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Abstract
Let p(z) be a polynomial of degree n. The polar derivative of p(z) with respect to a complex number α is defined by

Dα p(z) = np(z) + (α − z)p′(z).

If p(z) = zs
n−s∑

j=0

c j z
j , 0 ≤ s ≤ n, has all its zeros in |z| ≤ k, k ≥ 1, then for |α| ≥ k, Kumar and Dhankhar [Bull, Math. Soc.

Sci. Math., 63(4), 359-367 (2020)] proved

max|z|=1
|Dα p(z)| ≥ n(|α| − k)

1 + kn−s

(
1 + (|cn−s |kn − |c0|ks)(k − 1)

2(|cn−s |kn + |c0|ks+1)

)
max|z|=1

|p(z)|.

In this paper, we first improve the above inequality. Besides, we are able to prove an improvement of a result due to Govil
and Mctume [Acta. Math. Hungar., 104, 115-126 (2004)] and also prove an inequality for a subclass of polynomials having
no zero in |z| < k, k ≤ 1.
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1 Introduction

Let p(z) =
n∑

j=0

c j z
j be a polynomial of degree n over the

set of complex numbers. We will use q(z) to represent the

polynomial zn p
(
1
z̄

)
.

According to the famous Bernstein’s inequality [6],

max|z|=1
|p′(z)| ≤ nmax|z|=1

|p(z)|. (1)

Equality in (1) holds for p(z) = αzn, α �= 0.
If we restrict the zeros of p(z), inequality (1) can be

refined. In this direction, Erdös conjectured and later Lax
[19, p. 1] proved that if p(z) is a polynomial of degree n
having no zero in |z| < 1, then

max|z|=1
|p′(z)| ≤ n

2
max|z|=1

|p(z)|. (2)
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Inequality (2) is best possible for p(z) = α + βzn , where
|α| = |β|.

It was R. P. Boas who asked that if p(z) is a polynomial
of degree n not vanishing in |z| < k, k > 0, then how large

{
max|z|=1

|p′(z)|∣∣
/

max|z|=1
|p(z)|

}
can be ?

A partial answer to this problem was given by Malik [20,
Theorem, p. 58], who proved that if p(z) is a polynomial of
degree n having no zeros in |z| < k, k ≥ 1, then

max|z|=1
|p′(z)| ≤ n

1 + k
max|z|=1

|p(z)|. (3)

In the literature, there exist generalizations and improve-
ments of inequality (3), for brief understanding one can refer
to: Chan and Malik [8], Qazi [21], Bidkham and Dewan [7],
Aziz and Zargar [4], Chanam and Dewan [9], Aziz and Shah
[3] etc.

On the other hand, for the class of polynomials p(z) such
that p(z) �= 0 for |z| < k, k ≤ 1, the precise estimate
for maximum of |p′(z)| on |z| = 1 does not seem to be
easily obtainable. For quit some time, it was believed that
the inequality analogous to (3) for p(z) �= 0 in |z| < k,
k ≤ 1, should be

max|z|=1
|p′(z)| ≤ n

1 + kn
max|z|=1

|p(z)|, (4)

till E. B. Saff gave the example p(z) = (
z − 1

2

) (
z + 1

3

)
to

counter this belief.
With extra assumption inequality (4) could be satisfied. In

this direction, Govil [11] proved that if p(z) is a polynomial
of degree n having no zero in |z| < k, k ≤ 1, with additional
hypothesis that |p′(z)| and |q ′(z)| attain their maxima at the
same point on |z| = 1, then

max|z|=1
|p′(z)| ≤ n

1 + kn
max|z|=1

|p(z)|. (5)

Under the same set of hypothesis, Kumar and Dhankar [18,
Theorem 2] further improved inequality (5) by proving

max|z|=1
|p′(z)|

≤ n

1 + kn

{
1 − kn (|c0| − |cn|kn) (1 − k)

2 (|c0|k + |cn|kn)
}
max|z|=1

|p(z)|.
(6)

Another improvement of (5) was also recently obtained by
Singh and Chanam [23, Theorem 3] by proving

max|z|=1
|p′(z)|

≤
⎡

⎣ n

1 + kn
−
(√|c0| − k

n
2
√|cn|

)
kn

(1 + kn)
√|c0|

⎤

⎦max|z|=1
|p(z)|.

