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Abstract This paper summarises the current state of under-
standing with respect to the added value (AV) to be expected
from one-way nested high-resolution regional climate sim-
ulations and projections. The reasons that lead to the
development and the progress of regional climate models
(RCMs) are first considered. The scientific basis sustain-
ing the RCMs mission is then briefly reviewed. Based on
recent publications of studies on the topic of AV, concepts
related to the various definitions of AV are examined with
the aim of clarifying their meaning and of bridging differ-
ent schools of thought. The conditions under which AV can
be expected, and in which variables and statistical moments,
are also discussed.
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Introduction

The Need for Downscaling in Climate

Global climate models (GCMs) constitute the primary and
most comprehensive tools to study the processes in current
climate and to investigate the characteristics of potential
future climates. GCMs contain components describing
atmospheric, oceanic and land-surface processes, including
sea ice and other components of the Earth’s system that
influence the climate on time scales ranging from hours
to several hundred and even thousand of years. Due to
the complexity of the physical processes described (e.g.
carbon cycle, atmospheric chemistry, aerosols), the variety
of external forcings considered (e.g. greenhouse gases and
aerosols emission scenarios), the need for ensembles of
very long simulations and the limitations in computing
power, modellers are forced to use rather coarse computing
meshes for GCMs compared to numerical weather predic-
tion models, which precludes a detailed representation of
fine-scale processes in the climate system. The current typi-
cal horizontal grid spacing of the atmospheric component
of state-of-the-art GCMs participating in the fifth Cou-
pled Model Intercomparison Project (CMIP5) on centennial
scale is about 3◦ (e.g., [29]).

Several improvements can be expected from increased
resolution in climate model simulations (e.g. [65, 80]).
Numerical truncation error in the discretization of the field
equations is automatically reduced with the use of finer
computational grids, which in principle, should lead to
improved simulations [43]. Furthermore, the use of finer
computational meshes permits the explicit representation of
small-scale processes that are precluded in low-resolution
simulations. These include for example mesoscale circu-
lations, the improved nonlinear interactions between large
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and small scales, and the development of specific hydro-
dynamics instabilities. The concomitant increase in the
resolution of surface fields such as topography, coastal lines,
inland water bodies and islands, also allows for the rep-
resentation of a wide range of surface-forced processes
that exert important local climate effects, some of which
may even have synoptic- and planetary-scale influences.
For example, in regions of complex topography, the use
of a finer grid mesh allows resolving smaller scale near-
surface temperature gradients due to the better-described
orography and the general variation of air temperature with
altitude [22, 60]. Another example is given by the interac-
tion between middle-latitude synoptic weather systems and
a higher-resolution topography; the improved representation
of higher mountains may enhance the rain-shadow effect in
the lee side of the mountains, influencing the precipitation
locally but also far from the mountains (e.g. Fig. 6 of [45]).

A distinct challenge associated with increasing resolu-
tion, however, concerns the adaptation of the parameteri-
zation algorithms used to represent the ensemble effect of
subgrid-scale processes (e.g. [5, 37, 43, 58]). The absence
of suitable recalibration can partially offset or even coun-
teract the benefits arising from the higher resolution. It is
generally expected, however, that after suitable recalibration
to adapt the parameterizations to the increased resolution,
improvements in the simulated climate would ensue.

The motivation behind producing higher resolution cli-
mate simulations is not only related to scientific arguments
of the type described above. Future changes in the climate,
in its mean, variability and extremes, may have significant
societal effects due to their impact on human activities such
as agricultural food production, water management, energy
consumption and production, as well as on infrastructures,
health and ecosystems. The study of potential impacts and
the development of adaptation strategies to mitigate climate
changes require trustworthy climate information at differ-
ent spatio-temporal scales, including knowledge of changes
within countries, provinces and even cities (e.g. [4]). The
need for climate information at very fine scales hence
constitutes a strong incentive to perform higher-resolution
climate projections.

Development of the Nested RCM Approach and Expected
Outcomes

In order to circumvent the limitations of current low-reso-
lution GCMs and practical difficulties of making opera-
tional high-resolution global climate simulations, several
so-called downscaling techniques have been developed
(e.g. [29, 32]). Downscaling techniques attempt translat-
ing large-scale low-resolution atmospheric fields into local,
high-resolution information of the climate variables of

interest. Downscaling techniques can be classified into
two main categories: dynamical downscaling and statistical
downscaling; see the reviews by Giorgi and Mearns [32] and
Rummukainen [64] for the former and by Maraun et al. [51]
for the later.

In this article, attention will be focused on dynamical
downscaling using one-way nested, limited-area, regional
climate models (RCMs) [78]; the alternative dynamical
downscaling technique using global variable-resolution grid
models (e.g. [2, 18, 30]) will not be discussed here. The
dynamical downscaling approach using RCMs was initiated
by the seminal work of Giorgi and Bates [31]. It consists
of using time-varying large-scale atmospheric variables
(usually winds, temperature, water vapour and surface
pressure) and sea surface conditions (temperature and sea-
ice cover) obtained from interpolation of coarse resolution
GCM-simulated data or historical analyses (reanalyses) to
drive a higher resolution model over a limited region of the
globe. The key challenge behind the application of RCMs is
to reap the benefits of higher resolution while avoiding the
possible drawbacks arising from the use of nesting over a
limited domain (e.g. [47]). Years of investigations have led
the regional climate modelling community to believe that
RCMs can improve small- and medium-scale features that
are either absent or poorly represented in the coarser boun-
dary conditions (e.g. [20, 28, 37, 44]). Whether RCMs can
and should improve some of the larger-scale fields provided
in the boundary conditions remains debated within the com-
munity [23, 76]. The large-scale conditions used to drive the
RCM are generally referred to as the lateral boundary con-
ditions even if, in some cases, interior nudging of the large
scales is also applied (e.g. [36, 55, 79]). To avoid poten-
tial confusion, the RCM driving fields will henceforth be
referred to as global driving data (GDD).

