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Abstract Recently available model ensembles have created
an unprecedented opportunity for exploring and narrowing un-
certainty in one of climate’s benchmark indices, equilibrium
climate sensitivity. A range of novel approaches for
constraining the raw sensitivity estimates from these ensem-
bles with observations has also been proposed, applied, and
explored in a diversity of contexts. Through subsequent anal-
ysis, an increased understanding of the relative merits and lim-
itations of these methods has been gained and their refinement
and optimal implementation continue to be actively studied
and debated with the hopes of reducing uncertainty in one of
climate science’s most persistent and elusive measures.
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Background and Motivations

The eventual increase in global mean surface temperature arising
from an instantaneous doubling of atmospheric carbon dioxide
concentrations (a.k.a. equilibrium climate sensitivity, ECS) is a
benchmark index for estimating the sensitivity of climate to ra-
diative forcing and has been the subject of considerable interest
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for over a century (e.g., [2]). Beyond its direct tie to average
global surface temperature, ECS is also known to have broader
relevance to a range of concerns including the magnitude of
regional warming under climate change, changes in intensity
and frequency of related heat extremes, and changes in the
strength and extremes of the hydrologic cycle [15, 17].

Despite its importance, ECS remains poorly constrained,
although there are multiple possible methodologies for its es-
timation. Numerous studies have made inferences based on
the instrumental and paleoclimatic data records, and direct
computations from global climate models (GCMs, see for
example [5], Box 12.2). One of the earliest scientific assess-
ments of ECS was by Charney et al. [4] who provided a range
of 3+1.5 °C, an estimate commonly referred to as the
“Charney sensitivity.” This value is predominantly governed
by processes that act on timescales of less than a century,
including changes in clouds, atmospheric circulation, sea
ice, land surface, and the upper ocean. Instrumental ap-
proaches and GCM integrations are largely estimating this
quantity. However, on centennial timescales, the “Earth Sys-
tem Sensitivity” can also incorporate slower processes: carbon
cycle, ice sheets, interactive vegetation, and deep ocean circu-
lation among others, to which paleoclimate approaches can be
sensitive. In recent years, Earth System Models (ESMs) have
provided a means for estimating the magnitude of such effects.
Generally, however, many of these influences have been omit-
ted and herein we therefore consider the Charney sensitivity to
be synonymous with ECS.

Notwithstanding this simplification, best estimates of ECS
since 1979 have changed little despite major advances in our
ability to observe and simulate the climate system. While
progress has been made in understanding tails of the ECS
distribution, there has been a failure of the various lines of
evidence for estimating ECS to converge, even when the
physical distinctions between the approaches are accounted
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for, leading the most recent IPCC assessment to decline to
select a single best-estimate for ECS [5]. It is thus of some
interest to assess the origin of this uncertainty, how these var-
ious lines of evidence may best be reconciled, and what best
practices can be developed for estimating ECS.

Motivated in part by these concerns, a growing body of
literature has sought to explore the role of model error,
structural differences, and poorly constrained parameter se-
lection on GCM ECS by establishing relationships between
it and observable model fields. Studies exploring these so-
called emergent constraints (ECs) have generally focused on
two sets of model ensembles: perturbed physics ensembles
(PPEs), in which the influence of key model parameters on
ECS can be assessed, and multi-model ensembles (MMEs),
in which both the structural and parametric differences
across models are explored. An example of a MME EC is
shown in Fig. la. The EC, proposed in Sherwood et al. [36],
relates ECS to the strength of mixing in the lower tropo-
sphere over warm tropical oceans. Discussed in greater de-
tail below, the EC satisfies basic requirements as it is phys-
ically motivated and is based on an observable metric in
which uncertainty is small relative to inter-model spread.
As only certain models reproduce the observed range of
the metric, the implication is that other models can be
down-weighted in generating a model-based best estimate
of ECS. Below, the PPE and MME approaches for generat-
ing such ECs are examined separately and their general
characteristics, related seminal work, recent advances, and
frontier issues are reviewed.