(7)

In 1939, Turán [26] provided a lower bound estimate of the
derivative to the size of the polynomial by restricting its zeros,
and proved that if p(z) has all its zeros in |z| ≤ 1, then

max|z|=1
|p′(z)| ≥ n

2
max|z|=1

|p(z)|. (8)

Aziz and Dawood [1, Theorem 4] further refined inequality
(8) by involving min|z|=1

|p(z)|. In fact, they proved

max|z|=1
|p′(z)| ≥ n

2

{
max|z|=1

|p(z)| + min|z|=1
|p(z)|

}
. (9)

Both the inequalities (8) and (9) are best possible and equality
holds if p(z) has all its zeros on |z| = 1.

Inequalities (8) and (9) have been extended and general-
ized in different directions (see [3,5,12–14]). For polynomial
p(z) having all its zeros in |z| ≤ k, k ≥ 1, Govil [12, Theo-
rem, p. 544] proved that

max|z|=1
|p′(z)| ≥ n

1 + kn
max|z|=1

|p(z)|. (10)

Further, as an improvement of (10) and a generalization of
(9), Govil [13, Theorem 2] proved

max|z|=1
|p′(z)| ≥ n

1 + kn
max|z|=1

|p(z)| + n

1 + kn
min|z|=k

|p(z)|. (11)

Inequalities (10) and (11) are sharp and equality holds for
p(z) = zn + kn .

The concept of ordinary derivative of a polynomial has
been generalized to polar derivative of a polynomial as fol-
lows:

If p(z) is a polynomial of degree n and α be any real or
complex number, the polar derivative of p(z) with respect to
α, denoted by Dα p(z), is defined as

Dα p(z) = np(z) + (α − z)p′(z).

It is easy to see that Dα p(z) is a polynomial of degree at most
n − 1 and it generalizes the ordinary derivative in the sense
that

123



Complex Analysis and its Synergies (2023) 9 :3 Page 3 of 8 3

lim
α→∞

[
Dα p(z)

α

]
= p′(z).

Shah [22] extended inequality (8) to the polar derivative and
proved that if p(z) is a polynomial of degree n having all
its zeros in |z| ≤ 1, then for any complex number α with
|α| ≥ 1

max|z|=1
|Dα p(z)| ≥ n(|α| − 1)

2
max|z|=1

|p(z)|. (12)

Recently, Gulzar et al. [17, Theorem 2.1] refined inequality

(12) and proved that if p(z) =
n∑

j=0

c j z
j is a polynomial of

degree n having all its zeros in |z| ≤ 1, then for any complex
number α with |α| ≥ 1 and |z| = 1

|Dα p(z)| ≥ (|α| − 1)

2

(
n +

√|cn| − √|c0|√|cn|
)

|p(z)|. (13)

In 1998, Aziz and Rather [2, Theorem 2] extended inequality
(10) to polar derivative by proving that if p(z) is a polynomial
of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for
every complex number α with |α| ≥ k,

max|z|=1
|Dα p(z)| ≥ n

( |α| − k

1 + kn

)
max|z|=1

|p(z)|. (14)

Recently, Kumar and Dhankhar [18, Theorem 3] obtained a
generalization aswell as improvement of (14) by establishing

that if p(z) = zs
n−s∑

j=0

c j z
j , 0 ≤ s ≤ n, is a polynomial of

degree n having all its zeros in |z| ≤ k, k ≥ 1, then for any
complex number α with |α| ≥ k,

max|z|=1
|Dα p(z)|

≥ n(|α| − k)

1 + kn−s

(
1 + (|cn−s |kn − |c0|ks)(k − 1)

2(|cn−s |kn + |c0|ks+1)

)