Given that dynamical downscaling is a relatively new
technique, a good part of the work since the inception of
RCMs was devoted to issues related to their development to
ensure their technical feasibility and to optimise the results.
Once these aspects had been positively answered, practical
interest in their application grew at a fast pace, as did the
expectations of the climate change impact community. As a
result, a number of projects have produced regional climate
projections using RCM ensembles including, but not lim-
ited to, PRUDENCE [10], ENSEMBLES [75], NARCCAP
[54] and NARCliM [26]. A more global (multiple regions
around the world) and more comprehensive (broader range
of downscaling approaches) project is currently underway
(CORDEX; [33]). Simultaneous with the development of
the mentioned projects, investigations regarding the actual
benefits of using RCMs were taking place; this quest came
to be called “the added value issue” and today, is the focus
of much attention in the RCM modelling community as
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can be seen in the large number of papers published on it
(see recent reviews by Hong and Kanamitsu [37] and Xue
et al. [84]) and of presentations in recent conferences and
workshops (e.g. [1]).

The aim of this article is to carry a conceptual review of
several issues associated with the added value (AV) afforded
by RCMs in dynamically downscaling low-resolution cli-
mate analyses or GCM simulations and projections. The
paper is organised as follows. The next section briefly
describes various ways in which RCMs can be evaluated
and discusses alternative meanings of “added value”. Fac-
tors Influencing the Added Value discusses the main factors
that exert an influence on added value. Finally, Discussion
and Conclusions summarises and concludes.

What Added Value Means

General Evaluation of RCMs

A key element in the development of any approach trying
to describe or predict some aspect of the natural world is
its evaluation. That is, in order to quantify how reliable a
numerical model is and how confident we can be about its
simulations and predictions, model results should be com-
pared either with known solutions in idealized frameworks
or with observations in the real world (e.g. [62]).

A usual way to evaluate simulations from a climate
model (CM), whether global or regional, is to test its abil-
ity to simulate some climate statistics of the recent past
(XCM) by comparing with the corresponding climate statis-
tics obtained from observations (XOBS). In this case, the
climate model performance can be quantified using some
statistical metric d (e.g. the mean square error) to measure
the “distance” between the simulated and observed climate
as

O = d(XCM, XOBS) (1)

When the statistic is multivariate, specific weights are
assigned to individual variables in the calculation of the
metric. Obvious as it may sound, this kind of evaluation is
challenging as it requires observations at a similar resolu-
tion and spatial coverage as the simulated fields. It is worth
mentioning that by “similar resolution” we do not mean a
nominal resolution such as that claimed by many databases
in areas of sparse observations. For example, the database
CANGRID [77] comes on a 50-km grid, but in some of the
covered regions stations, can be more than 500 km apart.
While for GCMs the evaluation is made difficult due to
large regions with poor coverage (e.g. over the oceans),
for RCMs, the difficulty comes from the scarce availabil-
ity of high-density observations nearly everywhere, which

strongly limits the observational evaluation to a few vari-
ables over specific regions around the world (e.g. [13, 19,
38, 67]).

Another approach to evaluate an RCM is to verify its abil-
ity to reproduce the climate simulated by a global model at
the same resolution and with similar formulation. This type
of evaluation is denoted as a “perfect model” approach and,
following Eq. 1, it can be quantified as follows:

PM = d(XRCM, XHRGCM) (2)

where XHRGCM represents the climate statistics of the
high-resolution GCM simulation and PM denotes a perfect
model-type evaluation. This perfect model approach has
been extensively discussed in the context of the Big Brother
Experiment (e.g. [3, 11, 14, 17, 23, 48, 66]). An advantage
of the perfect model approach is that it does not require
observations, and hence, it can be used to evaluate in detail
the possible drawbacks of running over a limited area.
Furthermore, it can be used to evaluate the ability of RCMs
not only to simulate the present-day climate but also the
future climate and climate changes, although so far we are
not aware of any study of the latter type.

Another way to evaluate the skill of RCMs consists in
assessing the comparative performance of the RCM sim-
ulation and its GDD in representing the present climate
over a given region. This kind of evaluation arises natu-
rally from the fact that the RCM is not a self-contained tool
and needs boundary conditions to simulate the climate of a
given region. As a consequence, an essential requirement for
an RCM to be useful is that its simulation improves some
aspect of the climate compared to that of its GDD. The com-
parison of the relative performance of the RCM and its GDD
is generally designed as the study of the added value (AV) of
RCMs. The AV can be quantified by comparing the distance
metric between the GDD and the observations on one hand,
and between the RCM simulation and the observations on
the other:

AV = d(XGDD, XOBS) − d(XRCM, XOBS), (3)

