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Abstract

We give anormal form for pseudo-Einstein contact forms and apply it to construct intrinsic CR normal coordinates parametrized
by the structure group of CR geometry. The proof is based on the construction of parabolic normal coordinates by Jerison

and Lee.
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1 Introduction

Normal coordinates are basic tools in geometric analysis,
which give optimal approximations by the flat model and
simplify technical computations. In Riemannian geometry,
geodesic normal coordinates x are the canonical choice; they
are parametrized by the orthogonal group O(n) and the metric
tensor satisfies

gij =8ij + O(x).

If we allow conformal changes of the metric g = 27 g, then
we can get better approximations, which are called conformal
normal coordinates. They are parametrized by the structure
group of conformal geometry, CO(n) x R", where CO(n) =
O(n) x Ry is the conformal orthogonal group.

There are (at least) two standard choices. The first one
was given by Robin Graham in his study of local conformal
invariant [5]. He found that, for each point p, there is a confor-
mal scale Y such that the symmetrized covariant derivatives
of the Ricci tensor of g vanish to the infinite order:

Ric(ay,a3..a00)(p) =0 fork > 2.
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Such a scale Y is uniquely determined once the first jets
(P, 9,7 (p)) e Ry x R"

are specified. Then the geodesic normal coordinates for g
give conformal normal coordinates. Together with the choice
of an orthonormal frame of the tangent space at p, the coor-
dinates are parametrized by O(n) x Ry x R".

Another class of conformal normal coordinates was intro-
duced by Lee and Parker [11] in the analysis of Yamabe
functional. They normalized the scale Y by the condition:

detgij(x) = 1+ O(|x|*) fork > 2.

Again, such a scale is determined by the first jets of Y.

In CR geometry, or the biholomorphic geometry of real
hypersurfaces in a complex manifold, normal coordinates
were first introduce by Moser [3]. He imposed a condition
on the defining function of the surface and fixed holomorphic
coordinates up to an action of the structure group, CU(n) x
H", where CU(n) = U(n) x R is the conformal unitary
group and H" = C" x R is the Heisenberg group. Moser’s
normal coordinates were used in the invariant theory of CR
geometry by Fefferman [4], but they are not easy to handle
in the setting of intrinsic pseudo-hermitian geometry.

Another class of CR normal coordinates was constructed
by Jerison and Lee [8] in the study of CR Yamabe problem,
in analogy with the conformal case. They first fixed a con-
tact form by a curvature condition and then make parabolic
normal coordinates for the scale; see Sect. 3. The curvature
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condition is rather complicated: let

Qaﬂ = (”l + z)iAaﬁ, QO‘E = Ricaﬁ’
Qoo = 44487 + 2 Scal
O = af, n+ 1 o>
16 4
= —1Im A + ———— Ay Scal,
Qoo o Im Agp, + nit D ca

where Ricag, Scal and Ayp are respectively the Ricci tensor,
the scalar curvature and the torsion tensor of the Tanaka—
Webster connection for a contact form 6; see Sect. 2. The
indices preceded by a comma denote covariant derivatives
and Ay is the sublaplacian. If we use indices 7, J which run
through {0, 1...,n, 1,..., n}, then the two tensors can be
written in a unified form Qy;; for the components which
are note defined above, we set Q77 = Q17,017 = 0y1.
Then the normalization is given by the symmetrized covariant
derivatives of Qj:

Q(1112,I3H.Ik)(p) =0 fork > 2. (1.1)

The contact forms satisfying this condition are parametrized
by Ry x H", which is the first jets of the scale. Then a
choice of orthonormal frame of CR tangent bundle T,}’O,
parametrized by U(n), determines parabolic normal coor-
dinates. Hence such coordinates are parametrized by the
structure group CU(n) x H".