×max|z|=1
|p(z)|. (15)

With the same hypothesis, Singh and Chanam [23, Theorem
1] provided another improvement of (14) and a generalization
of (13) and obtained

max|z|=1
|Dα p(z)|

≥ (|α| − k)

1 + kn

(
n + s + k

n−s
2

√|cn−s | − √|c0|
k

n−s
2

√|cn−s |

)

×max|z|=1
|p(z)|. (16)

Govil andMctume [15, Theorem 3] extended inequality (11)
to polar derivative and proved

max|z|=1
|Dα p(z)|

≥ n

( |α| − k

1 + kn

)
max|z|=1

|p(z)| + n

( |α| − (1 + k + kn)

1 + kn

)

× min|z|=k
|p(z)|, (17)

where α is any complex number with |α| ≥ 1 + k + kn .
Improvements of inequality (17) by involving leading

coefficient and constant term of the polynomial can be seen
in recent works of Singh and Chanam [23, Theorem 2] and
Singh et al. [24, Theorem 4].

2 Main results

We begin by presenting the following refinement of inequal-
ity (15) and inequality (16).

Theorem 1 If p(z) = zs
n−s∑

j=0

c j z
j , 0 ≤ s ≤ n, is a polyno-

mial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then
for any complex number α with |α| ≥ k,

max|z|=1
|Dα p(z)|

≥
( |α| − k

1 + kn−s

)(
n + s + k

n−s
2

√|cn−s | − √|c0|
k

n−s
2

√|cn−s |

)

×
{
1 + (|cn−s |kn − |c0|ks) (k − 1)

2
(|cn−s |kn + |c0|ks+1

)
}
max|z|=1

|p(z)|. (18)

Remark 1 Since the polynomial h(z) = p(z)
zs =

n−s∑

j=0

c j z
j has

all its zeros in |z| ≤ k, k ≥ 1, we have

| c0
cn−s

| ≤ kn−s,

which is equivalent to

|c0|ks ≤ |cn−s |kn,

and

k
n−s
2
√|cn−s | ≥ √|c0|.

Dividing both sides of (18) by |α| and taking limit as |α| →
∞, we get the following generalization and refinement of
inequality (10) due to Govil [12].
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Corollary 1 If p(z) = zs
n−s∑

j=0

c j z
j , 0 ≤ s ≤ n, is a poly-

nomial of degree n having all its zeros in |z| ≤ k, k ≥ 1,
then

max|z|=1
|p′(z)| ≥

(
1

1 + kn−s

)(
n + s + k

n−s
2

√|cn−s | − √|c0|
k

n−s
2

√|cn−s |

)

×
{
1 + (|cn−s |kn − |c0|ks) (k − 1)

2
(|cn−s |kn + |c0|ks+1

)
}
max|z|=1

|p(z)|. (19)

When s = 0, Theorem 1, in particular, gives the following
improvement of inequality (14) proved by Aziz and Rather
[2] and a generalization and an improvement of inequality
(13) of Gulzar et al. [17].

Corollary 2 If p(z) =
n∑

j=0

c j z
j is a polynomial of degree n

having all its zeros in |z| ≤ k, k ≥ 1, then for any complex
number |α| with |α| ≥ k

max|z|=1
|Dα p(z)| ≥

( |α| − k

1 + kn

)(
n + k

n
2
√|cn| − √|c0|
k

n
2
√|cn|

)

×
{
1 + (|cn|kn − |c0|) (k − 1)

2 (|cn|kn + |c0|k)
}
max|z|=1

|p(z)|. (20)

Dividing both sides of (20) by |α| and taking limit as |α| →
∞, we get the following refinement of inequality (10) due to
Govil [12].

Corollary 3 If p(z) =
n∑

j=0

c j z
j is a polynomial of degree n

having all its zeros in |z| ≤ k, k ≥ 1, then

max|z|=1
|p′(z)| ≥

(
1

1 + kn

)(
n + k

n
2
√|cn| − √|c0|
k

n
2
√|cn|

)

×
{
1 + (|cn|kn − |c0|) (k − 1)

2 (|cn|kn + |c0|k)
}
max|z|=1

|p(z)|. (21)

The inequality (21) is best possible for p(z) = zn + kn .