Perturbed Physics Constraints

Today’s GCMs include various parameterizations representing
processes that occur on scales smaller than that of the resolved
grid. Such parameterizations are present in many model com-
ponents (such as atmospheric convection, cloud microphysics,
plant physiology, and sea ice properties, among others), some
of which can influence ECS. There is no universally accepted
practice for the calibration of these parameters. In some cases, it
might be possible to relate a parameter to a directly measurable
quantity, but for other more empirical parameters, calibration is
achieved by minimizing errors in the historical climate simula-
tion (i.e., tuning). The lack of consensus on how such calibra-
tion should be performed and what metrics should be included
in the assessment of model quality means that there is inherent
uncertainty in what the “correct” set of parameters should be in
any GCM simulation, which in turn leads to uncertainty in its
simulated value of ECS.

The range of plausible parameter sets has been used in
a number of studies to assess the associated uncertainty in
ECS, the logic being that a given set of parameters can be
used to produce both observable quantities (such as
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Fig. 1 a A recently proposed EC relating lower tropospheric mixing
(LTMI) over warm tropical oceans to ECS across models (colors) along
with an estimated range from radiosondes and reanalyses (/ines). For
details, see Sherwood et al. [36]. b A qualitative summary of the guidance
provided by recent EC literature relative to the multi-model mean ECS,
including quantitative guidance estimates where provided

aspects of the mean climate simulation, or historical tran-
sient behavior) as well as unknown quantities such as
ECS itself.

It has been clear for some time that certain PPEs are
capable of producing a wide range of climate sensitivity.
For example, Stainforth et al. [39] and Murphy et al. [24]
produced ensembles exhibiting a wide range of ECS with
a single climate model (HadAM3), with some ensemble
members exhibiting values of ECS of over 10 K. Clearly,
not all of these members produced viable present-day cli-
mates, and using such ensembles to make formal state-
ments about the possible values of real-world ECS is an
issue fraught with complexity.
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Constraining Perturbed Ensemble Output

Perhaps the most intuitive approach would be to consider a
weighted distribution; Murphy et al. [24] produced weights
derived from climatological skill and used it to weight their
ensemble distribution for ECS. However, it was noted by
Frame et al. [10] that the resulting weighted distribution, while
dependent on model structure, is also implicitly dependent on
arbitrary choices made in the choice of parameter sample. A
number of other studies thus attempted to produce probability
density functions (PDFs) that were not directly dependent on
the prior parameter distribution. For example, some studies
used potentially observable information (such as the mean
climate state [26] or the amplitude of the present-day seasonal
cycle [19]) within these ensembles to attempt to find ECs on
ECS, which could then be used without a first-order depen-
dency on the sampling prior. Annan et al. [1] used an ensem-
ble Kalman filter approach together with PPE simulations of
the last glacial maximum using the MIROC model, using
LGM temperatures as an EC.

Another approach is to consider the sensitivity of the result
to the chosen prior; Tett et al. [40] considered a range of poten-
tial priors when constraining ECS using a method which is
conditional on the choice of prior to demonstrate that an upper
bound on plausible model simulated ECS can be proposed
even with this ambiguity. They used top-of-atmosphere radia-
tive budgets to constrain ECS using a PPE derived from the
Hadley Center model, finding 2.5th and 97.5th percentiles of
2.7 and 4.2 K using CERES, but a higher upper bound using
ERBE (2.8 and 5.6 K for the 2.5th and 97.5th percentiles).

Addressing Systematic Error

However, all of these studies only consider variability in ECS
in a single PPE, derived from a single GCM, and this may
result in constraints that are not valid generally. For example,
Klocke et al. [18] used a PPE derived from the ECHAM model
to show that although ECS can be efficiently constrained by
consideration of model error in the present-day climatology of
clouds and radiation, these constraints have little or no skill
when applied to the multi-model archive. Similarly, Sanderson
[31] demonstrated that the ECs exploited in Piani et al. [26],
although robust in the PPE itself, are not necessarily valid in a
multi-model archive such as CMIPS5, and therefore might be
overconfident in estimating the ECS in nature.