This construction gives intrinsic CR normal coordinates
that are useful for asymptotic anlysis of the CR Yamabe func-
tional, but the properties of the normal scale 6 is not easy to
understand. Moreover, while the recent progress of CR geom-
etry gives more focus on pseudo-Einstein contact forms in
connection with Q and Q-prime curvatures [1,2,6,7], the nor-
malization (1.1) is not compatible with the Einstein equations
(see Sect. 5)

Ric, 5 = %Scal hyg, Scaly =inAgp”. (1.2)
In contrast with the conformal case, these Einstein equa-
tions always have solutions (at least as co-jets at a point;
see Remark 3.1), and it is natural to choose contact forms
within this class. Another merit to work within the class of
pseudo-Einstein contact forms is that the scaling functions
are restricted to CR pluriharmonic functions. It already gives
a strong normalization on the scale and very much simplifies
the computation.
To state our result, let

Aao = Ava = —— AP, Agp = —— Ay
o o - n+1 af,’ . n(n+ 1) af, -
Ifweuseindices I, J € {0, 1, ..., n}, we obtain a symmetric

two tensor Ay ;. We say that 6 is formally pseudo-Einstein at
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p if the Einstein equations (1.2) hold to the infinite order at
p.

Theorem Let M be a strictly pseudoconvex CR manifold of
dimension 2n + 1. For each point p € M, there is a formally
pseudo-Einstein contact form 6 at p such that Scal(p) = 0
and

A, b.1)(p) =0 fork = 2.

Here each I; runs thought {0, 1, ..., n}. Moreover, all jets
of such 0 at p is uniquely determined if one fixes the first jet,
which is parametrized by Ry x H".

Once a contact form is fixed, parabolic normal coordinates
are determined by a choice of orthonormal frame of T,}’OM ;
see Sect. 3. Hence the coordinates are parametrized by the
structure group CU(n) x H".

From the normalization given in the theorem, we can
easily observe the vanishing of several derivatives of the cur-
vature and torsion tensors.

Proposition For a pseudo-Einstein contact form 0 for which
Scal and Ajj vanish at p, the following tensors also vanish
at p.

Scal, “, Scal” g,

Scal,, Scalp,

Ric,5. Ric,5 ”. Ric,z “P, (1.3)

Aaﬂ’ Aaﬂ,ﬂ, Aaﬂ,aﬂ'

The vanishing of the tensors in (1.3) and

Aaﬂ,y(p) = A(aﬂ,y)(p) =0

are used in [8, Theorem 4.1] to estimate the CR Yamabe
functional. In [8], the vanishing of these tensors are derived
from (1.1) for k < 4 with some computations. Our construc-
tion also simplifies this part of their argument.

This paper is organized as follows. In Sect. 2, we quickly
review the definition and fundamental facts on the Tanaka—
Webster connection and the pseudo-Einstein contact forms
by following [6,10]. In Sect. 3, we recall the parabolic normal
coordinates of [8] and modify them to C"**!-valued coor-
dinates, which give an approximate CR embedding. With
these coordinates, we give an algorithm for approximating
polynomials in the coordinates by CR holomorphic func-
tions; this will be used in the inductive construction of CR
pluriharmonic normal scale. We prove the theorem in Sect.
4 by giving an inductive construction of the jets of pseudo-
Einstein contact form. We follow [8, Sect. 3] and emphasize
on the key steps which need modifications. The proof of the
proposition, which may be obvious from the Einstein equa-
tions, is given at the end.
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Notes. In his Master’s thesis [9], Satoshi Katsumi claimed
that there is a pseudo-Einstein contact form for which the
holomorphic derivatives of Scal and A,g vanish at a point p:

Scalal...ak (P) = Os Aalaz,ag,,_,ak (p) =0 forall k.

His argumnet is based on Moser’s normal form; the ambigu-
ity of the normalized contact forms is yet to be studied.

Notations. We adopt the following index conventions:

The lower case Greek indices o, 8,... run though
{1,2,...,n}.

The upper case Latin indices I, J,... run though
{0,1,2,...,n}

For alist of indices, we use calligraphicfonts Z = I ... I}
and its length is denoted by |Z| = k. The weight || Z|| of a list
of indices is defined by
My Ikl =0l + -+ Ukll,  llell = 1 and ||O]] = 2.

We will also use the index notation of Einstein and Penrose.
Repeated indices are summed:

n n
fub® =) fu0% ard =) a7
a=1 1=0

For the (anti-) symmetrizations of indices, we use ( ) and
[ ]eg

1 1
Jep) = z(fozﬁ + fpa)s Srap = E(faﬁ — fz)-

We use overlined indices to denote the conjugate of tensors,
e.g.