Remark 2 Taking k = 1 in Corollary 3, inequality (21) pro-
vides a refinement of inequality (8) due to Turán [26].

As an application of Theorem 1, we obtain the following
result which is a refinement of inequality (17) due to Govil
and Mctume [15] and a result recently proved by Singh and
Chanam [23, Theorem 2].

Theorem 2 If p(z) =
n∑

j=0

c j z
j is a polynomial of degree n

having all its zeros in |z| ≤ k, k ≥ 1, then for any complex

number α with |α| ≥ 1 + k + kn

max|z|=1
|Dα p(z)|

≥ (|α| − k)

1 + kn

(
n + k

n
2
√|cn| −√|c0 + eiθ0m|

k
n
2
√|cn|

)

×
{
1 + (|cn|kn − |c0 + eiθ0m|)(k − 1)

2(|cn|kn + |c0 + eiθ0m|k)
}
max|z|=1

|p(z)|

+
[
n

( |α| − (1 + k + kn)

1 + kn

)

+|α| − k

1 + kn

{
k

n
2
√|cn| −√|c0 + eiθ0m|

k
n
2
√|cn|

+ (|cn|kn − |c0 + eiθ0m|)(k − 1)

2(|cn|kn + |c0 + eiθ0m|k)(
n + k

n
2
√|cn| −√|c0 + eiθ0m|

k
n
2
√|cn|

)}]
m, (22)

where m = min|z|=k
|p(z)| and θ0 = arg

{
p(eiφ0)

}
such that

|p(eiφ0)| = max|z|=1
|p(z)|.

Remark 3 If p(z) =
n∑

j=0

c j z
j is a polynomial of degree n

having all its zeros in |z| ≤ k, k ≥ 1, then for any complex
number |λ|eiθ0 with |λ| < 1, by Rouche’s theorem it follows
that the polynomial p(z)+|λ|eiθ0m = (c0+|λ|eiθ0m)+c1z+
· · ·+cnzn has all its zeros in |z| ≤ k, wherem = min|z|=k

|p(z)|,
then

kn ≥ |c0 + |λ|eiθ0m
cn

|,

which implies that

k
n
2
√|cn| ≥

√
|c0 + |λ|eiθ0m|.

Taking |λ| → 1, we get

k
n
2
√|cn| ≥

√
|c0 + eiθ0m|,

and

kn|cn| ≥ |c0 + eiθ0m|.

Remark 4 Dividing both sides of (22) by |α| and taking limit
as |α| → ∞, we have the following refinement of inequality
(11) due to Govil [13].
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Corollary 4 If p(z) =
n∑

j=0

c j z
j is a polynomial of degree n

having all its zeros in |z| ≤ k, k ≥ 1, then

max|z|=1
|p′(z)|

≥ 1

1 + kn

(
n + k

n
2
√|cn| −√|c0 + eiθ0m|

k
n
2
√|cn|

)

×
{
1 + (|cn|kn − |c0 + eiθ0m|)(k − 1)

2(|cn|kn + |c0 + eiθ0m|)
}
max|z|=1

|p(z)|

+
[

n

1 + kn
+ 1

1 + kn

{
k

n
2
√|cn| −√|c0 + eiθ0m|

k
n
2
√|cn|

+ (|cn|kn − |c0 + eiθ0m|)(k − 1)

2(|cn|kn + |c0 + eiθ0m|)(
n + k

n
2
√|cn| −√|c0 + eiθ0m|

k
n
2
√|cn|

)}]
m, (23)

where m = min|z|=k
p(z) and θ0 = arg

{
p(eiφ0)

}
such that

|p(eiφ0)| = max|z|=1
|p(z)|.

Inequality (23) is best possible for p(z) = zn + kn .