Another argument against using only PPEs and observa-
tions to constrain ECS is that they can only be informative
about processes and states that they are able to sample.
Yokohata et al. [45] show that in comparison to the multi-
model archive, most currently available PPEs are under-
dispersive in that observations tend to lie outside the ensemble
distribution for a large fraction of variables, potentially
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invalidating any methodology that might require the observa-
tions to be treated as an ensemble member.

Rougier [29] and Sexton et al. [35] attempt to address this
issue by the introduction of a “discrepancy term” which uses
the CMIP3 multi-model ensemble together with the PPE to
address the issue of systematic uncertainty. The authors treat
each member of the CMIP3 archive as truth and then find
perturbed models that most closely resemble its simulated
climate for a number of variables. In cases where there is no
perturbed simulation that resembles the CMIP3 case, the par-
ticular variable is effectively down-weighted. Hence,
perturbed model weights are constructed using model errors,
but concentrating on the variables where the parameter pertur-
bations allow a similar range of simulated output to that seen
in the CMIP archive. The method also considers the distribu-
tion of error in the prediction of CMIP3 ECS values and com-
bines this bias and variance with their estimate for real-world
ECS. Applying this approach to a PPE derived using the Had-
ley Center model, using constraints derived from a multivar-
iate assessment of recent mean climate, Sexton et al. [35] find
that 10th and 90th percentiles for ECS are 2.3 and 4.2 K.
Harris et al. [14] use a similar approach and also incorporate
transient changes, finding little change in the PDFs (a 5-95 %
range of 2.44.3 K, although the authors do not consider the
post-2000 temperatures in their study, which excludes any
influence of the early 2000s hiatus in warming).

Lopez et al. [22] point out that the approach of Sexton et al.
[35] relies on the assumption that errors are equally probable in
different CMIP members, which is unlikely given the range of
complexity in the CMIP models, the limited sample size avail-
able, and the lack of independence in the archive [32]. Hence,
the discrepancy approach can be used to sample the error aris-
ing from the naive assumption that the underlying model in a
PPE is perfect and only the parameters are unknown (by
treating members of a separate multi-model archive as truth).
The approach depends on ECs in a sense that a perturbed
model’s bias can be used to assess the likelihood of its climate
sensitivity reflecting truth, and the error in that assumption is
represented in the CMIP3 derived discrepancy term by adding
a variance or bias to the simulated sensitivity value. Therefore,
if there are feedback processes influencing ECS which are
sampled in CMIP (but not in the PPE), these are to some degree
implemented in the result as an additional source of error, but
these processes are not constrained by the approach. Finally,
and trivially, if there are feedback processes which are not
sampled in any of the CMIP models (or the PPE), then these
will not be reflected in the discrepancy term, or the resulting
probability distribution for ECS.

Process-Based Evaluation

A more targeted approach to addressing systematic differ-
ences influencing constraints on ECS from PPEs is to focus
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on the actual climatic feedback mechanisms underlying the
total climate sensitivity. Yokohata et al. [44] compared the
dominant feedback mechanisms in two different PPEs derived
from MIROC and the Hadley Center models, respectively,
finding that although ECS in both ensembles is controlled to
first order by low-level shortwave cloud feedback, the mech-
anisms and constraints associated with the feedbacks in the
two ensembles differed significantly. Sanderson [30] used a
radiative kernel technique to study modes of model radiative
feedback in the HadAM3 model and the CMIP3 MME, find-
ing that longwave and shortwave cloud feedbacks were gen-
erally compensating in the MME case but not in the PPE case,
explaining the larger range of ECS seen in the PPE. In another
study of an ECHAM PPE, Tomassini et al. [42] found a dom-
inant dependency of ECS on convective parameterization and
atmospheric stability. Finally, and differently again, Webb
et al. [43] assess the forcing and regional feedback response
in both HadGEM?2 and the CMIP3 ensemble. They found that
although ECS in the multi-model archive is dominantly con-
trolled by differences in cloud feedbacks, the main variation in
their PPE was caused by high-latitude clear-sky shortwave
feedback.