2 The Tanaka-Webster connection and the
pseudo-Einstein condition

A CR manifold is a real (2n + 1)-dimensional manifold
M with a distinguished n-dimensional integrable subbundle
710 ¢ CTM such that 710 N 710 = {0}. For example,
if M is real hypersurface in a complex manifold X, then
719 = 719X N CT M gives a structure of CR manifold. In
this case, we say M is embeddable. Let H =Re T'0 ¢ TM
and take a real one form 6 such that ker@ = H. Then
we can define the Levi form Lg(X,Y) = —id0(X,Y) for
X,Y e THOIf Ly is positive definite, we say M is strictly
pseudoconvex. In such a case, 8 A (df)" # 0 and call 6 a
(positive) contact form. Note that any (positive) contact form
is given by a scaling & = €276, Y € C®(M).

In the following, we always assume that M is strictly pseu-
doconvex and 6 is a positive contact form on it. The Reeb
vector field for 0 is defined by the condition
0(T)=1, doe(T,-) =0.

We take a local frame W, of T1-9. Then W,, Wg, T form

a local frame of CT M. Let 6%, 6%, 6 be its dual coframe,
called admissible coframe, for which

d6 = ihyz0% A 67,

for a positive definite hermitian matrix A B We will use & B

and its inverse 1%? to lower and raise indices.

A choice of 6 determines a linear connection V on CT M,
called the Tanaka—Webster (TW) connection. In the frame,
Wy, T, we have VT = 0 and VW, = w,? ® Wg. The con-
nection from w,? is determined by the following equations:

Ao’ = 0% Ao, + APG0 N6, w5+ wg, =dhg.

A part of the torsion of V is given by A,g, which is called the

TW torsion. It is shown that Ay = Agy. The TW curvature

R, Bys is defined by the 7 A 67 part of the curvature form:
dwy? — wy? A a)yﬂ = RaﬂﬁeV N

mod 6, 0% A 68, 6% A 6P,

Other components can be expressed in terms of the torsion.
We then define the Ricci tensor and the scalar curvature by
Ric

R Scal = Ric, *.

__pRp_Y

af afy
We will denote the covariant derivatives of a tensor by indices
preceded by a comma, e.g. Ayg,, . Then a part of the Bianchi
identities can be written as Ay, = A(p,y). For a scalar
function, we will omit the comma. For the covariant deriva-
tive in T, we use the index 0. So, a commutative relation of
covariant derivative for a function u can be written as
MaB—uaE:ihaBuo. (21)
Under the scaling f = 219, we choose ¥ = g +2iY%0
as an admissible coframe. Then we have

o~

Aaﬁ = Aaﬁ + Zl'Taﬁ - 4iTaTﬁ,
Scal = ¢=2Y (Scal —2(n + 1)(ApY + 2071, %)),
where Ap = Yo% + Y%,.

A function f is CR holomorphic if fg = 0. A real valued
function u is CR pluriharmonic if u can be locally written as

@ Springer
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the real part of a CR holomorphic function. We are particu-
larly interested in the scaling by a CR pluriharmonic function
T = Re f. For a CR holomorphic f, we have fz = 0 and
Ay f = info; hence the transformation laws above give

o~

Aap = Aap T ifap —ifafs,
Scal = e (Scal —4n(n + 1) (= Im fo + fu f*)).

2.2)
2.3)

Let us define the Einstein tensors by
. . 1

Elnag = RICQB _;haﬁ Scal,
Ein, = Scal, —inAa,g,ﬁ.

We say 6 is pseudo-Einstein if

Einag =0 and Ein, =0. 2.4)

When n > 2, the first equation is the original definition of
the pseudo-Einstein condition in [10]. Since

nEingg P = (n — 1) Eing,

the second equation follows from the first. When n = 1, the
first equation is trivial and we only have Ein; = 0. See [1,7]
for more geometric aspects of the system (2.4). We will use
the following basic facts [6,10]:

(1) If M is embeddable, then a pseudo-Einstein contact form
exists locally.