Remark 5 Taking k = 1 in Corollary 4, inequality (23)
reduces to a refinement of inequality (9) due to Aziz and
Dawood [1].

Corollary 5 If p(z) =
n∑

j=0

c j z
j is a polynomial of degree n

having all its zeros in |z| ≤ 1, then

max|z|=1
|p′(z)|

≥ 1

2

(
n +

√|cn| −√|c0 + eiθ0m|√|cn|

)
max|z|=1

|p(z)|

+1

2

[
n +

(√|cn| −√|c0 + eiθ0m|√|cn|

)]
m, (24)

where m = min|z|=1
|p(z)| and θ0 = arg

{
p(eiφ0)

}
such that

|p(eiφ0)| = max|z|=1
|p(z)|.

Further, we are able to prove an improvement of inequalities
(6) and (7).

Theorem 3 If p(z) =
n∑

j=0

c j z
j is a polynomial of degree n

having no zero in |z| < k, k ≤ 1. If |p′(z)| and |q ′(z)| attain
their maxima at the same point on |z| = 1, then

max|z|=1
|p′(z)| ≤ 1

1 + kn

[
n − kn

{√|c0| − k
n
2
√|cn|√|c0|

+ (|c0| − kn|cn|)(1 − k)

2(|c0|k + kn|cn|)

(
n +

√|c0| − k
n
2
√|cn|√|c0|

)}]

max|z|=1
|p(z)|. (25)

The result is sharp and equality in (25) holds for p(z) =
zn + kn.

Remark 6 Since p(z) =
n∑

j=0

c j z
j has all its zeros in |z| ≥

k, k ≤ 1, q(z) has all its zeros in |z| ≤ 1
k ,

1
k ≥ 1, then

|cn
c0

| ≤ 1

kn
,

which equivalently gives

|c0| ≥ |cn|kn, (26)

and

√|c0| ≥ k
n
2
√|cn|. (27)

From inequalities (26) and (27), it is evident that the bound
(25) improves both the bounds given by (6) and (7).

Remark 7 Taking k = 1 in Theorem 3, we get the following
improvement of (2) due to Erdös and Lax for a subclass of
polynomials.

Corollary 6 If p(z) =
n∑

j=0

c j z
j is a polynomial of degree n

having no zero in |z| < 1. If |p′(z)| and |q ′(z)| attain their
maxima at the same point on |z| = 1, then

max|z|=1
|p′(z)| ≤ 1

2

(
n −

√|c0| − √|cn|√|c0|
)
max|z|=1

|p(z)|. (28)

3 Lemmas

We need the following lemmas to prove our theorems.

Lemma 1 If p(z) =
n∑

j=0

c j z
j is a polynomial of degree n ≥ 1

having all its zeros in |z| ≤ 1, then for all z on |z| = 1 with
p(z) �= 0.

	
(
z
p′(z)
p(z)

)
≥ 1

2

(
n +

√|cn| − √|c0|√|cn|
)

. (29)

The above result is due to Dubin [10, Theorem 4]( also see
Singh and Chanam [23, Lemma 3] and Wali and Shah [25,
Inequality 9]).
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Lemma 2 Let p(z) = zs
n−s∑

j=0

c j z
j , 0 ≤ s ≤ n be a poly-

nomial of degree n having all its zeros in |z| ≤ k, k ≥ 1,
then

max|z|=k
|p(z)| ≥ 2kn

1 + kn−s

(
1 + (|cn−s |kn − |c0|ks)(k − 1)

2(|cn−s |kn + |c0|ks+1)

)

max|z|=1
|p(z)|. (30)

The above result appears in Kumar and Dhankar [18, Lemma
4].

Lemma 3 If p(z) = zs
n−s∑

j=0

c j z
j , 0 ≤ s ≤ n is a polynomial

of degree n having all its zeros in |z| ≤ 1, with s−fold zeros
at the origin, then for any complex number α with |α| ≥ 1
and on |z| = 1

|Dα p(z)| ≥ (|α| − 1)

2

(
n + s +

√|cn−s | − √|c0|√|cn−s |
)

|p(z)|.
(31)

This result appears in Singh and Chanam [23, Lemma 5].

