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Abstract
We study generalized quasiconformal mappings in the context of the inverse Poletsky inequality. We consider the local
behavior and the boundary behavior of mappings with the inverse Poletsky inequality. In particular, we obtain logarithmic
Hölder continuity for such classes of mappings.
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1 Introduction

This article is devoted to theHölder continuity of generalized
quasiconformal mappings f : D → D′ which are defined
by capacity (moduli) inequalities. The method of capacity
(moduli) inequalities arises to the Grötzsch problem and was
introduced in [1]. In subsequent works (see, for example, [13,
15] and [21]), the conformal modulus method was used in
the theory of quasiconformal (quasiregular) mappings and its
generalizations. The classes ofmappings generating bounded
composition operators on Sobolev spaces [32, 33] arise in
the geometric analysis of PDE [7, 17]. These mappings are
called weak (p, q)-quasiconformal mappings [3, 30] and can
be characterized by the inverse capacitory (moduli) Poletsky
inequality [27]
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cap1/qq ( f −1(E), f −1(F); D)

� Kp,q(ϕ;�)cap1/pp (E, F; D′), 1 < q � p < ∞.

The detailed study of the mappings with the inverse confor-
mal Poletsky inequality for modulus of paths was given in
[24, 26] and [23]. In this case, p = q = n,the Hölder conti-
nuity, the continuous boundary extension, and the behavior
on the closure of domains were obtained.

In the recent works,[6, 20] were considered connec-
tions between weak (p, q)-quasiconformal mappings and
Q-homeomorphisms. In the present article, we suggest an
approach to the generalized quasiconformal mappings which
are based on the following integral inequality

∫

D

|∇(u ◦ f (x))|q dm(x)

�
∫

D′
|∇u(y)|q Qq(y) dm(y), u ∈ C1(D′).

Depending on the properties of the function Qq ,we obtain
various classes of the generalized quasiconformal mappings:
BMO-quasiconformal mappings, weak (p, q)-
quasiconformal mappings, Q-mappings, and so on.

The weak (p, q)-quasiconformal mappings have signifi-
cant applications in the spectral theory of elliptic operators
[8, 9]. The Hölder continuity of weak (p, q)-quasiconformal
mappings was considered in [30]. In the recent article,[5]
was considered the boundary behavior of the weak (p, q)-
quasiconformal mappings. In this article,we study the log-
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arithmic Hölder continuity, the continuous boundary exten-
sion, and the behavior in the closure of domains of non-
homeomorphic generalizations of quasiconformalmappings.

Let us give the basic definitions. Let � be a family of
paths γ in R

n . A Borel function ρ : R
n → [0,∞] is called

admissible for � if
∫

γ

ρ(x)|dx | � 1 (1.1)

for all (locally rectifiable) paths γ ∈ �. In this case, wewrite:
ρ ∈ adm �. Given a number q � 1, q-modulus of the family
of paths � is defined as

Mq(�) = inf
ρ∈ adm �

∫

D

ρ q(x) dm(x). (1.2)

Let x0 ∈ D, x0 �= ∞, then

B(x0, r) = {x ∈ R
n : |x − x0| < r}, B

n = B(0, 1), (1.3)

S(x0, r) = {x ∈ R
n : |x − x0| = r}, Si = S(x0, ri ), i = 1, 2,

A = A(x0, r1, r2) = {x ∈ R
n : r1 < |x − x0| < r2}.

Given sets E , F ⊂ Rn and a domain D ⊂ R
n , we denote

�(E, F, D) a family of all paths γ : [a, b] → Rn such that
γ (a) ∈ E, γ (b) ∈ F and γ (t) ∈ D for all t ∈ (a, b).

LetQ : R
n → [0,∞]be aLebesguemeasurable function.

We say that f satisfies the Poletsky inverse inequality with
respect to q-modulus at a point y0 ∈ f (D), 1 < q < ∞, if
the moduli inequality

Mq(�(E, F, D))

�
∫

A(y0,r1,r2)∩ f (D)

Q(y) · η q(|y − y0|) dm(y) (1.4)

holds for any continua E ⊂ f −1(B(y0, r1)), F ⊂
f −1( f (D)\B(y0, r2)), 0 < r1 < r2 < r0 = sup

y∈ f (D)

|y−y0|,
and anyLebesguemeasurable functionη : (r1, r2) → [0,∞]
such that

r2∫

r1

η(r) dr � 1. (1.5)

The case q = n was studied in details in [26], cf. [24] and
[23]. The present article is dedicated to the case q �= n.

Let us formulate themain results of thismanuscript.Recall
that a mapping f : D → R

n is called discrete if a pre-image
{ f −1 (y)} of each point y ∈ R

n consists of isolated points,

and open if the image of any open set U ⊂ D is an open set
in R

n . The mapping f of the domain D onto D ′ is called
closed if f (E) is closed in D ′ for any of the closed E ⊂ D
(see, e.g., [34, Section 3]).

In the extended Euclidean n-dimensional space Rn =
R
n∪{∞}, a spherical (chordal)metric is defined ash(x, y) =

|π(x) − π(y)|, where π is a stereographic projection of Rn

onto the sphere Sn( 12en+1,
1
2 ) in R

n+1. Namely:

h(x, y) = |x − y|√
1 + |x |2

√
1 + |y|2

,

x �= ∞ �= y, h(x,∞) = 1√
1 + |x |2

. (1.6)

(see, e.g., [28, definition 12.1]). Given sets A, B ⊂ Rn, we
put

h(A, B) = inf
x∈A,y∈B h(x, y), h(A) = sup

x,y∈A
h(x, y),

where h is defined in (1.6). In addition, we put

dist (A, B) = inf
x∈A,y∈B |x − y|, diam(A) = sup

x,y∈A
|x − y|.

Let D ⊂ R
n , n � 2, be a domain. For a number 1 � q <

∞ and a Lebesgue measurable function Q : R
n → [0,∞],

we denote by Fq
Q(D) a family of all open discrete mappings

f : D → R
n such that relation (1.4) holds for any y0 ∈

f (D), for any continua

E ⊂ f −1(B(y0, r1)), F ⊂ f −1( f (D) \ B(y0, r2)),

0 < r1 < r2 < r0 = sup
y∈ f (D)

|y − y0|,

and anyLebesguemeasurable functionη : (r1, r2) → [0,∞]
with condition (1.5).

The following theorem holds.

Theorem 1.1 Let f ∈ F
q
Q(Bn), q � n. Suppose that Q ∈

L1(Rn) and K is a compact set in B
n. Then the inequality

| f (x) − f (y)| � Cn · (‖Q‖1)
1
q

log
1
n

(
1 + r0

2|x−y|
) , r0

= d(K , ∂B
n), (1.7)

holds for all x, y ∈ K, where ‖Q‖1 denotes the L1-norm of
the function Q in R

n and a constant Cn > 0 depends on n
and q only.