(2) If 6 ispseudo-Einstein, then 0 =eX0is pseudo-Einstein
if and only if Y is CR pluriharmonic.

3 Parabolic normal coordinates

Fix a point p € M and a contact form 6 on M. Using the
splitting TM = H & RT, we write a tangent vector at p as

X+cT, XeH,celR

Then we consider a curve y satisfying the ordinary differen-
tial equation
Vyy =2cT, y(0)=p, y(0)=X. 3.1)

For W + ¢T near 0 € T, M, the solution y = yw . exist on
[0, 1] and we may define a map

Wi T,M —> M, (X +cT) =y (1),

which is shown to be diffeomorphic near 0. If we fix an
orthonormal frame W, of T, M, we can give coordinates of

@ Springer

T,M by H" = C" x R,
H" 5 (2% 1) > %Wy + " Wg +1T € T,M.

Composing with W, we obtain a local diffeomorphism H" —
M. Its local inverse M — H" defined near p is called
parabolic normal coordinates. By taking the parallel trans-
port of W,, along each y, we may define a local frame, called
a special frame, which is also denoted by W,,.

On H”, there is an action of s € R given by 8;(z%, 1) =
(sz%, szt), called dilations. Its generator is

X == Zaaa +Zaao7+ 2t3t,

where 0, = 9/9z%. Note that any tensor ¢ defined near p
can be decomposed into homogenous parts with respect to
the dilations:

@~ Zfﬂ(m), Lx@m) = meum),
m

where Ly denotes the Lie derivative. Here the sum is under-
stand in a formal sense and do not consider its convergence.
If ¢ = @(n), we say that ¢ has weight m.

We write ¢ = Oy, if ¢j) = 0 forall j < m. On a CR
manifold, we can also define the notion of O,, at p € M via
parabolic normal coordinates. While the definition depends
on the choice of contact form, it is easy to check that O,
depends only on the contact bundle H . In fact, for a function,
f = Oy, if and only if

X1---X;f(p) =0 forany/ <mand X; € I'(H).

As usual, we write f = O if f = O,, for any m.
On H”, the standard contact form is given by

i
0 =dr — E(zadzo‘ + 7%dzq),

where z, = z%, the index is lowered by 5a3~ Then d6 =
idz* A dzy and the Reeb vector field is T = 9;. The bundle
710 is defined by the frame

i
Zy = 0y + Ezaats

which is orthonormal for d6. We also set Zgp = —iT and
20 = —|z|>/2+it, where |z|* = z%Z4. (The factor “—i” in Z
makes computations simpler as Zoz’ = 1.) Then Zzz° = 0
and we call z/ the complex coordinates of H", which give an
embedding of H” into {2Re z° + |z|> = 0} c C*+.

If we use the notation Zy, ., = Zy, --- Zy,, we have

Ziap) =0, ZZ[O[*] = 5&BZ0’ Zia0] = 0.
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Itis clear that z/ (and dz) has weight || I || and Z; has weight
—|I7]|. A monomial

has weight | Z]|. We now show that a CR holomorphic func-
tion has Taylor series in powers of z/.

Lemma 3.1 Let f be a CR holomorphic function defined near
0 € H". Then, for any m, the weight m part of f is given by

foy=>_

I Zll=m

1
WzIszm)

Proof Identifying H" with the boundary of the Siegel domain
Q=1{z%z7" eC™t :2Re’ + |z]*> < 0},

we take a function f (z%, z%) defined near 0 € C"t! which is
holomorphic in €2 such that f(z , —|z| /2+1it) = f(z%,1).
Writing the Taylor series of f at 0 € C"*! in the form

P N L A
Fe 20 Z 757 02O,

we will show Z7 £ (0) = azf(O). Since Z, can be extended
t0 9y + 2o on C**! and z, commutes with 3;, we may
replace Z, by 9, when evaluated at 0. For a holomorphic
function, we have 0y f —i0; f and hence Z can be
replaced by dp. O

Now we consider parabolic normal coordinates (z%, t)
centered at p € M and set

0= —|z1?/2 + it

We call z/ = (2%, z°) the complex parabolic coordinates.
With the coordinates, we can also define Z, and Zy = —i 9,
on M. The differences between Z; and the special frame Wy
(we set Wy = —iT) have estimate ([8, Proposition 2.5])
Wy =2Zy+01, Wo=Zy+ Oyp.