Lemma 4 If p(z) is a polynomial of degree n, then on |z| = 1

|p′(z)| + |q ′(z)| ≤ nmax|z|=1
|p(z)|. (32)

The above result is a particular case of a result [16, Inequality
3.2] due to Govil and Rahman.

4 Proofs of the theorems

Proof of Theorem 1 Since p(z) = zs
n−s∑

j=0

c j z
j has all its

zeros in |z| ≤ k, k ≥ 1, the polynomial p(kz) =
zs
(
ksc0 + ks+1c1z + · · · kncnzn−s

)
has all its zeros in |z| ≤

1. Using Lemma 3 to p(kz), we get for |α
k | ≥ 1

max|z|=1
|D α

k
p(kz)|

≥ |α| − k

2k

(
n + s + k

n−s
2

√|cn−s | − √|c0|
k

n−s
2

√|cn−s |

)

×max|z|=1
|p(kz)|,

that is

max|z|=1
|np(kz) +

(α

k
− z
)
kp′(kz)|

≥ (|α| − k)

2k

(
n + s + k

n−s
2

√|cn−s | − √|c0|
k

n−s
2

√|cn−s |

)

max|z|=k
|p(z)|. (33)

Using Lemma 2 and the fact that max|z|=1
|np(kz)+

(α

k
− z
)
kp′

(kz)| = max|z|=k
|Dα p(z)|, inequality (33) implies

max|z|=k
|Dα p(z)|

≥ (|α| − k)

2k

(
n + s + k

n−s
2

√|cn−s | − √|c0|
k

n−s
2

√|cn−s |

)

× 2kn

1 + kn−s

{
1 + (|cn−s |kn − |c0|ks)(k − 1)

2(|cn−s |kn + |c0|ks+1)

}

×max|z|=1
|p(z)|. (34)

As we can see that Dα p(z) is a polynomial of degree at most
n − 1 and k ≥ 1, it is well-known that
max|z|=k

|Dα p(z)| ≤ kn−1 max|z|=1
|Dα p(z)|.Using this fact, inequal-

ity (34) gives

kn−1 max|z|=1
|Dα p(z)|

≥ (|α| − k)

(
n + s + k

n−s
2

√|cn−s | − √|c0|
k

n−s
2

√|cn−s |

)

× kn−1

1 + kn−s

{
1 + (|cn−s |kn − |c0|ks)(k − 1)

2(|cn−s |kn + |c0|ks+1)

}

×max|z|=1
|p(z)|.

which gives inequality (18), and the proof of Theorem 1 is
complete. 
�
Proof of Theorem 2 If p(z) has a zero on |z| = k, thenm = 0
and the result follows trivially from Theorem 1. So, without
loss of generality, let us assume that p(z) has all its zeros
in |z| < k, k ≥ 1, then it follows by Rouche’s theorem
that for any complex number λ with |λ| < 1, the polynomial
p(z)+λm = (c0+λm)+c1z+· · ·+cnzn has all its zeros in
|z| < k, k ≥ 1. Therefore, applying Theorem 1 to p(z)+λm
with s = 0, we get for |α| ≥ 1 + k + kn

max|z|=1
|Dα [p(z) + λm]|

≥
( |α| − k

1 + kn

)(
n + k

n
2
√|cn| − √|c0 + λm|

k
n
2
√|cn|

)

×
{
1 + (|cn|kn − |c0 + λm|) (k − 1)

2 (|cn|kn + |c0 + λm|k)
}

×max|z|=1
|p(z) + λm|. (35)

Let 0 ≤ φ0 < 2π , be such that |p(eiφ0)| = max|z|=1
|p(z)|. Then,

inequality (35) takes
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max|z|=1
|Dα p(z) + nλm|

≥
( |α| − k

1 + kn

)(
n + k

n
2
√|cn| − √|c0 + λm|

k
n
2
√|cn|

)
(36)

×
{
1 + (|cn|kn − |c0 + λm|) (k − 1)

2 (|cn|kn + |c0 + λm|k)
}

|p(eiφ0) + λm|.
(37)

Now,

|p(eiφ0) + λm| = ||p(eiφ0)|eiθ0 + |λ|eiφm|
= ||p(eiφ0)| + |λ|ei(φ−θ0)m|.