Thus, in repeated cases, groups have found that variation in
ECS in a single PPE can be related to specific feedbacks, and
these can potentially be individually constrained by observa-
tions. However, it has now also been shown that the dominant
feedback variability changes from one PPE to the next, and
thus, a general constraint on ECS cannot be easily determined
from a single PPE. This brings into question early studies
which assumed that ECs derived from a single PPE could be
generally applicable, and many studies which have made for-
mal probabilistic statements on ECS clearly come into this
category. The most comprehensive study to date to produce
a PDF from a PPE in the presence of systematic uncertainty
[34] assesses the bias and error introduced by assuming that
ECs from a PPE are universal, but it only explicitly considers
feedbacks sampled in the original PPE. In contrast, there is a
growing literature on the behavior of climatic feedbacks in
different PPEs, but these studies have yet to combine their
findings into an integrated assessment for ECS.

Finding a Way Forward

Hence, PPE research is at a crossroads; there is a growing
acceptance that PPEs cannot be used on their own to sample
all possible future climate responses and that constraints on
feedbacks derived from PPEs may not hold true generally.
However, there is a promising literature focusing less on
ECS as a whole and more on its constituent feedbacks. It
seems that future studies could make progress in the gridlock
of systematic uncertainty on two fronts. The first is by con-
centrating on individual feedbacks and how they might be
constrained at a process level by observable quantities in the

perturbed models (and by identifying physical mechanisms
for those relationships). In the second, future PPE studies
attempting to constrain ECS will need to combine results from
multiple GCMs, not just to test the error introduced by treating
other GCMs as out-of-sample tests of constraints, but also by
combining multiple PPEs together in order to sample a
superset of feedbacks and constraints. This remains a formi-
dable challenge.

Multi-model Constraints

The best sample of structural uncertainty in GCMs currently
available is the multi-model archive provided by the CMIP
ensembles. A number of recent studies have attempted to use
this archive to quantify the relationship between ECS and
errors in observable aspects of present-day climate simula-
tions. Such relationships occur frequently in PPEs because
both the present-day climate and climatic feedbacks are func-
tions of a small and finite set of parameters. However, these
PPE-derived relationships often do not hold in different model
structures [31, 44], as is the case in the CMIP archives, so
finding ECs that are valid in this context has proven a more
difficult challenge.

A necessary property of an MME-derived EC is a physical
basis, given the relatively limited sampling of uncertainty pro-
vided by current multi-model ensembles [3]. This physical
guidance has been provided by comprehensive assessments
of the magnitude of individual feedbacks (e.g., [6, 37]) that
have revealed that the largest single source of uncertainty in
the climate feedback is the net shortwave feedback at low
latitudes, implicating clouds and particularly low clouds as a
primary influence on ECS in the MMEs (e.g., [38]). This key
role can be understood in part from their strong impact on net
top-of-atmosphere (TOA) radiation such that very small per-
turbations in cloud properties can have a significant radiative
effect. In addition, the representation of low-latitude low
clouds remains a challenge for GCMs, as it relies on the ade-
quate simulation of a diverse set of phenomena. These include
moist and radiative boundary-layer processes, organized con-
vection across scales (from meso-scale complexes to tropical
cyclones), and their interactions with the large-scale circula-
tion. Because convective scales are not currently resolved by
global models, this represents a major challenge for quantita-
tive assessment of future changes. Given this importance, EC
approaches are likely to require an emphasis on cloud and
convective processes.

Another requirement for ECs is that they can be robustly
established with observations. This presents a challenge on
several fronts, as observations of the fields relevant to the
feedbacks governing ECS are often poorly observed, the re-
cords are too short, they are insufficiently accurate to ade-
quately resolve climate feedbacks, and they are strongly
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influenced by uncertain or poorly resolved forcings. They are
also often strongly influenced by internal variability making
the challenge of separating the forced signal from noise a
challenge, irrespective of observational error.