Defined this way, the AV is positive whenever the dis-
tance (i.e. error) between the RCM and observations is
smaller than the one between the GDD and observations.
This AV type of evaluation could also be applied in other
contexts such as evaluating whether a new version of a
model improves upon an earlier version. As with the obser-
vational approach (see Eq. 1), the AV evaluation requires
high-resolution observations and hence, can only be per-
formed for a limited number of climate variables over some
regions of the world. However, as will be discussed later,
Eq. 3 does not constitute the only way to evaluate the AV
and other ways should be contemplated to reflect possible
improvements in broader aspects of the simulation.
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It is important to make some general remarks about the
various RCM evaluation approaches described above. All of
them rely on the use of some metric d—and its associated
weights in the case of multivariate statistics—to measure
the difference between the climate of a simulation and some
reference. The metric is usually selected depending on the
application of interest, although there is often a lack of infor-
mation about its relevance to characterise the predictive skill
of climate models. As discussed by Gleckler et al. [34], the
choice of metric is arbitrary and hence there is no objective
way to evaluate the overall performance of climate models
and to identify the “best” climate model. Furthermore, there
is no way to ensure that the apparent best performance is not
due to compensation of errors in the model, hence giving a
false sense of confidence.

In addition, due to the internal variability of both driv-
ing model and RCMs, it is difficult to establish statistically
robust figures for these metrics (see [47] and [21]). For
experiments to be effective, it is then necessary to work with
either rather long simulations or several ensemble members,
which is uncommon in multi-institutional RCM ensembles
[54]. What makes this situation even more difficult is that
internal variability is higher in smaller spatial and temporal
scales as well as in extreme values, precisely where RCMs
added value is expected to thrive [12, 50].

It is also important to highlight here that, although the
different types of evaluation are related with each other,
no simple inferential relations can be drawn between them.
For example, if an RCM scores well in the context of a
perfect model experiment, this does not imply that there is
some AV nor that the RCM performs well when compared
with observations. Similarly, the climate of an RCM can be
fairly close to the observed climate and even show improve-
ments compared to the GDD, and still fare badly in a perfect
model-type evaluation. This tells us that all evaluations dis-
cussed above have something to teach us, and this explains
why they represent important research activities of the RCM
community.

On the Various Meanings of Added Value

For the reasons discussed in the last section, the determina-
tion of the skill of a climate model or the value added by an
RCM simulation is ultimately dependent on some arbitrary
choices made by individual researchers. Moreover, the fact
that there is no specific definition of what AV means implies
that there is no formalism nor systematic approach that is
universally accepted. A review of the literature reveals that
AV may take a variety of meanings. While some authors per-
form the assessment of AV using quantitative metrics (e.g.
[15, 24, 40, 59]), others may use qualitative assessments
such as visual comparison of maps or of the complexity of
some phenomenon (e.g. [49]). Also, while in many studies

the mere fact that an RCM produces small-scale features
that are absent in the GDD has been considered as AV (e.g.
[7, 72]), other studies considered this as “added variability”
that can potentially lead to some AV, conditional to other
factors (e.g. [6, 20, 22]). In what follows, we will describe
and argue about a number of categories of what we believe
can be considered as AV. The list is probably incomplete, but
we hope that some of the principles behind the categories
are meaningful.

A simple and straightforward way in which an RCM can
add value is by improving the score of some metric com-
pared to the GDD. This type of AV, hereafter denoted by
“observational AV”, has the advantage of being easily quan-
tified using some equation of the type presented in Eq. 3.
Furthermore, the AV as presented in Eq. 3 can be normal-
ized in such ways that a direct comparison can be performed
for the AV arising from different variables (e.g. precipitation
vs. temperature), statistical properties (time average vs. 95th
percentile) and/or distance metrics (mean square error vs.
spatial correlation). Hence, these types of comparisons are
particularly useful when trying to compare the influence of
various factors on the total AV (e.g. flat vs. complex topog-
raphy regions). The normalization processes may be also
useful when the overall AV of the RCM technique needs
to be evaluated in a similar way as done when evaluating
the overall performance of GCMs (e.g. CMIP3 vs. CMIP5
GCMs) [34, 80].

There is, however, an important drawback associated
with the observational AV approach. As discussed before, its
evaluation is limited to climate statistics for which reliable
and consistent observations are available for comparison. As
a consequence, there may be several aspects of the RCM
simulation that are systematically improved (deteriorated)
compared to the GDD but for which no assessment can be
performed. One example may help to illustrate this point.
It has been shown that RCMs systematically improved the
simulation of the spatial patterns of 2-m temperature com-
pared with the GDD in regions of complex orography [22,
27, 60]. As discussed by Di Luca et al. [22] and Prein et al.
[59], this improvement is largely related with the general
relation between temperature and terrain elevation: the more
detailed representation of terrain elevation gradients in the
RCM creates stationary temperature gradients due to the
general decrease of temperature with height. The fact that
this improvement appears to be systematic and that it is
based on a relatively simple process suggests that it may
be expected over most regions where complex topographic
features exists, although the observational data may not
be available to confirm it. It is worth noting at this point,
although it will be discussed later in more detail, that when
added value has such a straightforward origin, it is also
probably easily attainable with simpler methods, such as a
rudimentary post processing.
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Another example may be related with the fact that RCMs
can extend the variance spectra to higher frequencies and
wave numbers by adding fine-scale variability that was
absent in the GDD. Even if no direct observations may
be available to verify the quality of these small scales,
a theoretical relation such as the well-known spatial-scale
dependence of the atmospheric kinetic energy spectra in
the free troposphere [68, 72] can be used to assess the
plausibility of the downscaled fields.