It follows that the coordinates 7/ satisfy Wz z! = Oyryj+1-
Hence, for a monomial, the Leibniz rule gives
WaZI = OHI||+1- 3.2)
While a polynomial in z/ may not be CR holomorphic, we
can approximate it by a CR holomorphic function as follows.

Lemma 3.2 Let f be afunction satisfying Wg f = O,,. Then
there exists a function g = Oyp41 such that Wg(f + g) =
Oco. Moreover, if M is embeddable, there is a CR holomor-
phic function fy, such that f, = f + Opy1.

Proof We set

m+1 1
(_1) ol
gl_; R

ZO” Wa]malf.

The summands are Oy as z%1 -+ 2% Wg, g, , = O; and

Wa, f = Op. Using WyzP = 82 4+ 0, and the integrability
condition W55, = ¢§EW7’ we get

(_1)m+1

(m+ 1! &I Waay g £+ Oms,

Wao(f‘l'gl) =

which is also O+ as the derivatives of f are in Oj.
Repeating this procedure, we can find gx = Oy, 4 such that
fx = f+g1+---+gksatisfies Wy fi € Opqr. Then ), gk
defines a formal power series at p and Borel’s lemma gives
the required g.

Now we consider the case M is realized, near p = 0, as a
surface

p=2u+z>+F(z7,1) =0,

where (z%, w) = (z%, u + it) € C"*! and F vanishes to
the 3rd order at 0. Moreover, by linear coordinates change,
we can also assume that W, zf = 85 at 0. By restriction, we
regard (z%, w) as functions on M. Since the contact form is
O, and

0 = —%(a —Dp=di + O,

we have = (0,. On the other hand, from the equation 2u =
—|z|?> — F on M, we have u = O, and thus w = O.

With these holomorphic coordinates (z%, w) (which are,
in general, different from the parabolic coordinates), we con-
sider the Taylor expansion of f up to Oy, 41:

— Cl L Zal...angl..ﬁq wl.
fm Z ocl...apﬂl...ﬁq
p+q+2<m

Since WgOm+1 C Om, the assumption W f = Oy froces
Wa fm = Om. But, by Wgzf = 85 + Oy, we see that f;,, can
not contain z#. Thus f;, is a holomorphic polynomial. O

If we apply this lemma to complex parabolic coordinates

z!, we obtain 77 such that

=740 FP=7"+0, and WyZ! = On.
The algorithm for constructing Z is given in the lemma and
we can write down the Taylor expansion of Z/ in the coordi-

nates (z%, t) in terms of the jets of Raﬁﬁ and Ayg; see [8,
Proposition 2.5].

@ Springer
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Remark 3.1 The coordinates 7/ give a C* embedding of M
into C"*! as a surface

M={(z,u+iv) e C"™" : 2u+|z1*> + F(z,Z,v) = 0}

and the oco-jets of CR structure at p is isomorphic to that for
M at 0. So, the computation depending only on the jets of CR
structure at a point p € M can be done equivalently for M at
0. For such calculations, we lose no generality by assuming
the CR embeddability. For example, we obtain a formally
pseudo-Einstein contact form at p from the pull-back of the
one on M and the the statement (2) in the end of Sect. 2 also
holds for formally CR pluriharmonic functions, which are
real parts of functions f such that Wz f = Ox.

4 Proof of the theorem

The proof is done by the induction on the weight m. For each
step, we prove the following

Theorem 4.1 Let 6y be pseudo-Einstein contact from defined
near p € M. For any m > 2, there is a CR pluriharmonic
function Y such that the scalar curvature and the torsion for
0 = Y0y satisfies

Scal(p)=0 and A n,5.-1)(P)=0, |I1...It]| <m.

“.n

Moreover, Y (p) and Y;(p) can be chosen arbitrary and,
once they are fixed, Y modulo Oy, is uniquely determined.