Lastly, motivated in part by the lack of independence
across models in existing MMEs (e.g., [20]), there is a need
to identify the mechanism(s) involved in linking present-day
variability to future changes. In part, the guidance provided by
feedback quantification is necessary here but, by itself, it is
unlikely to be sufficient. Rather, a direct physical linkage,
where both present-day behavior and future changes can be
shown to be functions of the same process, is desirable. How-
ever, as demonstrated in recent work, even in instances where
such a linkage would be expected based on simple mecha-
nisms (e.g., [13]), the connection between the present-day
and future behavior can be complex.

Cryospheric and Water Vapor ECs

While low-latitude cloud feedbacks are known to be a first-
order influence on ECS in models, feedbacks in other fields
and regions also contribute significantly to uncertainty in ECS
(e.g., [11, 43]). Addressing these contributions and providing
an early example of an EC, Hall and Qu [13] assessed the
simulated loss of springtime snow cover in the northern hemi-
sphere normalized by warming and demonstrated its strong
relationship to the sensitivity of snow cover loss under future
warming. Under the assumption that both the present-day and
future snow cover losses are driven primarily by temperature,
rather than changes in snowfall, the study would seem to pro-
vide a simple framework for quantifying a key cryospheric
contribution to ECS. However, despite this seemingly simple
mechanistic connection, the value of this EC is presently un-
clear. Crook and Forster [8] show the extratropical surface
cryospheric feedback in CMIP3 models to be considerably
higher for observations (3.1+1.3 W/m?/K) than models
(0.4-1.2 W/m?/K), despite their exhibiting comparable sea-
sonal sensitivities. Colman [7] also finds a lack of correlation
between surface albedo feedback at climate change and other
timescales despite significant correlations between climate
change, seasonal, and interannual timescales for NH snow
cover, a relationship also evident in CMIP5 models [27].
Another recent EC has been proposed by Gordon et al. [12]
to evaluate the water vapor feedback using observed variabil-
ity from 2002 to 2009 retrieved from the Atmospheric Infrared
Sounder (AIRS) instrument and 14 climate models from
CMIPS. This EC is motivated by the unique importance of
the water vapor feedback (e.g., [6]), as the largest single feed-
back term, and is physically motivated primarily by the long-
recognized role played by temperature in regulating total col-
umn moisture [23]. The short-term regressed variance was
shown by Gordon et al. [12] to agree generally between
models and observations and also was demonstrated to relate
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to long-term forced changes in models under warming. How-
ever, the relative weakness of the relationship combined with
the brevity of the AIRS record highlights the observational
challenges faced by ECs and precluded any tight constraint
on simulated feedbacks, with the authors suggesting that a
record of approximately 25 years would be required to prove
useful.

Cloud-Related ECs

Fasullo and Trenberth [9] explored the structure of the low-
latitude troposphere with an emphasis on the seasonal interac-
tions between moisture, dynamics, clouds, and radiation large-
ly related to the tropical monsoons. To avoid the challenges
involved in comparing modeled and observed clouds, an em-
phasis was placed on variability in relative humidity (RH),
which is widely used in cloud parameterization. To provide
a physical basis for this approach, strong correlations between
seasonal variations in albedo and RH were demonstrated in
CERES and AIRS observations, which many low sensitivity
models failed to capture. A strong negative correlation was
identified between ECS and the mean May through August
RH of the middle and upper troposphere in winter hemisphere
subtropics in the CMIP3 models. It was reasoned that the
processes drying the troposphere served as an indicator of
the interaction between moisture and the tropical circulation
and that a connection to future projections existed via the
expansion of such dry zones with warming (e.g., [33]) and
an associated reduction of clouds. A connection between
ECS and the intensities of shallow and deep components of
the Hadley circulation was also found.