Let D ⊂ R
n be a domain. Then D is called locally con-

nected at the point x0 ∈ ∂D, if for any neighborhood U of
x0,there is a neighborhood V ⊂ U of this point such that
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V ∩ D is connected. The domain D is locally connected on
∂D, if D is locally connected at every point x0 ∈ ∂D. The
domain D ⊂ R

n is called finitely connected at the point
x0 ∈ ∂D, if for any neighborhood U of x0, there is a neigh-
borhood V ⊂ U of this point such that the set V ∩D consists
of a finite number of components (see, e.g., [34]). The domain
D is finitely connected on ∂D, if D is finitely connected at
every point x0 ∈ ∂D.

Let ∂D be a boundary of the domain D ⊂ R
n . Then the

boundary ∂D is called weakly flat at the point x0 ∈ ∂D, if
for each P > 0 and for any neighborhood U of this point,
there is a neighborhood V ⊂ U of the same point such that
M(�(E, F, D)) > P for any continua E, F ⊂ D that inter-
sect ∂U and ∂V . The boundary of a domain D is called
weakly flat if the corresponding property holds at any point
of ∂D.

Let D, D ′ be domains in R
n . For given numbers n �

q < ∞, δ > 0, a continuum A ⊂ D ′, and an arbitrary
Lebesguemeasurable function Q : D ′ → [0,∞],wedenote
by S

q
δ,A,Q(D, D ′) a family of all open discrete and closed

mappings f of D onto D ′ satisfying the condition (1.4) for
any y0 ∈ D ′, any compacts

E ⊂ f −1(B(y0, r1)), F ⊂ f −1(D ′ \ B(y0, r2)),

0 < r1 < r2 < r0 = sup
y∈D ′

|y − y0|,

and anyLebesguemeasurable functionη : (r1, r2) → [0,∞]
with the condition (1.5), such that h( f −1(A), ∂D) � δ. The
following statement holds.

Theorem 1.2 Let D ⊂ R
n be a bounded with a weakly flat

boundary. Suppose that, for any point y0 ∈ D ′ and 0 <

r1 < r2 < r0 := sup
y∈D ′

|y − y0|, there is a set E ⊂ [r1, r2]
of a positive linear Lebesgue measure such that the function
Q is integrable on S(y0, r) for every r ∈ E . If D ′ is locally
connected on its boundary, then any f ∈ S

q
δ,A,Q(D, D ′)

has a continuous extension f : D → D ′, f (D) = D ′, and
the family S

q
δ,A,Q(D, D ′), which consists of all extended

mappings f : D → D ′, is equicontinuous in D.

In particular, the statement of Theorem 1.2 is fulfilled if
the above condition on Q is replaced by a simpler one: Q ∈
L1(D ′).

Remark 1.3 In Theorem 1.2, the equicontinuity must be
understood with respect to the Euclidean metric in the pre-
image under the mapping, and the chordal metric in the
image, i.e., for any ε > 0, there is δ = δ(ε, x0) > 0 such that
the condition |x − x0| < δ, x ∈ D, implies that inequality
h( f (x, f (x0)) < ε holds for any f ∈ S

q
δ,A,Q(D, D ′).

2 On the integral inverse Poletsky inequality

In this section,we suggest an approach to the generalized
quasiconformal mappings which is based on the following
integral inequality

∫

D

|∇(u ◦ f (x))|q dm(x)

�
∫

D′
|∇u(y)|q Qq(y) dm(y), u ∈ C1(D′).

This approach allows to unify various generalizations of
quasiconformal mappings, such as mappings which gener-
ate bounded composition operators on seminormed Sobolev
spaces and Q-mappings. We explain that both concepts of
generalizations are very close one to another and, in some
sense, represent similar classes. Of course, it is a subject of
more deep study. We are trying to put attention of readers to
this useful interplay.

Let D be a domain in the Euclidean space R
n , n � 2. The

Sobolev space W 1
p(D), 1 � p � ∞, is defined as a Banach

space of locally integrable weakly differentiable functions
u : D → R equipped with the following norm:

‖u | W 1
p(D)‖ = ‖u | L p(D)‖ + ‖∇u | L p(D)‖,

where ∇u is the weak gradient of the function u.
The homogeneous seminormed Sobolev space L1

p(D),
1 � p � ∞, is defined as a space of locally integrable
weakly differentiable functions u : D → R equipped with
the following seminorm:

‖u | L1
p(D‖ = ‖∇u | L p(D)‖.

In accordancewith the non-linear potential theory [19],we
consider the elements of Sobolev spaces W 1

p(�) as equiva-
lence classes up to a set of p-capacity zero [18].

Suppose f : D → R
n is a mapping of the Sobolev class

W 1
1,loc(D; R

n). Then the formal Jacobi matrix Df (x) and its
determinant (Jacobian) J (x, f ) are well defined at almost
all points x ∈ D. The norm |Df (x)| is the operator norm of
Df (x).

Recall the change of variable formula for the Lebesgue
integral [10]. Let a mapping f : D → R

n belongs to
W 1

1,loc(D; R
n). Then there exists a measurable set S ⊂ D,

|S| = 0 such that the mapping f : D\S → R
n has the Luzin

N -property and the change of variable formula
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∫

E

u ◦ f (x)|J (x, f )| dm(x)

=
∫

Rn\ϕ(S)

u(y)N f (E, y) dm(y) (2.1)

holds for every measurable set E ⊂ D and every non-
negative measurable function u : R

n → R. Here N f (E, y)
is the multiplicity function (or the Banach indicatrix) of f .

Now let D and D′ be domains in Euclidean space R
n ,

n � 2. We consider a homeomorphism f : D → D′ of the
class W 1

1,loc(D; D′) which has finite distortion. Recall that
the mapping f is called the mapping of finite distortion if
|Df (x)| = 0 for almost all x ∈ Z = {z ∈ D : J (x, f ) = 0}.

By using the composition of functions u ∈ C1(D) with
this homeomorphism f : D → D′,we obtain the following
inequality

‖u ◦ f | L1
q (D)‖q :=

∫

D

|∇(u ◦ f (x))|q dm(x)

�
∫

D

|∇u( f (x))|q |Df (x))|q dm(x)

=
∫

D\Z
|∇u( f (x))|q |J (x, f )||Df (x))|q |J (x, f )|−1 dm(x).

By the change of variables formula [10], we have the follow-
ing integral inverse Poletsky inequality

∫

D

|∇(u ◦ f (x))|q dm(x) �
∫

D′
|∇u(y)|q Qq(y) dm(y),

(2.2)

where

Qq(y) :=
{ |Df (x)|q

|J (x, f )| , x = f −1(y) ∈ D \ (S ∪ Z),

0, x = f −1(y) ∈ S ∪ Z .

The characterization of mappings which generate bounded
composition operators on Sobolev spaces in terms of integra-
bility of this distortion function Qq was given in [31] (see,
also, [32, 33]).

