [e.g., 36]. In Venezuela, a periodic analysis of cli-
mate variables and malarial incidence found that sea surface
temperature, the marker for El Nifio, was associated with ma-
larial outbreaks on a 2- to 6-year cycle. The period of the cycle
and the strength of association varied by location and the
parasite species (Plasmodium vivax vs. P. falciparum) [37].
The influence of El Nifio on malarial incidence may be detect-
able but is highly variable.

In the case of dengue, El Niflo signals are similarly mixed
though evidence suggests it may be driving disease in many
parts of the world. In Thailand, for instance, 15-22 % of the
variance in monthly dengue disease incidence is attributable to
El Nino [38].

Several studies in Central and South America have sug-
gested that El Nifio periods may elevate risk for dengue. A
recent small study in Risaralda, Columbia, found that oscilla-
tion Nino index was, along with rainfall, the strongest predic-
tors of dengue incidence [39]. Similar findings have come out
of Venezuela and Honduras [40, 41]. Given the small-scale
and limited data available in each of these studies, their con-
clusions must be viewed with caution.

Conclusion

Research as described in this paper is a worthy, if imperfect,
activity given that at least one objective of disease modeling is
to anticipate disease outbreaks and thereby afford an opportu-
nity to prevent harm. But even if the crystal ball for vector-
borne disease has gotten clearer, the question remains as to
whether the models for diseases like malaria and dengue will
ever be good enough to achieve this end [42]. The advances
described here suggest that focusing attention at smaller scales
may be a way to sharpen focus, even if available data to base
forecasts on are limited. They also speak to the need for a
greater investment in understanding fundamental aspects of
vector and pathogen biology, especially as relate to expected
changes in climate including changes in temperature and
precipitation.

Climate change constitutes only a part of the equation that
determines the future incidence of vector-borne disease world-
wide. On a planet with nearly one billion people
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undernourished, another billion lacking access to clean water,
and two billion living on less than US$2 a day, what influence
climate change may have on disease incidence could easily be
dwarfed by other, more powerful, forces. Nonetheless, climate
change may undermine recent progress in reducing major bur-
dens of disease, and so understanding its affects on health in
general and to the spread of vector-borne disease in particular
is vital to ensuring the healthiest possible future.
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