Here we have assumed the existence of a pseudo-Einstein
contact form in order to avoid the term “formally”. As we
explained in Remark 3.1, we will lose no generality by this
change.

The first step is the case m = 2. Setting 2Re Y = f +
f for a CR holomorphic function with £(0) € R, we see

that Y (p), Yo (p) and Yo(p) correspond to f(p), f«(p) and
Re fo(p) up to factors of 2.

Lemma 4.1 For given (f(p), fou(p),Re fo(p)) € Rx C" x
R, one may take a CR holomorphic f so that 0 = ¢*R¢ /g,
satisfies

Scal(p) =0, Agp(p) =0. 4.2)

Moreover, such f is unique modulo Os.

Proof We use complex parabolic normal coordinates z/ for
0o centered at p. Letus fix g = c+aqgz® andsetd = e2Re84,.
Then, under the scaling 0 = e2Reup for a polynomial of
weight 2

u = agpz®zP + ap,

@ Springer

we obtain from the transformation law (2.2) and (2.3) that

Scal = Scal —4n(n + 1) Re ag + O,

Agp = Aup +iags + Os.

Thus we can fix Reap and aqg so that Q(p) = 0 and
Xalg (p) = 0 hold. Note that Imay = —Reup(p) can be
taken arbitrary.

Let f = g + u. Then from the estimate (3.2), we have
Wz f = Os. Thus we can use Lemma 3.2 to modify f to
a CR holomorphic function by adding O3-term, which does
not change the normalization (4.2). O

We next compute the effect of terms of O,, in the scaling.

Lemma4.2 Let m > 2. For a CR holomorphic function
f = Oy, set 0 = ¢*Re /9. Then the following approximate
transformation laws, computed in a fixed spacial from Wy
for 6, hold:

Arg— Ay =il"1=1z,, 1 + Omyo—11J- (4.3)

Proof Recall from [8, Lemma 3.6] that, for a scaling by
T € O, we have

-~

Agp — Agp = 2iTop + O,
A\aﬁ,ﬁ — Aalg,ﬁ = ZiTaﬁﬁ + Om_1,
Aup.® — Ap. P =2iT0p" + O s

In our setting, 2Y = f + f and hence 2Ty = fy, 2Yop =
fap. Using the commutation relations of covariant derivatives
(see e.g. [10, Lemma 2.3]) and /¢ = 0, we obtain

fap? =i+ 1) fa0 + Opr,
Fap? =i+ 1) fu0® 4+ Oma = —n(n + 1) foo + Op_2.

Comparing with the normalization in the definition of A,
and substituting T = i Zy, we get (4.3). O

By induction, suppose that we have a pseudo-Einstein con-
tact form 6 satisfying (4.1) with m replaced by m — 1. We
first choose f = O,, as a polynomial of weight m so that
(4.1) holds.

ForZ = Iy ... Iy of weightm, we apply V/, ., to the both
sides of (4.3). Then, using T = i Zp, we get

A\I = A7+ im_lIH_lZIf + O,.

(Note that m — |Z]| is the number of O in the list Z.) Hence
A1) = O for all Z with weight m if and only if

jm=ITI+1

—‘AIZI + O

f== 7N

IZll=m
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We define f,, by this formula. Then (3.2) gives Wg fin =
Op+2. Thus we can make O, -correction and get a CR
holomorphic f satisfying (4.1). This completes the proof of
the theorem.

Remark 4.1 In the inductive step above, we have changed the
parabolic normal coordinates according to the modification
of the contact forms and hence we need to estimate the errors
caused by that. We have omitted this part as it is exactly same
as [8, Sect. 3].

We will conclude the paper with the proof of the proposi-
tion stated in the introduction. For a pseudo-Einstein contact
form, Scaly, Scaly ¢, Scaly are respectively constant multi-
ples of A0, Ago, Re Ago, which vanish at p. Thus we are
done for the case n = 1. When n > 2, the Einstein equation
nRic,g = Scal h,5 gives

n Ricag’ B — Scal,, n Ricaﬁ’ af _ Scal, *.

We have already seen that the left-hand sides vanish at p and
the proof is completed.
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