Setting the argument φ such that φ = θ0, then

|p(eiφ0) + λm| = |p(eiφ0)| + |λ|m. (38)

Using this fact in inequality (37), we have

max|z|=1
|Dα p(z)| + n|λ|m

≥
( |α| − k

1 + kn

)(
n + k

n
2
√|cn| −√|c0 + |λ|eiθ0m|

k
n
2
√|cn|

)

×
{
1 +

(|cn|kn − |c0 + |λ|eiθ0m|) (k − 1)

2
(|cn|kn + |c0 + |λ|eiθ0m|k)

}

(
|p(eiφ0)| + |λ|m

)
.

which is equivalent to

max|z|=1
|Dα p(z)|

≥ (|α| − k)

1 + kn

(
n + k

n
2
√|cn| −√|c0 + |λ|eiθ0m|

k
n
2
√|cn|

)

×
{
1 + (|cn|kn − |c0 + |λ|eiθ0m|)(k − 1)

2(|cn|kn + |c0 + |λ|eiθ0m|k)
}
max|z|=1

|p(z)|

+|λ|
[
n

( |α| − (1 + k + kn)

1 + kn

)

+|α| − k

1 + kn

{
k

n
2
√|cn| −√|c0 + |λ|eiθ0m|

k
n
2
√|cn|

+ (|cn|kn − |c0 + |λ|eiθ0m|)(k − 1)

2(|cn|kn + |c0 + |λ|eiθ0m|k)(
n + k

n
2
√|cn| −√|c0 + |λ|eiθ0m|

k
n
2
√|cn|

)}]
m,

Taking |λ| → 1, the above inequality reduces to (22). This
completes the proof of Theorem 2. 
�

Proof of Theorem 3 Since p(z) has all its zeros in |z| ≥
k, k ≤ 1, q(z) has all its zeros in |z| ≤ 1

k ,
1
k ≥ 1. Then

applying Corollary 3 to q(z), we have

max|z|=1
|q ′(z)|

≥
(

kn

1 + kn

)⎛

⎝n +
( 1
k

) n
2
√|c0| − √|cn|
( 1
k

) n
2
√|c0|

⎞

⎠

×
⎧
⎨

⎩1 +
(
|c0|

( 1
k

)n − |cn|
)

( 1k − 1)

2
(
|c0|

( 1
k

)n + |cn| 1k
)

⎫
⎬

⎭max|z|=1
|p(z)|. (39)

By Lemma 4, we have on |z| = 1,

|p′(z)| + |q ′(z)| ≤ nmax|z|=1
|p(z)|. (40)

Since |p′(z)| and |q ′(z)| attain theirmaxima at the same point
on |z| = 1, then

max|z|=1

{|p′(z)| + |q ′(z)|} = max|z|=1
|p′(z)| + max|z|=1

|q ′(z)|. (41)

Combining (39), (40) and (41), we have

n max|z|=1
|p(z)|

≥
(

kn

1 + kn

)(
n +

√|c0| − k
n
2
√|cn |√|c0|

)

×
{
1 +

(|c0| − kn |cn |
)
(1 − k)

2 (|c0|k + kn |cn |)

}
max|z|=1

|p(z)| + max|z|=1
|p′(z)|,

which is equivalent to

max|z|=1
|p′(z)|

≤ 1

1 + kn

[
n − kn

{√|c0| − k
n
2
√|cn|√|c0|

+ (|c0| − kn|cn|)(1 − k)

2(|c0|k + kn|cn|)

(
n +

√|c0| − k
n
2
√|cn|√|c0|

)}]

max|z|=1
|p(z)|,


�
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