Depending on the properties of the distortion function
Qq(y) we obtain different classes of generalized quasicon-
formal mappings. Let us recall the notion of the variational
p-capacity [4]. The condenser in the domain D ⊂ R

n is
the pair (E, F) of connected closed relatively to D sets
E, F ⊂ D. Recall that a continuous function u ∈ L1

p(D)

is called an admissible function for the condenser (E, F),
denoted u ∈ W0(E, F), if the set E ∩D is contained in some
connected component of the set Int{x : u(x) = 0}, the set
F ∩ D is contained in some to the connected component of

the set Int{x : u(x) = 1}. Then we call as a p-capacity of
the condenser (E, F) relatively to a domain D the value

capp(E, F;�) = inf ‖u|L1
p(D)‖p,

where the greatest lower bond is taken over all admissible for
the condenser (E, F) ⊂ D functions. If the condenser has
no admissible functions, we put the capacity equal to infinity.
The case of K -quasiconformal mappings. Let q = n and

ess sup
y∈D′

Qn(y) = ess sup
y∈D′

|Df ( f −1(y))|n
|J ( f −1(y), f )| = Kn < ∞.

Then by the inequality (2.2) for any condenser (E, F) ⊂
D′,the inequality

capn( f
−1(E), f −1(F); D) � Kn capn(E, F; D′)

holds. Hence f is a Kn-quasiconformal mapping [28]. From
another side, quasiconformal mappings generate bounded
composition operators on Sobolev spaces L1

n(D
′) and L1

n(D)

[29].
The special case represents conformal mappings that cor-

respond to the case q = n = 2 and K = 1. In this case, we
have isometries of Sobolev spaces L1

2(D
′) and L1

2(D).
The case of q-quasiconformal mappings. Let 1 < q < ∞
and

ess sup
y∈D′

Qq(y) = ess sup
y∈D′

|Df ( f −1(y))|q
|J ( f −1(y), f )| = Kq < ∞.

Then by the inequality (2.2) for any condenser (E, F) ⊂ D′
the inequality

capq( f
−1(E), f −1(F); D) � Kq capq(E, F; D′)

holds. Hence f is a q-quasiconformal mapping [30]. From
another side by [3, 30] q-quasiconformal mappings generate
bounded composition operators on Sobolev spaces L1

q(D
′)

and L1
q(D).

The case of (p, q)-quasiconformal mappings. Let 1 < q <

p < ∞ and Qq ∈ Ls(�), s > 1. Then by the Hölder
inequality

⎛
⎝

∫

D

|∇(u ◦ f )|q dm(x)

⎞
⎠

1
q

�

⎛
⎝

∫

D′
|∇u(y)|q Qq (y) dm(y)

⎞
⎠

1
q

�

⎛
⎝

∫

D′
Qs

q (y) dm(y)

⎞
⎠

1
qs

⎛
⎝

∫

D′
|∇u(y)|q s

s−1 dm(y)

⎞
⎠

s−1
qs

.
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Denote p = q s
s−1 . Then s = p/(p − q) and we obtain

⎛
⎝

∫

D

|∇(u ◦ f )|q dm(x)

⎞
⎠

1
q

�

⎛
⎝

∫

D′
Q

p
p−q
q (y) dm(y)

⎞
⎠

p−q
pq

⎛
⎝

∫

D′
|∇u(y)|p dm(y)

⎞
⎠

1
p

.

Hence [27] for any condenser (E, F) ⊂ D′,the inequality

cap
1
q
q ( f −1(E), f −1(F); D)

�
(
�(D′ \ (E ∪ F))

) p−q
pq cap

1
p
p (E, F; D′)

holds, where

�(D′ \ (E ∪ F)) =
∫

D′\(E∪F)

Q
p

p−q
q (y) dm(y).

So f is a (p, q)-quasiconformal mapping [27]. From
another side by [27],(p, q)-quasiconformal mappings gen-
erate bounded composition operators on Sobolev spaces
L1
p(D

′) and L1
q(D).

The case of Q-mappings. Let q = n and Qq ∈ L1(D).
Then,we have the class of mappings with capacitory inverse
Poletsky inequality which was intensively studied recently
[24, 26] and [23].

So we can conclude that the integral inequality

∫

D

|∇(u ◦ f )|q dm(x) �
∫

D′
|∇u(y)|q Q(y) dm(y)

is the basic tool for generalizations of quasiconformal map-
pings. In the present work, we consider the Hölder continuity
and the continuous boundary extension of continuous map-
pings f : D : R

n in the case q �= n and Qq ∈ L1(D). This
class of mappings derives properties of mappings (p, q)-
quasiconformalmappingswhich are important in the spectral
theory of elliptic operators.

In the case of connected closed relatively to D sets E, F ⊂
D,the notions of the capacity and the modulus coincide, but
in view of suggested techniques,we will use the notion of the
modulus.

3 On the Hölder continuity of mappings

Let us first formulate the important topological statement,
which is repeatedly used later (see, for example, [12, theo-
rem 1.I.5.46]).

Proposition 3.1 Let A be a set in a topological space X . If
the set C is connected, C ∩ A �= ∅ and C\A �= ∅, then
C ∩ ∂A �= ∅.

Let D ⊂ R
n, f : D → R

n be a discrete open mapping,
β : [a, b) → R

n be a path, and x ∈ f −1(β(a)). A path
α : [a, c) → D is called a maximal f -lifting of β starting at
x, if (1) α(a) = x; (2) f ◦α = β|[a, c); (3) for c < c′ � b,
there is no a path α′ : [a, c′) → D such that α = α′|[a, c)

and f ◦ α ′ = β|[a, c′). Similarly, we may define a maximal
f -lifting α : (c, b] → D of a path β : (a, b] → R

n ending
at x ∈ f −1(β(b)). The maximal lifting α : [a, c) → D of
the path β : [a, b) → R

n at the mapping f with the origin at
the point x is called whole (total) if, in the above definition,
c = b.The following assertion holds (see [14, Lemma3.12]).

Proposition 3.2 Let f : D → R
n, n � 2, be an open dis-

crete mapping, let x0 ∈ D, and let β : [a, b) → R
n be a

path such that β(a) = f (x0) and such that either lim
t→b

β(t)

exists, or β(t) → ∂ f (D) as t → b. Then β has a maximal
f -lifting α : [a, c) → D starting at x0. If α(t) → x1 ∈ D
as t → c, then c = b and f (x1) = lim

t→b
β(t). Otherwise

α(t) → ∂D as t → c.

Given a path γ : [a, b] → R
n, we use the notation

|γ | := {x ∈ R
n : ∃ t ∈ [a, b] : γ (t) = x}

for the locus of γ, see, e.g., [28, Section 1.1], [21, Sec-
tion II.1].