An additional negative effect of the lack of observations
available for comparison is that they do not allow for a
comprehensive evaluation of the AV that could help to
understand the physical causes for the improvements/-
deteriorations. Commonly, the climate statistics that can
be evaluated (such as biases of time-mean precipitation
or 2-m temperatures) lead to very few insights on which
and how the physical processes act in concert to give a
particular AV. As a consequence, a given score may be dete-
riorated/improved by the RCM compared with the GDD,
while the formulation of some of the underlying processes
may be improved/deteriorated.

Based on such considerations, it may be convenient to
define a second category of AV, here denoted as “conjec-
tural AV”, to characterise the AV in those climate statistics
for which no observational estimations are available but that
are either firmly supported by theoretical considerations or
by a number of studies realised under similar circumstances.
Clearly, the determination of the conjectural AV is more
subjective than that of the observational AV because one
has to decide whether or not evidence supporting a partic-
ular assertion about the AV is strong enough to extrapolate
the result. This conjectural AV can also be used to argue
that, for example, representing hail in a physically sophis-
ticated manner as done in RCM simulations performed at
convection-permitting scales (with grid spacing of a few
kilometers) is an AV even if opportunities for its verifica-
tion are scarce. An interesting aspect of the conjectural AV
is that it can be used to assess the AV of RCMs in future
climate simulations; that is, the extension of the AV to the
future climate can be done through the conjectural AV.

Another interesting way to characterise the possibility of
an RCM-produced AV is through the potential AV (PAV)
concept [6]. As argued in [20, 21]), a necessary condition
for RCMs to add some value at fine scales is that the field
of interest contains some structural small-scale richness. For
example, geopotential height is strongly dominated by large
scales, hence giving little chance to add any value in smaller
scales. While the absence of fine-scale information (i.e. lack
of PAV) is a proof of lack of AV in the small scales, the pres-
ence of PAV does not imply however that there is some AV.
This is because the error of the RCM-simulated small-scale
variability may be larger than the variability itself (see [21]
for a more detailed explanation). An important advantage

of the PAV framework is that it does not need observations
and so it can be applied equally to present and future cli-
mate simulations. That is, as with the conjectural AV, the
PAV framework can be used to assess necessary conditions
for RCMs to add value in future climate and climate change
statistics.

In addition to these alternative ways of looking at AV,
it is also important to consider the AV from the users per-
spective. For example, if the estimate of the uncertainty
of climate changes is important to users, they may choose
to use GCMs rather than RCMs independently of any AV
present because the larger size of GCM ensemble members
may allow for a better estimate of the model uncertainty
through projection spread. It is worth noting that this choice
is not without some risk of losing valuable information,
such as when the variable of interest is dependent on strong
local processes. On the other hand, other users aiming at
performing impact studies may prefer RCM simulations,
even without a tangible proof of any kind of AV, due to the
greater level of detail and the more realistic temporal vari-
ability compared to GCM data. What these examples say is
that, from the user standpoint, there are several other ele-
ments in addition to explicitly documented AV that come
into the choosing between global or regional models [8].
As emphasized by Barsugli et al. [4], many users will take
weighty decisions based on the information provided by cli-
mate change projections. Hence, the search for AV and its
role in helping practitioners and decision makers becomes
far from academic. In this conceptual review, we have cho-
sen not to pursue the topic from this perspective despite
its importance for reasons of space and of lack of expe-
rience of the authors. Progress from this point of view is
taken place, however, particularly in validation of down-
scaling methods to produce information that is both action-
able and defensible (see activities of VALUE network in
[52]).

Factors Influencing the Added Value

In this section, we discuss a number of factors that may
strongly influence the amount of AV and we separate them
in two categories: those depending on the numerical exper-
imental design and those depending on choices related with
the particular climate statistics to be evaluated. Several
aspects of the first category were largely discussed in a
recent review paper by Xue et al. [84] who found that in
a number of studies they reviewed, RCMs add value only
under an adequate choice of parameters such as the size and
location of the domain, and of model components such as
convective, land-surface or numerical schemes. What con-
stitutes an adequate choice is difficult to assess “a priori”,
however. Here, we focus our attention on more formal
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arguments to discuss how some particular choices of the
experimental design can influence the expected AV.

Figure 1 shows three of the choices to be made when
designing an RCM experimental set-up that can have impor-
tant consequences on the amount, kind and meaning of
value added by an RCM. As highlighted by Castro et al.
[7], one important choice is given by the type of GDD used
to drive the RCM that, in a climate studies context, can
be reduced to either reanalyses or GCM-simulated fields.
When using reanalyses to drive the RCM, the upper limit
we can aim for is to generate a proxy for a high-resolution
reanalysis, using dynamical downscaling as a much sim-
pler method than a full-fledged data assimilation system, i.e.
“poor-man reanalysis” (e.g. [39, 70, 74, 79]).

Given that reanalyses data constitute the best guess of
the large-scale conditions, it is not expected that the RCM
could be able to improve upon those large-scale variables
that are used to drive the RCM itself. It may happen, how-
ever, that the RCM simulation improves some non-driven
variables at large scales (such as rainfall) although the main
AV is expected in the small-scale features (small is here rel-
ative to the effective resolution of the reanalyses). The AV of
reanalyses-driven RCM simulations can be explored using
both the observational and the conjectural approach.

