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Abstract Extreme temperature events (ETEs), both hot and
cold, have received much attention in the literature because of
their adverse impacts upon society, in particular human health.
Under scenarios of climate change, substantial changes in the
frequency and intensity of ETEs are projected. Here, we
review literature from the last few years that have assessed
recent changes and projected future ETEs, along with
projected impacts on human health. Regarding the impacts
on health, we pay particular attention to the many dimensions
of uncertainty in making these assessments.
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Overview of the Extreme Temperature–Health
Relationship

It has long been known that extremes of thermal conditions,
both hot and cold, are associated with negative health out-
comes. A number of heat wave case studies have been exam-
ined, such as Chicago in 1995 [e.g., 1, 2], Europe in 2003 [3],
Russia in 2010 [4, 5], and England in 2013 [6]. While less
studied, the impact of cold spells has also been examined, in

Russia [7], Europe [8, 9], and China [10–12]. Additionally,
some studies have attributed changes in weather conditions to
human health outcomes [13–15].

In holistic assessments, plots of mortality against any ther-
mal exposure metric yield what is typically called a J- or U-
curve, whereby both extremes typically are associated with
increased mortality [16]. Impacts become more extreme as
conditions do, although given the large differences in frequen-
cy, moderate cold and heat events may outweigh collectively
outweigh the burden of extreme events [17]. While broadly
similar in terms of the overall shape of the relationship [e.g.,
18], the considerable spatial and temporal variability in the
temperature–health relationship has driven much research over
recent years. Vulnerability has been observed to be temporally
variable [e.g., 19–21] and spatially variable [22], with steeper
increases commonly observed in places where extreme temper-
atures are rare [e.g., 23]. There is still a disproportionate num-
ber of studies examining the developed world; however, many
other areas are receiving increased attention, particularly China
[e.g., 24–30] and also India [31, 32], Iran [33], Lebanon [34],
and Thailand [35], among more global studies [e.g., 18, 36].

Explored in further depth, the temperature–health re-
lationship becomes quite complex. In the case of health
outcomes due to excessive heat, much evidence exists
to suggest that negative health outcomes from a variety
of causes are exacerbated, with increases in cardiovas-
cular and respiratory deaths [e.g., 26, 29, 37, 38] far
exceeding deaths directly due causes such as heat stroke
[e.g., 19]. For cold, while there certainly are deaths due
to hypothermia [39, 40], most substantially in parts of
the developing world [41, 42], in many cases far greater
increases in mortality are often seen in respiratory and
cardiovascular causes as well [12], although critically, the
impacts of cold are often seen with a much greater lag than
those of heat [43–45].
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Proper analysis therefore requires the use of some form of
time series modeling, not only to account for the lagged influ-
ence, but also because of mortality displacement, or harvest-
ing, the phenomenon in which a percentage of all deaths as-
sociated with short-term increases in mortality are Bbrought
forward,^ that is, would have happened soon thereafter any-
way [46]. Distributed lag non-linear model (DLNM) time se-
ries modeling [47], which accounts for accumulated impacts
over a specified time interval after exposure, has become a
widely used method over recent years for temperature–health
research [e.g., 19, 26, 28, 29, 48–50].

These questions of lag are part of a broader array of con-
founders in the temperature–health relationship. Assessing the
association between impacts from pollution with those from
temperature has been studied often but not clearly settled [e.g.,
51, 52]; further, the very notion of exposure is difficult to
estimate as Bindividually experienced environments^ vary
widely across short distances, meaning personal exposure
must usually be approximated [e.g., 53]. Thus, the impacts
of excessive temperatures can vary widely on all spatial
scales, depending upon a host of socioeconomic and physio-
logical factors [54].

Further, morbidity and mortality outcomes often do not
show very similar results [e.g., 38]. Far fewer studies have
analyzed morbidity relationships [55–60]. Hospital admis-
sions [54, 61, 62], cardiovascular disease [19, 63], respiratory
disease [64], and stroke [65] have also been considered.

Given the very likely substantial shifts in climate moving
into the future, and the clear connection between excessive
temperatures and health, understanding the temperature–
health relationship in light of climate change is critical.
There has been a substantial increase in studies that have ex-
plored this topic in recent years; we summarize some of the
most critical research below related to present-day trends as
well as projections: first in terms of extreme temperature
events (ETEs), and then in projected health impacts.

Projected Trends in Extreme Temperature Events

Avariety of metrics, including temperature thresholds [49, 52,
66, 67], synoptic patterns [68, 69], and indices [70–74], have
been used to define ETEs. Despite the variability in method-
ology, studies generally indicate recent increases in heat wave
frequency, duration, and strength [75–77]. In examining
various definitions of Australian heat waves, Perkins
and Alexander [78] concluded that the intensity of heat
waves was increasing. The same study showed spatial vari-
ability in regards to heat wave changes with regional differ-
ences existing across Australia. Perkins et al. [79] found that
non-summer heat events were responsible for the changes in
duration, intensity, and frequency in annual heat event trends
in some locations. In Moscow, Rahmstorg and Coumou [80]

estimated that the local warming trend was responsible for
fivefold increase in record heat events. Allen et al. [81] found
urbanization to be a major factor with increasing temperature
extremes in Toronto. Based on 1979–2011, significant in-
creases in the number of heat waves per year were shown
for the USA, with the greatest trends in the Southeast and
Great Plains [82].