Proof of Theorem 1.1 In general, we follow the logic of the
proof of Theorem 1.2 in [24], see also Theorem 1.2 in [26]
and Theorems 1–2 in [23]. Let us fix x, y ∈ K ⊂ B

n and
f ∈ FQ(Bn). We put

| f (x) − f (y)| := ε0. (3.1)

If ε0 = 0, there is nothing to prove. Let ε0 > 0. Let
us give a straight line through the points f (x) and f (y):
r = r(t) = f (x) + ( f (x) − f (y))t, −∞ < t < ∞.
Let γ 1 : [1, c) → B

n, 1 < c � ∞ be a maximum f -
lifting of the ray r = r(t), t � 1, with the origin at the
point x, which exists due to Proposition 3.2. Let us prove
that, the case γ 1(t) → x1 ∈ B

n as t → c is impossi-
ble. Indeed, in this case, by Proposition 3.2, we obtain that
c = ∞ and f (x1) = lim

t→+∞ r(t). Due to the openness of

f , f (x1) ∈ f (Bn), but on the other hand, f (x1) = ∞ by
the definition of r = r(t). Since ∞ /∈ f (Bn), we obtain a
contradiction. Therefore, γ 1(t) → x1 ∈ B

n as t → c, is
impossible, as required. By Proposition 3.2

h(γ 1(t), ∂B
n) → 0 (3.2)
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as t → c − 0. Similarly, denote by γ 2 : (d, 0] → B
n,

−∞ � d < 0, the maximal f -lifting of a ray r = r(t), t �
0,with the end at the point y,which exists by Proposition 3.2.
Similarly to (3.2), we obtain that

h(γ 2(t), ∂B
n) → 0

as t → d + 0. Let z = γ 1(t1) be some point on γ 1, which is
located at the distance r0/2 from the unit sphere, where r0 :=
d(K , ∂B

n) and let w = γ 2(t2) be some point on γ 2, located
at the distance r0/2 from the unit sphere. Put γ ∗ := γ 1|[1,t1]
and γ∗ := γ 1|[t2,0]. By the triangle inequality, diam (|γ ∗|) �
r0/2 and diam (|γ∗|) � r0/2. Let � := �(|γ ∗|, |γ∗|, B

n).
Now, by using [35, lemma 4.3], we obtain that

M(�) � (1/2) · M(�(|γ ∗|, |γ∗|, R
n)), (3.3)

and, on the other hand, by [36, Lemma 7.38]

M(�(|γ ∗|, |γ∗|, R
n)) � cn · log

(
1 + 1

m

)
, (3.4)

where cn > 0 is some constant depends on n only and

m = dist(|γ ∗|, |γ∗|)
min{diam (|γ ∗|), diam (|γ∗|)} .

Note that, diam (|γ i |) = sup
ω,w∈|γ i |

|ω − w| � r0/2, i =
1, 2. Then, by (3.3) and (3.4) and taking into account that
dist (|γ ∗|, |γ∗|) � |x − y|, we obtain

M(�) � c̃n · log
(
1 + r0

2dist(|γ ∗|, |γ∗|)
)

� c̃n · log
(
1 + r0

2|x − y|
)

, (3.5)

where c̃n > 0 is some constant depends on n only. By the
Hölder inequality, for any function ρ ∈ adm �,we have

M(�) �
∫

Bn

ρn(x) dm(x) �

⎛
⎝

∫

Bn

ρq (x) dm(x)

⎞
⎠

n
q

· (�n)
q−n
n .

(3.6)

Taking in the right side of the inequality (3.6) the infimum
over all ρ ∈ adm �, we obtain that

M(�) � inf
∫

Bn

ρn(x) dm(x) �
(
Mq(�)

) n
q · (�n)

q−n
n . (3.7)

Combining (3.5) and (3.6), we obtain that

Mq(�) � (m(�n))
(n−q)q(c̃n)

q
n · log q

n

(
1 + r0

2|x − y|
)

.

(3.8)

Let z1 := f (z), ε(1) := | f (x) − z1| and ε(2) := | f (y) −
z1|. Note that

| f (y) − f (x)| + ε(1) =
= | f (y) − f (x)| + | f (x) − z1| = |z1 − f (y)| = ε(2),

(3.9)

therefore, ε(1) < ε(2).
Now let us to obtain an upper estimate for Mq(�). We put

P = | f (γ ∗)|, Q = | f (γ 2)|, and

A := A(z1, ε(1), ε(2)) = {x ∈ R
n : ε(1) < |x − z1| < ε(2)}.

Note that, E := γ ∗ and F := γ ∗ are continua in B
n . Let us

to prove that

|γ ∗| ⊂ f −1(B(z1, ε(1))), |γ ∗| ⊂ f −1( f (Bn) \
B(z1, ε(2))).

Indeed, let x∗ ∈ |γ ∗|. Then f (x∗) ∈ P, therefore, there exist
numbers 1 � t � s such that f (x∗) = f (y) + ( f (x) −
f (y))t, where z1 = f (y) + ( f (x) − f (y))s. Thus,

| f (x∗) − z1| = |( f (x) − f (y))(s − t)|
� |( f (x) − f (y))(s − 1)|
= |( f (x) − f (y))s + f (y) − f (x))|
= | f (x) − z1| = ε(1). (3.10)

By (3.10), it follows that |γ ∗| ⊂ f −1(B(z1, ε(1))). The
inclusion |γ ∗| ⊂ f −1( f (Bn)\B(z1, ε(2))) may be proved
similarly.

Let us put

η(t) =
{ 1

ε0
, t ∈ [ε(1), ε(2)],

0, t /∈ [ε(1), ε(2)],

where ε0 is a number from (3.1). Note that the function η

satisfies the relation (1.5) for r1 = ε(1) and r2 = ε(2). Indeed,
by (3.1) and (3.9),we obtain that

r1 − r2 = ε(2) − ε(1) = | f (y) − z1| − | f (x) − z1| =

= | f (x) − f (y)| = ε0.
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Then
ε(2)∫
ε(1)

η(t) dt = (1/ε0) · (ε(2) − ε(1)) � 1. Applying the

moduli inequality (1.4) for the point z1, we obtain that

Mq(�) � 1

ε
q
0

∫

Rn

Q(z) dm(z) = ‖Q‖1
| f (x) − f (y)|q . (3.11)

Finally, from (3.8) and (3.11), we obtain that

(�n)
(n−q)q(c̃n)

q
n · log q

n

(
1 + r0

2|x − y|
)

� ‖Q‖1
| f (x) − f (y)|q .

Hence, it follows that

| f (x) − f (y)| � Cn · (‖Q‖1)
1
q

log
1
n

(
1 + r0

2|x−y|
) ,

where Cn := (�n)
(q−n)q

q (c̃n)−
1
n . The theorem is proved. ��

4 Hölder continuity in arbitrary domains

Let D, D ′ be domains in R
n , n � 2. For numbers 1 � q <

∞ and a Lebesgue measurable function Q : R
n → [0,∞],

Q = 0 a.e. on R
n\D ′, we denote be Rq

Q(D, D ′) the family
of all open and discrete mappings f : D → D ′ such that
the moduli inequality (1.4) holds at any point y0 ∈ D ′. The
following theorem generalizes [24, Theorem 4.1].