It is important to keep in mind, however, that the grid size
of a reanalysis is not a good proxy for the scale of a phe-
nomenon to be captured, unlike the case with GCMs. For
example, let us take the case of large topographic forcing,
such as that of the Rocky Mountains. Since reanalyses are
fed by observations of the real world affected forcings at
all scales, using an RCM with a resolution higher than that
of the reanalysis will not necessarily materialize in measur-
able gains. Improvements may appear as a result of an RCM
being more apt locally than the reanalysis and being able to
produce a more realistic spatio-temporal spectrum.

When driven by GCMs in present climate, dynamical
downscaling should make the simulated weather more real-
istic and statistically closer to observations due to the deve-
lopment of small-scale and topography-related phenomena
that are poorly developed or unresolved in GCMs. Con-
ceptually, we aim at reaching the standard of what would
be obtained by running a GCM at the same resolution as
the RCM (i.e. high-resolution GCM), except for improve-
ments in the very large-scale circulation that cannot be
achieved by one-way dynamical downscaling. Again, the
AV of GCM-driven RCM simulations can be studied using
both the observational and the conjectural approach, but the
results should be analyzed with caution due to the propa-
gation of errors from the GDD. For example, a bias in the
driving model may be in some cases amplified by improving
the description of certain phenomena. It has been suggested
by some (e.g. [61]) that a useful test for RCMs would be
to study whether they can improve upon the GCMs skill at

reproducing the slow-evolution component of the observed
climate, such as decadal fluctuations. It has been argued,
however, (e.g. [46]) that in addition to the issue of the propa-
gation of errors from the GDD, such test is hampered by
the difficulty of separating the component of climate varia-
tions that results from changes in forcing (whether natural
or anthropogenic) from the natural variability due to the
chaotic nature of the climate system.

Finally, the last case is when RCM are driven by GCMs
in future climate projections. Clearly, because we do not
yet know the future and there does not exist a proxy for
similar changes, only the conjectural and potential AV can
be evaluated, as discussed in On the Various Meanings of
Added Value section. Pielke et al. [57] have argued that
RCMs AV in reanalyses-driven simulations does not neces-
sarily imply AV in GCM-driven projections, due to the prop-
agation of errors from the GDD. A counter argument could
be made that processes strongly influenced by local forc-
ings (such as snow-albedo feedback, complex orography
or coastal lines) clearly benefit from increased resolution,
independently of the GDD and perhaps their biases.

Another important choice to be made during the experi-
mental set-up design that may influence the amount of AV is
related to the horizontal resolution jump between the RCM
simulation and the GDD. In general, the use of a single
nest grid allows decreasing the horizontal spacing by about
a factor five compared with the boundary conditions (e.g.
from 250 to 50 km), although larger jumps have also been
realised successfully [71]. Larger resolution jumps can also
be performed by using multiple nested grid simulations with
larger domain coarse-mesh simulations successively driv-
ing smaller domains with finer meshes simulations [9, 26].
Although the multiple nesting approach may allow in princi-
ple to decrease the grid spacing as much as is desired, errors
propagating across the boundary may limit its application
to some extent. It is worth mentioning that the resolution
jump is not always a simple matter of choice: sometimes,
it is imposed by resolution needs. By this, it is meant that
some topographic features such as a valley, or weather phe-
nomena such as convective systems [41] cannot be well
simulated before reaching a certain resolution (e.g. [9]). It
is clear that any dynamical downscaling approach that does
not reach the critical resolution proper to each phenomenon
will underperform with respect to its potentiality.

An additional aspect of the experimental set-up that may
affect the amount and robustness of AV is related to the
ensemble size. As is well known, it is generally difficult to
determine whether the AV arises due to the higher resolu-
tion of the RCM or whether the particular RCM being used
performs better than the lower-resolution GCM. As a conse-
quence, it seems that the only way to identify improvements
that are related to some intrinsic characteristic of the dyna-
mical downscaling technique and independent of a specific
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Fig. 1 Choices in the design of
the experimental setup that will
influence the AV to be found in
a subsequent analysis

Experimental
set-up

Resolution’s
jump

Boundary
conditions

Robustness
1- Single run

2- Multi member
3- Multi model

1- Reanalysis data
2- GCM present-
day simulation
3- GCM future-

climate projection

1- Single nest
2- Multiple nests (i.e.,
cascade approach)

RCM is through the use of a large ensemble of RCM-GCM
pairs of simulations. As shown by Watterson et al. [80],
increases in the horizontal resolution of GCMs do not lead
to unequivocal improvements in the simulated climate when
considering individual GCMs, but they show a consistent
overall improvement when considering results from sub-
ensembles of GCMs grouped according to their resolution.
Limitations in computational resources, however, constrain,
the actual number of GCMs that can be downscaled and
so, objective approaches are needed to efficiently select a
sample of GCMs as GDD [26, 53].