Unlike heat, studies have generally shown decreases in the
frequency of cold spells [83–87]. In China, Wang et al. [88]
showed a decreasing trend of cold days and nights from 1960
to 2010 while warm days and nights increased. Kruger and
Sekele [89] and El Kenawy et al. [90] investigated patterns of
extreme temperature events in Spain and South Africa, respec-
tively. In both cases, the frequency and intensity of heat ex-
tremes increased while cold extremes decreased. Liu et al. [91]
showed a decrease in cold surges in Inner Mongolia.
However, spatial variability has been found in some areas,
for example, in Southeast China, Ou et al. [68] found slight
increases in cold surges since the early 1980s. Since 2000,
Peterson et al. [84] showed the fewest cold waves in the
USA compared to previous decades. This is consistent with
other studies which indicate changing air mass characteristics
[92, 93]. Using satellite imagery, Cavanaugh et al. [94] linked
expanding mangrove forests to a decline in severe cold events
in Florida. Despite the overall observed changes, spatial and
temporal variability has been noted [88, 95–97].

Studies have noted an ocean–atmosphere relationship
[98–103] and urbanization [104, 105] both playing a role in
the observed and projected changes to ETEs. For example,
Fontaine et al. [106] analyzed larger scale synoptic patterns
associated with heat wave episodes suggesting that longer
duration of heat waves and shorter intervals between consec-
utive events were linked to the occurrence of negative North
Atlantic Oscillation (NAO) patterns. Similarly, persistent
NAO patterns have been shown to explain cold anomalies
[107]. Sillmann and Croci-Maspoli [108] showed that cold
winter ETEs are influenced by atmospheric blocking patterns
and large-scale changes in these patterns will modify the fre-
quency and spatial distribution of cold events. Rustinucci
[109] also draws attention to the importance local forcing
mechanisms like land use changes in evaluating and
projecting changes in ETEs. Evaluating global extremes,
Song et al. [110] found annual mean increases of 2.7 and 6.4
heat waves and cold spells each decade since the 1980s.
However, despite the increase in land and sea surface temper-
atures, cold spells did not decrease globally.

In addition to evaluating the historical changes in ETEs,
climate projections evaluate the ways that ETEs will occur in
the future. Projections result from specific demographic and
economic change, land use change, technological advances,
and energy consumption. The Fifth Assessment Report (AR5)
of the Intergovernmental Panel on Climate Change (IPCC)
indicates an increase in global surface temperature of 0.85
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(0.65 to 1.06) °C since 1880 [83]. The largest changes have
taken place in high latitude locations [99, 111, 112]. These
changes will continue to impact ETEs as climate projections
indicate an increase of 0.6 to 7.8 °C by the end of the twenty-
first century [113]. As the report states, BIt is virtually certain
that there will be more frequent hot and fewer cold tempera-
ture extremes over most land areas on daily and seasonal
timescales as global mean temperatures increase. It is very
likely that heat waves will occur with a higher frequency
and duration^ [113]. Through the twenty-first century, climate
models indicate some regions that will experience an increase
in heat wave frequency, duration, and strength [114, 115].
Warm nights will increase at a greater rate than warm days
[116]. Research indicates that much of the future changes will
be a result of an increase of seasonal mean temperature [117].
In addition to a warmer climate, small shifts in the temperature
distribution can lead to significant changes in tropical loca-
tions where ecosystems are not accustomed to temperature
variations [116]. Therefore, changes in the mean and distribu-
tion are both relevant in terms of future ETEs.

Using the Coupled Model Intercomparison Project
(CMIP5) RCP2.6 scenario, Wuebbles et al. [118] projected
increases in the number of days on which the temperature
exceeds the mean annual maximum temperature of the
1986–2005 period. By the end of the twenty-first century,
these daily temperatures will be between four and ten times
more frequent. Using the higher RCP8.5 scenario, these ex-
tremes are projected to occur every year across the CONUS.
Sheridan et al. [119, 120] showed significant increases in heat
events in the next century in California, where offensive
weather types doubled in frequency, and the likelihood of
long-lasting heat events of at least 2 weeks increased tenfold
along the coastline. With decreased cloudiness and rainfall,
Lelieveld et al. [121] used a regional climate model
Providing Regional Climates for Impact Studies (PRECIS)
and found increasing episodes of heat irrespective of emission
scenario. They study also highlighted the role of air pollution
in metropolitan areas and the relationship to ETEs. In addition
to increases in temperature, studies suggest increasing heat
stress being amplified by soil moisture–temperature feedbacks
which impact local humidity characteristics [122, 123].
Despite warming, Kodra et al. [124] showed that while fre-
quency of cold events may decline, intensity and durationmay
persistent throughout the twenty-first century. However,
whether these changes are a result of mean temperature or
temperature distribution remains unclear [125, 117].