Theorem 4.1 Let Q ∈ L1(Rn) and q � n. Suppose that,
K is compact in D, and D ′ is bounded. Then there exists a
constant C = C(n, q, K , ‖Q‖1, D, D ′) > 0 such that the
inequality

| f (x) − f (y)| � Cn · (‖Q‖1)
1
q

log
1
n

(
1 + r0

2|x−y|
) , r0 = d(K , ∂D),

(4.1)

holds for any x, y ∈ K and f ∈ RQ(D, D ′), where ‖Q‖1
denotes the L1-norm of the function Q in R

n.

Proof It is sufficient to find an upper bound for the value

| f (x) − f (y)| · log 1
n

(
1 + r0

2|x − y|
)

(4.2)

over all x, y ∈ K and f ∈ RQ(D, D ′).
We fix x, y ∈ K and f ∈ RQ(D, D ′). If |x − y| � r0/2,

the expression in (4.2) is trivially bounded. Indeed, by the
triangle inequality,

| f (x) − f (y)| � | f (x)| + | f (y)| � 2M0, (4.3)

where M0 = sup
z∈D ′

|z|. Since D ′ is bounded, M0 < ∞.

By (4.3), we obtain that

| f (x) − f (y)| · log 1
n

(
1 + r0

2|x − y|
)

� M0 · log 1
n 2, (4.4)

as required.
Now let |x − y| < r0/2. In this case, y ∈ B(x, r0).

Let ψ be a conformal mapping of the unit ball B
n onto

the ball B(x, r0), exactly, ψ(z) = zr0 + x, z ∈ B
n . In

particular, ψ −1(B(x, r0/2)) = B(0, 1/2). Applying the
restriction f̃ := f |B(x,r0) and considering the auxiliary map-
ping F := f̃ ◦ ψ, F : B

n → D ′, we conclude that the
relation (1.4) also holds for F with the same function Q.

Then by Theorem 1.1

|F(ψ −1(x)) − F(ψ −1(y))|
� C2 · (‖Q‖1)1/q

log
1
n

(
1 + 1

4|ψ −1(x)−ψ −1(y)|
) . (4.5)

Since F(ψ −1(x)) = f (x) and F(ψ −1(y)) = f (y),wemay
rewrite (4.5) in the form

| f (x) − f (y)| � C2 · (‖Q‖1)1/q
log

1
n

(
1 + 1

4|ψ −1(x)−ψ −1(y)|
) . (4.6)

Note that, the mapping ψ −1(y) is Lipschitz with the Lips-
chitz constant 1

r0
. In this case, due to (4.6), we obtain that

| f (x) − f (y)| � C2 · (‖Q‖1)1/q
log

1
n

(
1 + r0

4|x−y|
) . (4.7)

Finally, by theL’Hôpital rule, log
1
n
(
1 + 1

nt

) ∼ log
1
n
(
1 + 1

kt

)
as t → +0 and any fixed k, n > 0. It follows that

C2 · (‖Q‖1)1/q
log

1
n

(
1 + r0

4|x−y|
) � C1 · (‖Q‖1)1/q

log
1
n

(
1 + r0

2|x−y|
)

for some constant C1 = C1(r0) > 0. Then, from (4.7) it
follows that

| f (x) − f (y)| � C1 · (‖Q‖1)1/q
log

1
n

(
1 + r0

2|x−y|
) . (4.8)

Finally, from (4.4) and (4.8), it follows the desired inequal-
ity (4.1) with some constant

C := max{C1 · (‖Q‖1)1/q , M0 · log 1
n 2}. �

��
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5 Boundary behavior of mappings

The following result in the case q = n was proved in [26,
Theorem 3.1], [23, Theorem 4].

Theorem 5.1 Let n � q < ∞, D ⊂ R
n, n � 2, be a

bounded domain with a weakly flat boundary, and let D ′ ⊂
R
n be a domain which is finitely connected on its boundary.

Suppose f is open discrete and closed mapping of D onto
D ′ satisfying the relation (1.4) at any point y0 ∈ ∂D ′, and
the following condition holds: for any y0 ∈ ∂D ′ and 0 <

r1 < r2 < r0 := sup
y∈D ′

|y− y0|, there is some set E ⊂ [r1, r2]
of positive linear Lebesgue measure such that the function
Q is integrable on S(y0, r) for each r ∈ E . Then f has a
continuous extension f : D → D ′, moreover, f (D) = D ′.

In particular, the statement of the theorem 5.1 holds if
Q ∈ L1(D ′).

Proof Let x0 ∈ ∂D. We should prove the possibility of con-
tinuous extension of mapping f to point x0. Let us prove it
from the opposite, namely, suppose that f does not have
a continuous extension to x0. Then, there are sequences
xi , yi ∈ D, i = 1, 2, . . . , such that xi , yi → x0 as i → ∞,

and there is a > 0 such that

h( f (xi ), f (yi )) � a > 0 (5.1)

for any i ∈ N,where h is a chordal (spherical)metric, defined
in (1.6). Since the space Rn is compact, we may assume
that f (xi ) and f (yi ) converge as i → ∞ to z1 and z2,
respectively, and z1 �= ∞.

Since f is closed, it preserves the boundary of the domain
see [34, theorem 3.3], therefore z1, z2 ∈ ∂D ′. Since D ′
is finitely connected on its boundary, there are paths α :
[0, 1) → D ′ and β : [0, 1) → D ′ such that α → z1
and β → z2 as t → 1 − 0 such that |α| contains some
subsequence of the sequence f (xi ) and β contains some
subsequence of the sequence f (yi ), i = 1, 2, . . . (see [34,
lemma 3.10]). Without loss of generality, we may assume
that the paths α and β contain sequences f (xi ) and f (yi ),
respectively. Due to the definition of finite connectedness of
the domain D ′ on the boundary, we may assume that

|α| ⊂ B(z1, R∗), |β| ⊂ R
n \ B(z1, R0),

0 < R∗ < R0 < ∞. (5.2)

Wedenote byαi a subpath ofαwith the origin at a point f (xi )
and end at f (x1) and, similarly, by βi a subpath of β starting
at f (yi ) and ending at f (y1). By the change of a parameter,
we may consider that, the paths αi and βi are parameterized
so that αi : [0, 1] → D ′ and βi : [0, 1] → D ′. Let α̃i :
[0, 1) → D and β̃i : [0, 1) → D be whole f -liftings of αi

and βi starting at points xi and yi , respectively (these lifts

exist by [34, lemma 3.7]). By Proposition 3.2, paths α̃i and
β̃i can be extended to closed paths α̃i : [0, 1] → D and
β̃i : [0, 1] → D. Note that, the points f (x1) and f (y1) may
not have more than a finite number of pre-images under f
in D, see [16, Theorem 2.8]. Then, there is r0 > 0 such that
α̃i (1), β̃i (1) ∈ D\B(x0, r0) for all i = 1, 2, . . . . Since the
boundary of the domain D is weakly flat, for any P > 0,
there exists i = iP � 1 such that