As discussed earlier, Sherwood et al. ([36], Fig. la) ex-
plored connections between shallow convective mixing (i.e.,
between the lower and middle troposphere) and ECS. They
showed that about half of the variance in ECS in 43 CMIP3
and CMIP5 models could be explained by a mixing-based
index, invoking a mechanism such that mixing dehydrates
the low cloud layer at a rate that increases as the climate
warms, and that the rate of this increase varies proportionately
to the initial mixing strength. They found the relationship was
sufficiently well-constrained to imply models with an ECS of
less than 3 °C are inconsistent with the strong mixing values
inferred from radiosondes and reanalyses. While providing a
mechanism linking the present-day and future changes, the
metric used suffers from the relatively large uncertainty in
the observed estimates of mixing.

With the goal of better understanding the role of lower
tropospheric stability in ECS, Qu et al. [28] developed a heu-
ristic model relating marine low cloud amount in regions of
persistent cloudiness to changes in the strength of the top of
boundary layer inversion and SST. In comparing GCM-
derived values to those estimated from observations, they pro-
vide evidence favoring a reduction in low clouds under
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warming, supporting the existence of an associated positive
feedback but with a relatively weak constraint on its precise
value. More recently, Tian [41] relates the magnitude of the
double-ITCZ bias to simulated ECS, finding low sensitivity
models to be particularly flawed in representing its southern
branch. Notwithstanding these findings and those of the
broader EC literature, the exact linkages between the magni-
tude of subtropical cloud feedbacks and present-day climato-
logical biases in CMIP models remain somewhat uncertain
and a challenge to disentangle (e.g., [43]).

Statistical Concerns

Recent work has also highlighted concerns regarding the statis-
tical robustness of EC approaches using the multi-model ar-
chive. Caldwell et al. [3] assessed the significance of predictive
relationships using data mining applied to the CMIP5 archive.
Owing to dependence between models, variables, locations,
and seasons, it was shown that a broad survey of relationships
assuming independence of these factors yielded misleading re-
sults. A new technique for testing the field significance of data-
mined correlations was proposed to avoid such errors. The
resulting frequency of identification of statistically significant
relationships failed to exceed those that would be expected by
chance given the limited number of samples available in the
CMIPS archive, thus implying that physically based mecha-
nisms cannot be validated on the basis of correlations alone.

Such concerns can potentially be addressed by finding mul-
tiple lines of evidence within the archive that support similar
conclusions for ECS. To this end, Huber et al. [16] use a kernel
regression technique, with regression coefficients derived from
CMIP where TOA fluxes correlate well with ECS. Predictions
are based on a number of observational and reanalysis TOA flux
products, using bootstrapping to sample error in the regression
coefficients. A best estimate for climate sensitivity of 3.3 K was
identified with a likely range of 2.7-4.0 K, a range that is shifted
upward from the unadjusted model range. Comparison with oth-
er satellite and reanalysis datasets generally showed similar like-
ly ranges and best estimates, and when all datasets were consid-
ered, the results suggested that values for ECS below 1.7 K were
untenable while values below even 2.9 K were deemed unlikely.
In contrast, exceedingly high values (>4.5 K) could not be ruled
out. Hence, although any individual correlation between ECS
and observables could potentially be dismissed as spurious (fol-
lowing the arguments of [3]), Huber et al.’s analysis create a
distribution of predicted sensitivities from a large number of
correlations, although they are not necessarily independent.
Therefore, to assess the significance of this type of approach in
light of Caldwell et al. [3] will require further study.

Sanderson et al. [32] had a different approach, rather than
relying on correlations between individual variables and cli-
mate sensitivity, they use a bulk multivariate assessment of
model skill to assess whether excluding generally poorly

performing models could constrain ECS in the CMIP5 ensem-
ble, but they find similar conclusions for ECS—a best esti-
mate of 3.5 K and likely (5-95 %) range of 2.8-4.0 K. This
approach is not sensitive to the possibility of spurious corre-
lations because all errors are combined into a single metric,
but can only constrain sensitivity in the sense of down-
weighting a model’s prediction if it performs generally poorly.
In the CMIP5 case, it was found that models with a climate
sensitivity of less than 3 K performed generally worse in their
mean state simulation than the rest of the ensemble, which
suggests a higher likelihood for the upper end of the CMIP5
range of ECS.