In regards to future changes in ETEs, models indicate strong
consensus [116, 126]. However, Clark et al. [127] notes the
uncertainty associatedwith internal variability andmodel scenar-
ios. Orlowsky and Seneviratne [126] highlight the importance of
drought and dryness in future scenarios. Future land use changes
[100, 103, 109] and large-scale atmospheric patterns [108, 128]
are also important factors that will influence future ETEs.

Projected Changes in Health Impacts

With very long-term records [e.g., 129], a decreased sensitiv-
ity to both extremes, cold and hot, particularly across the de-
veloped world, is apparent. While difficult to thoroughly as-
sess, more recent changes in the heat–mortality relationship
are thought to be at least somewhat due to increased aware-
ness and heat warning systems [20, 130] or broader adaptation
[131].

Over the last several years, there has been a sharp
increase in the number of research articles projecting
changes in human health impacts from extreme temper-
ature events [e.g., 132, 133]. As with retrospective re-
search, most research focuses on projections of changes
in either mortality or mortality rates. Recent papers pre-
dict broad increases in heat-related mortality [e.g., 119,
134–142]. Some recent papers have compared heat-
related mortality projections to those of cold-related mor-
tality, with mixed results in terms of how the two compare in
the future [e.g., 34, 143, 144].

All assessments of future extreme temperature-related
impacts need to account for several important issues.
While the impacts on heat on human mortality are un-
disputed, projecting these into the future is complicated.
First, there are the uncertainties intrinsic to all climate
change-related studies, including scenario-related uncer-
tainty [e.g., 136] as well as differences among models
[e.g., 141]; Gosling et al. [145] showed considerable
uncertainty depending upon climate model physics.
Much of the broad ranges observed exist based on the
fact that temperature-related mortality estimates are
based on the steep slopes at the uppermost end of the
distribution of temperature and that small differences in
projections of or changes in this tail can have excessive
influence on final mortality tolls. Inter-research differences
can also be attributed to differences in how heat and cold
events are defined [e.g., 70, 71, 146].

Beyond these concerns, there are several other critical fac-
tors that affect temperature-related mortality impacts. With
substantial age-related differences in vulnerability, demo-
graphic changes, particularly in the rapidly aging developed
world, may lead to a greater increase in numbers of lives
affected than that associated with changes in climate [119];
uncertainty in terms of population projections will also affect
results. Further, assessing the dose–response relationship in
the future involves numerous assumptions. As noted above,
the relationship between temperature and mortality has
changed over time in many places [20], generally decreasing.
Assumptions are made as to how this may or may not change
in the future. Acclimatization may well reduce vulnerability
[e.g., 137], as can more proactive measures such as increased
awareness through warning systems or urban design to reduce
heat island impacts, countering broader scale temperature
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increases and thus mitigating some mortality increases [134].
However, any assessment of heat vulnerability must also ad-
dress some other key aspects, such as the non-linearity of the
temperature–mortality relationship and how to account for
lagged effects and mortality displacement [147, 148], and also
the potential for unprecedented events whose impacts may be
impossible to ascertain in advance [149].

In broader context, research also has assessed whether the
health Bsavings^ from reduced cold-related mortality may off-
set, or even exceed, increases in heat-related mortality. As
noted in section I, heat-related mortality and cold-related mor-
tality require different fundamental assumptions when they
are analyzed and so are difficult to assess and compare. It is
thus unsurprising that some studies suggest that cold-related
mortality reductions will offset increases in heat-related mor-
tality [e.g., 34, 144], while others do not [e.g., 143, 150].
Some of this may be the ambiguity of the question; Hajat
et al. [144] reported projected increases in heat-related mor-
tality in the UK of 257 % by the 2050s, compared with a 2 %
reduction in cold-relatedmortality, yet cold still remains by far
the greater burden, in part due to aging. This noted, one big
uncertainty of comparison studies of this sort is the difference
between season-related mortality (that is, that mortality rates
nearly universally are higher in winter than summer)
compared to temperature-related mortality. Some re-
search has suggested that warmer winters will decrease
mortality [151], while other work has suggested that
climate change may not theoretically change winter
mortality in a warmer world, as season may be the
more critical factor [152], and given that warmer cli-
mates tend to have steeper mortality slopes on the cold
side, a warmer climate may yield similar numbers of deaths,
only on fewer days [23].

How these projections may affect policy is also a subject of
research. While heat response plans, improved health care,
and awareness have likely worked well in reducing mortality
[130], particularly in the developed world, intervention plans
could be developed further, to provide more fully access to
shelters and more adaptive social service agencies to address
these future challenges [153]. With improved technology and
data, data on critical factors, including physical ones such as
the urban heat island, social ones such as crime, poverty, so-
cial isolation, and behavioral ones such as use of air condi-
tioning or cooled public spaces, can collectively be analyzed
to more precisely target vulnerable populations [54]. With the
projected mean aging of the world’s population, particularly in
the developed world, accommodating the substantial increase
in absolute numbers of elderly may prove the most significant
challenge; other socioeconomic changes, such as increased
obesity rates, may play pivotal roles as well [154].
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