M(�(|α̃i |, |β̃i |, D)) > P ∀ i � iP . (5.3)

By Hölder inequality, for any function ρ ∈ adm �,

M(�) �
∫

D

ρn(x) dm(x)

�

⎛
⎝

∫

D

ρq(x) dm(x)

⎞
⎠

n
q

· m q−n
n (D). (5.4)

Letting (5.4) to inf over all ρ ∈ adm �, we obtain that

M(�) �
∫

D

ρn(x) dm(x) �
(
Mq(�)

) n
q · m q−n

n (D). (5.5)

Using (5.3) and (5.5), we obtain that

Mq(�(|α̃i |, |β̃i |, D)) > P · m− q−n
n (D) ∀ i � iP . (5.6)

Let us to show that, the condition (5.3) contradicts the
definition of mapping f in (1.4). Indeed, using (5.2) and
applying (1.4) for E = |α̃i |, F = |β̃i |, r1 = R∗ and r2 = R0,

we obtain that

Mq(�(|α̃i |, |β̃i |, D))

�
∫

A(z1,R∗,R0)∩D ′
Q(y) · η q(|y − z1|) dm(y), (5.7)

where η : (R∗, R0) → [0,∞] is any Lebesgue measurable
function such that

R0∫

R∗

η(r) dr � 1. (5.8)

Below, we use the standard conventions: a/∞ = 0 for a �=
∞, a/0 = ∞ for a > 0 and 0 · ∞ = 0 (see, e.g., [22, 3.I]).
Let us put Q̃(y) = max{Q(y), 1},

q̃y0(r) = 1

ωn−1rn−1

∫

S(y0,r)

Q̃(y) dHn−1(y) (5.9)
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and

I =
R0∫

R∗

dt

t
n−1
q−1 q̃1/(q−1)

z1 (t)
. (5.10)

By assumption of the theorem, for any y0 ∈ ∂D ′ and 0 <

r1 < r2 < r0 := sup
y∈D ′

|y − y0|, there is a set E ⊂ [r1, r2] of
a positive Lebesgue linear measure such that Q is integrable
on S(y0, r) for any r ∈ E .Then 0 �= I �= ∞. In this case, the
function η0(t) = 1

I t
n−1
q−1 q̃1/(q−1)

z1 (t)
satisfies the relation (5.8).

Substituting this function into the right-hand side of (5.7) and
applying Fubini theorem (see [22, theorem 8.1, Ch. III]), we
obtain that

Mq(�(|α̃i |, |β̃i |, D))

�
∫

A(z1,R∗,R0)∩D ′
Q(y) · η q(|y − z1|) dm(y)

=
R0∫

R∗

∫

S(z1,t)

Q(y) · η q(|y − z1|) dHn−1 dt

= ωn−1

I q−1 < ∞. (5.11)

The relation (5.11) contradicts (5.3), which disproves the
assumption made in (5.1). The resulting contradiction dis-
proves the assumption that there is no a limit of f at the
point x0.

It remains to check the equality f (D) = D ′. It is obvious
that f (D) ⊂ D ′. Let us show that D ′ ⊂ f (D). Indeed, let
y0 ∈ D ′, then either y0 ∈ D ′, or y0 ∈ ∂D ′. If y0 ∈ D ′,
then y0 = f (x0) and y0 ∈ f (D), since by condition f is the
mapping of D onto D ′. Finally, let y0 ∈ ∂D ′, then there is
a sequence yk ∈ D ′ such that yk = f (xk) → y0 as k → ∞,

xk ∈ D. Due to the compactness of Rn, we may assume
that xk → x0, where x0 ∈ D. Note that, x0 ∈ ∂D, since
f is open. Then f (x0) = y0 ∈ f (∂D) ⊂ f (D). In the
whole, Theorem 5.1 is proved, excluding the discussion of
the situation Q ∈ L1(D ′).

If Q ∈ L1(D ′), by the Fubini theorem,

∫

B(y0,r0)

Q(y) dm(y) =
r0∫

0

∫

S(y0,t)

Q(y) dHn−1 dt < ∞,

whence it follows that qy0(t) < ∞ for all y0 ∈ ∂D ′ and
almost all t ∈ R (here, of course, we extend the function Q
by an identical zero outside D ′). Thus, the case Q ∈ L1(D ′)

is a special case of the conditions on Q mentioned above.
The theorem is completely proved. ��

6 The equicontinuity of some family of
mappings in the closure of domains

Proof of Theorem 1.2 Let f ∈ S
q
δ,A,Q(D, D ′). By Theo-

rem 5.1, f has a continuous extension f : D → D ′,
moreover, f (D) = D ′. The equicontinuity of the fam-
ily S

q
δ,A,Q(D, D ′) in D is a statement of Theorem 4.1. It

remains to establish its equicontinuity on ∂D.

We will carry out a proof from the opposite (cf. [26,
Theorem 1.2], [23, Theorem 5]). Assume that, there is
x0 ∈ ∂D, a number ε0 > 0, a sequence xm ∈ D, which
converges to x0 as m → ∞,and a sequence of mappings
f m ∈ S

q
δ,A,Q(D, D) such that

h( f m(xm), f m(x0)) � ε0, m = 1, 2, . . . . (6.1)

Let us put fm := f m |D. Since fm has a continuous extension
on ∂D, we may assume that xm ∈ D. Therefore, f m(xm) =
fm(xm). In addition, there exists a sequence x ′

m ∈ D such
that x ′

m → x0 as m → ∞ and h( fm(x ′
m), f m(x0)) → 0 as

m → ∞. Since the space Rn is compact, we may assume
that the sequences fm(xm) and f m(x0) converge asm → ∞.

Let fm(xm) → x1 and f m(x0) → x2 as m → ∞. By the
continuity of the metric in (6.1), x1 �= x2. Since fm is closed,
it preserves the boundary (see [34, theorem 3.3]). It follows
that x2 ∈ ∂D ′.Let x̃1 and x̃2 be arbitrary distinct points of the
continuum A, none of which coincides with x1. Due to [24,
Lemma2.1],wemay join two pairs of points x̃1, x1 and x̃2, x2
using paths γ1 : [0, 1] → D ′ and γ2 : [0, 1] → D ′ such that
|γ1|∩ |γ2| = ∅, γ1(t), γ2(t) ∈ D for t ∈ (0, 1), γ1(0) = x̃1,
γ1(1) = x1, γ2(0) = x̃2 and γ2(1) = x2. Since D ′ is locally
connected on ∂D ′, there are disjoint neighborhoods U1 and
U2 containing the points x1 and x2, such that the sets Wi :=
D ′ ∩ Ui are path connected. Without loss of generality, we
may assume that U1 ⊂ B(x1, δ0) and

B(x1, δ0) ∩ |γ2| = ∅ = U2 ∩ |γ1|, B(x1, δ0) ∩U2 = ∅.