An important aspect of the experimental set up when con-
ducting very high resolution, convection-permitting RCM
simulations (horizontal grid meshes smaller than about
4 km) is related with the use of explicit convection instead
of the parametrized representation. Using an ensemble of
RCM simulations, Prein et al. [59] showed that convection-
permitting simulations improve upon the parent simulations
with an implicit representation of convection (with grid
spacing of 10 km) mainly by improving the diurnal cycle
of summer precipitation and intensities of very extreme pre-
cipitation events. A deeper insight on the potential benefits
and problems of convection-permitting simulations is given
in a recent review article by Westra et al. [81]) and in the
study by Kendon et al. [41].

Figure 2 shows various factors that define a given cli-
mate statistic and that can strongly influence the amount of
AV for a given experimental set-up. Given that the main dif-
ference between the climatic information provided by the
GDD and by the RCM is related with their horizontal reso-
lution, it seems natural that the AV will depend on the spatial
scale of analysis. Various studies have assessed the AV gen-
erated by RCMs using some spatial scale-decomposition
method [6, 20, 22, 27]. For example, [20] separated the AV
in two components, denoted by AV1 and AV2, with AV1
representing the AV related with the small scales permit-
ted by the higher resolution (i.e. scales only represented in
the RCM) and AV2 representing the AV arising at relatively

large scales (i.e. spatial scales common to both the GDD and
the RCM) that results from the upscaling of fine scales into
large scales.

The finer resolution afforded by RCMs also implies that
shorter temporal scale processes can be explicitly simulated.
As a consequence, AV may be expected to depend on the
time scale of the phenomenon studied. For example, [20]
have shown that the PAV of RCMs when looking at the
95th percentile of precipitation was much higher for 3-h
data than for daily or 15-day averaged data. Variables with
spatio-temporal spectra dominated by large scales—such
as temperature in the middle troposphere—are less prone
to provide AV, while in variables with flat spectra—such
as precipitation or water vapour—small-scale components
contribute more importantly to the total variance and to local
extremes where AV may be found.

RCM climate statistics and their associated AV can also
be strongly influenced by the nature and relative importance
of forcings (e.g. stationary or transient) that characterise the
particular region/season of interest (see “Forcing source”
category in Fig. 2). Extensive research [16, 20, 22, 27, 60,
63, 69, 83] has shown that, no matter the statistical prop-
erty considered (e.g. long-term mean, 99th percentile), a
certain amount of AV can be expected in those regions char-
acterized by important fine-scale surface forcings, thanks
to the enhanced richness of surface characteristics at higher
spatial resolution. However, the AV arising from stationary
forcings is generally not obvious in spatially homogeneous
regions where fine-scale surface forcings are weak (see
section 9.6.4 of [29]); a list of several studies where added
value was detected in mesoscale phenomena and extremes is
also given in the same publication. In homogeneous regions,
fine-scale AV can only arise from fine-scale transient fea-
tures such as convective processes, mesoscale phenomena
(e.g. low-level jets) and perhaps some better-resolved syn-
optic patterns (e.g. frontal precipitation).

In close relation with the type of forcing influencing
the climate statistic of interest is the particular statistical
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Fig. 2 The choice of the
climate statistics will also have
an influence on the amount of
AV. The various factors that may
change the amount of AV are
detailed in this chart

Climate
Statistic

Vertical
location

Forcing
source

Spatio-
temporal
scales

Statistical
moment

Quantity
type

1- Climate statistic
2- Climate change statistic

1- Near surface
2- Free atmosphere

1- Stationary
(e.g., topography).

2- Transient (e.g., hy-
drodynamic instability)

1- Fine scales.
2- Large scales (i.e.,

GCM resolved)

1- Mean.
2- Variability
3- Extremes

property that is considered. Temporal and spatial averag-
ing tends to filter out the variability induced by transient
forcings and therefore, to highlight the transient effects, it
is necessary to make use of statistical properties quantify-
ing the variability and the extremes of the distribution (e.g.
standard deviations, high percentiles, etc.).

The role of the Earth’s surface in exchanging momentum,
heat and humidity with the atmosphere—through topo-
graphic features such as mountains, coastlines, open bod-
ies of water or any spatial inhomogeneity on the Earth’s
surface—makes the lower troposphere a particularly rich
region for finding AV. Leduc and Laprise [48] have shown
that the potential of AV on atmospheric variables is largest
near the surface. This is due to the fact that low-resolution
features entering the domain have two main reasons to
be less affected at higher levels: (1) the proximity of the
surface facilitates the creation of small-scale features by
surface forcing and (2) high-level winds are stronger, mak-
ing the spatial spin-up of small scales longer. Hong and
Kanamitsu [37] stressed that most of the AV is expected in
simulated variables that either depend strongly on the phys-
ical processes (e.g. precipitation) or are heavily influenced
by high-resolution surface forcings through the planetary
boundary layer physical representation. As a consequence,
the AV is strongly dependent on how well physical pro-
cesses are parameterized and how adapted they are to the
high resolution.

When looking at future climate projections, an important
aspect of a climate statistic is whether it quantifies some
aspect of the future climate or of future climate changes

[21, 56, 73]. As discussed before, looking for AV in the
future climate can be done by investigating either the PAV
or the conjectural AV, which are probably not very differ-
ent from those in present climate. Although the study of the
AV in the climate change signal has the same restrictions as
those of studying future climate, less AV may be expected
in the climate change signal due to the fact that the dif-
ference between the climate statistics of future and present
filters to a large extent the AV induced by stationary forc-
ings such as topographic details or land-sea contrasts. For
higher statistical moments such as extremes, particularly
for those variables where extremes results from small-
scale phenomena—such as precipitation—differences could
be considerable and there seems to be potential for AV
in the climate change signal. However, as higher statisti-
cal moments are considered, natural variability and model
structural uncertainties associated with the fine-scale infor-
mation may be large enough prevent results to be useful by
for impact and adaptation studies.