However, neither Sanderson et al. [32] nor Huber et al. [16]
offer mechanistic relationships between their assessments of
model skill and ECS, and the use of multivariate metrics
quickly renders all models as inconsistent with the observa-
tions, requiring some degree of arbitrariness when using the
metrics to weight models. Simply stating that all models can
be dismissed as inconsistent with the observations is not ulti-
mately useful, as some model errors are not relevant to the
model simulation of ECS. Rather, it seems likely that future
progress will require a more reasoned and targeted multivari-
ate approach, combining the results of the various process
studies, identifying the multiple feedback processes that con-
tribute to variations in ECS, and determining appropriate con-
straints (if indeed they exist).

Summary and Discussion

The challenge of constraining ECS in part stems from the
difficulties entailed in validating the broad range of processes
involved, the often vague linkages tying mean state biases to
trends, and the unclear connections between internal and
forced variability. Observational uncertainties and challenges
in comparing simulated and observed fields and especially
clouds are also fundamental. The community has access to
two types of flawed ensembles on which to test hypotheses:
PPEs which have potentially very large sample sizes but can
only explore behavior within a single and imperfect model
framework, and MMEs, which are systematically diverse but
insufficiently sampled to make any robust statements based on
correlation alone. Furthermore, analyses of PPEs and MMEs
have remained largely independent, although it seems increas-
ingly clear that any comprehensive assessment of uncertainty
in ECS will need to take account of both parametric and sys-
tematic uncertainties in a single framework.

Nonetheless, in recent years, a diversity of approaches has
been proposed and tested as constraints on both individual feed-
backs and ECS generally, and these can be viewed as serving a
range of purposes. Firstly, when designed appropriately, they
offer an approach for benchmarking model fidelity and provide
associated insights to guide model development priorities
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through highlighting biases that are both physically and statisti-
cally linked to targeted model predictands. Moreover, when cor-
rectly interpreted, they offer qualitative guidance on the potential
implications of model error on ECS and provide a basis for either
weighting or screening the models in PPEs and MMEs. How-
ever, as evidenced by recent assessments of the snow cover
feedback, such constraints, no matter how apparently direct
and physically plausible, may in some instances be uncertain.

Moreover, recognizing the structural and statistical limita-
tions of PPEs and MMEs, it remains doubtful that either can
offer a strong and useful reformulation of the probability dis-
tribution describing ECS based on existing model archives.
Moreover, given that these archives already push the limits of
the available computational infrastructure, providing a frame-
work for fully addressing both structural and parametric un-
certainties in models may lie beyond available capabilities for
the foreseeable future.

These drawbacks do not render PPE or ECs useless, how-
ever. Recent results, summarized in Fig. 1b, generally suggest
an underestimation of ECS by models due to cryospheric and
cloud feedbacks. While no single EC study should be
regarded as definitive, the collective guidance of this literature
broadly fails to support the hypothesis that model error is
responsible for the divergence between GCMs and estimates
of ECS based on simple models and the instrumental record
(e.g., [21, 25]). Rather, it suggests the opposite, with the evi-
dence showing that model error has more likely resulted in
ECS underestimation. The EC literature therefore redirects the
focus of the effort to reconcile instrumental and GCM esti-
mates onto the untested base assumptions and data sensitivi-
ties of alternative approaches.

Recent results also provide a context for reasonable expec-
tations and limitations to be placed on both PPE and ECs.
Ideally, ECs should be robust across model generations; how-
ever, there are circumstances under which one would expect
this not to be the case. For example, as model fidelity improves,
one may expect the related influence of associated biases on
ECS to diminish. Moreover, as models incorporate additional
processes, such as newly parameterized shallow convection and
associated boundary layer clouds in the transition from CMIP3
to CMIP5 (e.g., [11]), it may be expected that new sources of
model error may govern the spread in ECS, thus displacing
previously identified ECs as primary constraints. Given the
broader lack of alternatives for constraining sensitivity and the
limited progress made since Charney et al. [4], continued ex-
ploration of ECs remains a promising approach for better
constraining one of climate’s most elusive sensitivities.
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