(6.2)

Due to (6.2), there is σ0 > δ0 > 0 such that

B(x1, σ0) ∩ |γ2| = ∅ = U2 ∩ |γ1|, B(x1, σ0) ∩U2 = ∅.

We also may assume that fm(xm) ∈ W1 and fm(x ′
m) ∈ W2

for allm ∈ N.Let a1 and a2 be two different points belonging
to |γ1| ∩W1 and |γ2| ∩W2, in addition, let 0 < t1, t2 < 1 be
such that γ1(t1) = a1 and γ2(t2) = a2. Join the points a1 and
fm(xm)with a path αm : [t1, 1] → W1 such that αm(t1) = a1
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and αm(1) = fm(xm). Similarly, let us join a2 and fm(x ′
m)

by a path βm : [t2, 1] → W2, such that βm(t2) = a2 and
βm(1) = fm(x ′

m). Set

C1
m(t) =

{
γ1(t), t ∈ [0, t1],
αm(t), t ∈ [t1, 1] , C2

m(t) =
{

γ2(t), t ∈ [0, t2],
βm(t), t ∈ [t2, 1] .

Let D1
m and D2

m be total fm-liftings of the paths |C1
m | and

|C2
m | starting at points xm and x ′

m, respectively (such lifts
exist by [34, Lemma 3.7]). In particular, under the condition
h( f −1

m (A), ∂D) � δ > 0, which is part of the definition of
the classSq

δ,A,Q(D, D ′), the ends of b1m and b2m of paths D1
m

and D2
m, respectively, distant from ∂D at a distance not less

than δ.

Denote by |C1
m | and |C2

m | the loci of the pathsC1
m andC2

m,

respectively. Let us put

l0 = min{dist (|γ1|, |γ2|), dist (|γ1|,U2 \ {∞})}

and consider the coverage A0 := ⋃
x∈|γ1|

B(x, l0/4) of the

path |γ1| using balls. Since |γ1| is a compact set, we may
choose a finite number of indices 1 � N0 < ∞ and corre-
sponding points z1, . . . , zN0 ∈ |γ1| such that |γ1| ⊂ B0 :=
N0⋃
i=1

B(zi , l0/4). In this case,

|C1
m | ⊂ U1 ∪ |γ1| ⊂ B(x1, δ0) ∪

N0⋃
i=1

B(zi , l0/4).

Let us put

Dmi = f −1
m

(
|C1

m | ∩ B(zi , l0/4)
)

, 1 � i � N0,

Dm0 = f −1
m

(
|C1

m | ∩ B(x1, δ0)
)

, i = 0.

Since fm is a closed mapping, the pre-image of an arbitrary
compact set in D ′ is a compact set in D (see, e.g., [34, The-
orem 3.3 (4)]). Then, the sets Dmi are compact in D, and
by the definition, Dmi ⊂ f −1

m (B(zi , l0/4)) for i > 0 and
Dm0 ⊂ f −1

m (B(x1, δ0)).
Let � ∗

m be the family of all paths joining |D1
m | and |D2

m |
in D, and let �mi be a subfamily of paths γ : [0, 1] → D
in �m such that f (γ (0)) ∈ B(zi , l0/4) for 1 � i � N0 and
f (γ (0)) ∈ B(x1, δ0) for i = 0. In this case,

� ∗
m =

N0⋃
i=0

�mi , (6.3)

where �mi is a family of all paths γ : [0, 1] → D such that
γ (0) ∈ Dmi and γ (1) ∈ |D2

m |, 0 � i � N0. Due to the

definition of l0 and σ0,

|D2
m | ⊂ f −1

m

(
D ′ \

(
N0⋃
i=1

B(zi , l0/2) ∪ B(x1, σ )

))
.

Then, we may apply the definition of the class of mappings
in (1.4) to any family �mi . Let us put Q̃(y) = max{Q(y), 1}
and

q̃zi (r) = 1

ωn−1rn−1

∫

S(zi ,r)

Q̃(y) dHn−1.

Note that, q̃zi (r) �= ∞ for r ∈ E ⊂ [l0/4, l0/2], m1(E) > 0
(this follows from the condition of the theorem). Let us put

Ii = Ii (zi , l0/4, l0/2) =
l0/2∫

l0/4

dr

r
n−1
q−1 q̃

1
q−1
zi (r)

, 1 � i � N0,

I0 = I0(x1, δ0, σ0) =
σ0∫

δ0

dr

r
n−1
q−1 q̃

1
q−1
x1

(r)
.

Note that, Ii �= 0, since q̃zi (r) �= ∞ for r ∈ E ⊂
[l0/4, l0/2], m1(E) > 0. In addition, Ii �= ∞, i =
0, 1, 2, . . . , N0. In this case, we put

ηi (r) =

⎧⎪⎨
⎪⎩

1

Ii r
n−1
q−1 q̃

1
q−1
zi (r)

, r ∈ [l0/4, l0/2],

0, r /∈ [l0/4, l0/2],

η0(r) =

⎧⎪⎨
⎪⎩

1

I0r
n−1
q−1 q̃

1
q−1
x1

(r)

, r ∈ [δ0, σ0],

0, r /∈ [δ0, σ0].

Note that, the functions ηi and η0 satisfy (1.5). Substituting
these functions into the definition (1.4), and using the Fubini
theorem with a ratio (6.3), we obtain that

Mq(�
∗
m) �

N0∑
i=0

Mq(�im) �
N0∑
i=1

ωn−1

I q−1
i

+ ωn−1

I p−1
0

:= C0, m = 1, 2, . . . . (6.4)

Let us show that, the relation (6.4) contradicts the weak
flatness of the boundary of the domain D ′. Indeed, by con-
struction

h(|D1
m |) � h(xm, b1m) � (1/2) · h( f −1

m (A), ∂D) > δ/2,

h(|D2
m |) � h(x ′

m, b2m) � (1/2) · h( f −1
m (A), ∂D) > δ/2

(6.5)
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for any m � M0 and some M0 ∈ N. Put U := Bh(x0, r0) =
{y ∈ Rn : h(y, x0) < r0}, where 0 < r0 < δ/4 and the
number δ refers to ratio (6.5). Note that, |D1

m | ∩ U �= ∅ �=
|D1

m | ∩ (D\U ) for any m ∈ N, because h(|D1
m |) � δ/2 and

xm ∈ |D1
m |, xm → x0 at m → ∞. Similarly, |D2

m | ∩ U �=
∅ �= |D2

m | ∩ (D\U ). Since |D1
m | and |D2

m | are continua, by
Proposition 3.1

|D1
m | ∩ ∂U �= ∅, |D2

m | ∩ ∂U �= ∅. (6.6)