It is well known that GCM-projected climate changes
associated with thermodynamical processes (such as anthro-
pogenic warming and associated acceleration of the hydro-
logical cycle) are more trustworthy than those associated
with dynamical processes (such as storm track shifts). It
is hence to be expected that downscaled climate signals
arising from warming are more credible than those arising
from circulation changes. Hall [35] gives two such exam-
ples, the lake-effect snow along the fringes of the Great
Lakes and the snow-albedo feedback effects in the high-
elevation headwaters of the Ganges River, which are not
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adequately simulated by the GCMs due to their coarse-
mesh that prevents adequate resolution of inland lakes and
mountain height variations.

Discussion and Conclusions

In this paper, we have reviewed some important issues
related to the capability of high-resolution RCMs to add
value to that of the low-resolution global driving data. Our
initial goal in writing this paper was to develop a conceptual
framework integrating recent advances in the field, clarify-
ing terminology and systematizing current knowledge about
the added value issue. During the writing process, the diffi-
culty of reaching consensus between the individual ideas of
the three coauthors, despite being long-term colleagues, led
us to realise that our initial ambitions were somewhat too
high. This also indicates that this specific field of research
is, in some sense, not yet well grounded, and issues, appar-
ently trivial, such as what is meant by added value, are still
poorly defined, a conclusion supported by several presen-
tations at a recent RCM Workshop [1]. We hope that this
paper will stimulate further discussions in this direction, as
we strongly believe this is an important issue.

While at first sight it seems obvious that the search for
added value is to show that RCMs have a role to play in
the large concert of tools devised to help users to adapt to
climate change, it is unclear to us whether this objective is
wise in the way it has been usually understood. To see this, it
is instructive to take an example from the global modelling
community.

Flato et al. [29] and Watterson et al. [80] compared
simulations of CMIP5 models with those of the earlier
CMIP3 models and found quite limited improvement, and
when they did, it was more a property of the ensem-
ble than of individual models. Such disappointing findings
have had however little negative impact in the global mod-
elling community because it holds the deeply entrenched
belief that the appropriate development pathway is mak-
ing models more comprehensive, including more complex
processes and increasing their resolution, without expecting
ground-breaking improvements in scores between model
generations. The situation with RCMs is quite different,
and finding that RCM simulations do not improve upon the
driving GCM data in some aspect is often interpreted quite
negatively (e.g. [42]). Hence, the stakes for regional mod-
els to clearly display AV appear much higher than for global
models. The assessment of GCM simulations by Flato et al.
[29] should, however, hold a lesson for those exploring the
AV in RCMs: that it is unrealistic to expect a vast amount
of AV since models already perform rather decently and we
may have entered into a period of diminishing return where
investments pay off less now than when models were far

less sophisticated and of coarser resolution. It is hence per-
haps unwise for the RCM community to attach too much
expectations to visible AV signs instead of, as for GCMs,
to progress related with improvements to the formulation of
models and processes represented.

It is for this reason that we favour the idea that added
value should be defined in the less restrictive way possible,
keeping in mind the complexities that may make a dataset
richer than other, and not to succumb to the quantitative
temptation of turning this richness into insipid numbers with
little meaning. At the end of the day, we probably need to
be quantitative, but a lot of effort has to be devoted to the
search for a meaningful process that is worth quantifying.
That being said, we believe that it is also very important
to be as rigorous and precise as possible when evaluat-
ing the AV of RCMs. Several discussions in this article
suggest that the expression “added value” should be used
carefully, and that it necessitates specifying the point of
view and the particular aspect of the climate that is being
improved. Phrases such as “RCMs add value to GCMs”
are too vague to be of use, since this can be true or false
depending on the point of view, the variable or the time scale
considered.

As it has become clear in the last years, RCMs will have
to show their worth, not only against the driving data, but
also against less expensive alternatives such as statistical
downscaling techniques [25]. One of the risks of staying
in a simplistic quantitative approach in the evaluation of
AV is that RCMs will face a tougher fight in this terri-
tory. It is easy to see, for example, how surface temperature
can be reasonably downscaled by simply following what
is done to correct observational datasets for height varia-
tions [82]. The advantages and the eventual superiority of
dynamical downscaling approaches will become more evi-
dent when exploiting their power to reproduce processes by
means of a physically meaningful causal chain. It is from
local interactions—defined by differential equations—that
physics sets the conditions for the emergence of weather
and climate variability at all spatial and temporal scales.
The great story behind climate models is that they repro-
duce with surprising precision this causal chain. We believe
that more meaningful added value may be found by explor-
ing conditions conducive to particular weather and climate
events than by focusing on simple statistics.

As discussed along this manuscript, an important part of
the AV generated by RCMs, particularly when looking at
future climate projections, is related with the conjectural
AV. The conjectural AV depends on large amounts of both
theoretical and/or empirical evidences that support a gen-
eralization of the AV. This means that research showing
systematic improvements on some metrics or on phenom-
ena can be very helpful to indicate particular processes and
metrics for which we can expect AV.
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M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R,
Kjellström E, Lenderink G, Rockel B, Sánchez E, Schär C,
Seneviratne SI, Somot S, Ulden A, Hurk B. An inter-comparison
of regional climate models for Europe: model performance in
present-day climate. Clim Change. 2007;81(S1):31–52.
doi:10.1007/s10584-006-9213-4.