Let C0 be the number from the relation (6.4). Since ∂D is
weakly flat, for the number P := C0 · m q−n

n (D) > 0, there
is a neighborhood V ⊂ U of the point x0 such that

M(�(E, F, D)) > C0 · m q−n
n (D) (6.7)

for any continua E, F ⊂ D such that E∩∂U �= ∅ �= E∩∂V
and F ∩ ∂U �= ∅ �= F ∩ ∂V . Let us show that,

|D1
m | ∩ ∂V �= ∅, |D2

m | ∩ ∂V �= ∅ (6.8)

for sufficiently large m ∈ N. Indeed, xm ∈ |D1
m | and

x ′
m ∈ |D2

m |, where xm, x ′
m → x0 ∈ V as m → ∞. In

this case, |D1
m | ∩ V �= ∅ �= |D2

m | ∩ V for sufficiently
large m ∈ N. Note that h(V ) � h(U ) � 2r0 < δ/2.
By (6.5), h(|D1

m |) > δ/2. Therefore, |D1
m | ∩ (D\V ) �= ∅

and, therefore, |D1
m | ∩ ∂V �= ∅ (see Proposition 3.1). Sim-

ilarly, h(V ) � h(U ) � 2r0 < δ/2. It follows from (6.5)
that, h(|D2

m |) > δ/2. Therefore, |D2
m | ∩ (D \ V ) �= ∅. By

Proposition 3.1, we obtain that |D2
m | ∩ ∂V �= ∅. Thus, the

ratio (6.8) is established.Combining relations (6.6), (6.7),and
(6.8), we obtain that M(� ∗

m) = M(�(|D1
m |, |D2

m |, D)) >

C0 · m q−n
n (D). Finally, by the Hölder inequality, taking into

account the last condition, we obtain that

Mq(�
∗
m) � C0 · m q−n

n (D) · m− q−n
n (D) = C0. (6.9)

The latter relation contradicts with (6.4), which proves theo-
rem in the case of functions Q integrable over spheres. The
case Q ∈ L1(D ′) can be considered by analogy with the last
one part of the proof of Theorem 5.1. ��

7 Consequences for mappings with other
modulus and capacity conditions

First of all, consider the relation

Mq(�(E, F, D)) �
∫

f (D)

Q(y) · ρ
q∗ (y) dm(y)

∀ ρ∗ ∈ adm( f (�(E, F, D))). (7.1)

The following statement holds.

Theorem 7.1 Let y0 ∈ f (D), q < ∞ and let Q : R
n →

[0,∞] be a Lebesgue measurable function. If f is a mapping
that satisfies relation (7.1) for any disjoint nondegenerate
compact sets E, F ⊂ D, then f also satisfies condi-
tion (1.4) for arbitrary compact sets E ⊂ f −1(B(y0, r1)),
F ⊂ f −1( f (D)\B(y0, r2)), 0 < r1 < r2 < r0 =
sup
y∈D ′

|y − y0|, and an arbitrary Lebesgue measurable func-

tion η : (r1, r2) → [0,∞] with the condition (1.5).

Proof Let E ⊂ f −1(B(y0, r1)), F ⊂ f −1( f (D)\B(y0, r2)),
0 < r1 < r2 < r0 = sup

y∈D ′
|y − y0|, be arbitrary nondegener-

ate compacta. Also, let η : (r1, r2) → [0,∞] be an arbitrary
Lebesgue measurable function that satisfies condition (1.5).
Let us put ρ∗(y) := η(|y − y0|) for y ∈ A ∩ f (D) and
ρ∗(y) = 0 otherwise, where A = A(y0, r1, r2) = {y ∈
R
n : r1 < |y − y0| < r2}. By Luzin theorem, we may

assume that the function ρ∗ is Borel measurable (see e.g., [2,
Section 2.3.6]). By [28, theorem 5.7]

∫

γ∗

ρ∗(y) |dy| �
r2∫

r1

η(r) dr � 1

for any (rectifiable) path γ∗ ∈ �( f (E), f (F), f (D)). Then,
by (7.1), we obtain that

Mq(�(E, F, D)) �
∫

A∩ f (D)

Q(y) · ρ
q∗ (y) dm(y)

=
∫

A∩ f (D)

Q(y) · ηq(|y − y0|) dm(y).

��

Given a Lebesgue measurable function Q : R
n →

[0,∞], a q-capacity of (E, F) with a weight Q and with
a respect to D is defined by

capq,Q (E, F, D) = inf
u ∈W0(E,F)

∫

D

Q(x) · |∇u|q dm(x).

(7.2)

The following statement holds.

Theorem 7.2 Let y0 ∈ f (D), q < ∞ and let Q : R
n →

[0,∞] be Lebesgue measurable function. If f is a homeo-
morphism that satisfies the relation

capq(E, F, D) � capq,Q ( f (E), f (F), f (D)), (7.3)
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for arbitrary compacts (continua) E, F ⊂ D, and

capq,Q ( f (E), f (F), f (D)) = Mq,Q ( f (E), f (F), f (D)),

(7.4)

where

Mq,Q ( f (E), f (F), f (D)) = inf
ρ∗∈adm �( f (E), f (F), f (D))∫

f (D)

ρ
q∗ (y) · Q(y) dm(y),

then f satisfies the condition (1.4) for arbitrary compacts
(continua) sets E ⊂ f −1(B(y0, r1)), F ⊂ f −1( f (D) \
B(y0, r2)), 0 < r1 < r2 < r0 = sup

y∈D ′
|y − y0|, and an arbi-

trary Lebesgue measurable function η : (r1, r2) → [0,∞]
with the condition (1.5).

Proof Let E ⊂ f −1(B(y0, r1)), F ⊂ f −1( f (D)\B(y0, r2)),
0 < r1 < r2 < r0 = sup

y∈D ′
|y − y0|, be arbitrary non-

degenerate compacta. Also, let η : (r1, r2) → [0,∞] be
an arbitrary Lebesgue measurable function that satisfies the
condition (1.5). By Hesse equality (see [11, Theorem 5.5]),
capq(E, F, D) = Mq(�(E, F, D)). Since f is a homeo-
morphism, f (�(F, E, D)) = �( f (E), f (F), f (D)).Then,
by (7.3),we obtain that

Mq(�(E, F, D)) � capq,Q ( f (E), f (F), f (D))

�
∫

f (D)

Q(y) · ρ
q∗ (y) dm(y) (7.5)

for any function ρ∗ ∈ adm f (�(E, F, D)) = adm �( f (E),

f (F), f (D)). The desired conclusion follows by Theo-
rem 7.1. ��

Due toTheorem7.2, all results of this paper hold for home-
omorphismswith (7.5), the correspondingweight Q ofwhich
satisfies the relation (7.4).
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