39. Kanamaru H, Kanamitsu M. Fifty-seven-year california reanal-
ysis downscaling at 10 km (CaRD10). part II: Comparison
with north american regional reanalysis. J Clim. 2007;20(22):
5572–5592. doi:10.1175/2007JCLI1522.1.

40. Kanamitsu M, DeHaan L. The added value index: a new metric
to quantify the added value of regional models. J Geophys Res
Atmos. 2011;116(D11). doi:10.1029/2011JD015597.

41. Kendon EJ, Roberts NM, Senior CA, Roberts MJ. Realism of
rainfall in a very high-resolution regional climate model. J Clim.
2012;25(17):5791–5806. doi:10.1175/JCLI-D-11-00562.1.

42. Kerr RA. Vital details of global warming are eluding forecasters.
Science. 2011;334:173–174. doi:10.1126/science.334.6053.173.

43. Knutti R. Should we believe model predictions of future climate
change Phil Trans R Soc B. 2008;366:4647–4664.

44. Laprise R. Resolved scales and nonlinear interactions in limited-
area models. J Atmos Sci. 2003;60(5):768–779.

45. Laprise R. Regional climate modelling. J Comp Phys.
2008;227(1–4):3641–3666. Special issue on ”Predicting weather,
climate and extreme events. doi:10.1016/j.jcp.2006.10.024.

46. Laprise R. Comment on the added value to global model projec-
tions of climate change by dynamical downscaling: a case study
over the continental u.s. using the giss-modele2 and wrf modelsby
racherla et al. J Geophys Res: Atmos. 2014;119(7):3877–3881.
doi:10.1002/2013JD019945.

47. Laprise R, de Elı́ R, Caya D, Biner S, Lucas-Picher P,
Diaconescu E, Leduc M, Alexandru A, Separovic L, Canadian
Network for Regional Climate Modelling and Diagnostics. Chal-
lenging some tenets of regional climate modelling. Meteor Atmos
Phys. 2008;100(1–4):3–22. doi:10.1007/s00703-008-0292-9.

48. Leduc M, Laprise R. Regional climate model sensitivity to
domain size. Clim Dyn. 2009;32(6):833–854. doi:10.1007/
s00382-008-0400-z.

49. Lucas-Picher P, Wulff-Nielsen M, Christensen JH, Aalgeirsdttir
G, Mottram R, Simonsen SB. Very high resolution
regional climate model simulations over Greenland: identifying
added value. J Geophys Res: Atmos. 2012;117(D2):n/a–n/a.
doi:10.1029/2011JD016267.

50. Maraun D. When will trends in European mean and heavy
daily precipitation emerge Environ Res Lett. 2013;8(1):014, 004.
doi:10.1088/1748-9326/8/1/014004.

51. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon
EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themel
M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof
C, Vrac M, Thiele-Eich I. Precipitation downscaling under cli-
mate change: recent developments to bridge the gap between
dynamical models and the end user. Rev Geophys. 2010;48(3).
doi:10.1029/2009RG000314.

52. Maraun D, Widmann M, JM Gutirrez, Kotlarski S, Chandler
RE, Hertig E, Wibig J, Huth R, Wilcke RA. 2015. VALUE:
A framework to validate downscaling approaches for climate
change studies: MARAUN ET AL. Earth’s Future pp n/a–n/a.
doi:10.1002/2014EF000259.

53. McSweeney CF, Jones RG, Booth BBB. Selecting ensemble
members to provide regional climate change information. J Clim.
2012;25(20):7100–7121. doi:10.1175/JCLI-D-11-00526.1.

54. Mearns LO, Arritt R, Biner S, Bukovsky MS, McGinnis
S, Sain S, Caya D, Correia J, Flory D, Gutowski W. The
North American regional climate change assessment program:
overview of phase i results. Bull Am Meteorol Soc. 2012;93(9):
1337–1362.

55. Omrani H, Drobinski P, Dubos T. Optimal nudging strategies in
regional climate modelling: investigation in a big-brother exper-
iment over the european and mediterranean regions. Clim Dyn.
2012. doi:10.1007/s00382-012-1615-6.

56. Paeth H, Mannig B. On the added value of regional climate
modeling in climate change assessment. Clim Dyn. 2013;41(3-
4):1057–1066. doi:10.1007/s00382-012-1517-7.

57. Pielke RA, Wilby R, Niyogi D, Hossain F, Dairuku K,
Adegoke J, Kallos G, Seastedt T, Suding K. Dealing with
complexity and extreme events using a bottom-up, resource-based
vulnerability perspective. Am Geophys Union. 2013:345–359.
doi:10.1029/2011GM001086.

58. Pope V, Stratton R. The processes governing horizontal resolu-
tion sensitivity in a climate model. Clim Dyn. 2002;19:211–236.
doi:10.1007/s00382-001-0222-8.

59. Prein A, Gobiet A, Suklitsch M, Truhetz H. Added value of con-
vection permitting seasonal simulations. Clim Dyn. 2013;41(9-
10):2655–2677. doi:10.1007/s00382-013-1744-6.
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