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Abstract
Wegive anormal form for pseudo-Einstein contact forms andapply it to construct intrinsicCRnormal coordinates parametrized
by the structure group of CR geometry. The proof is based on the construction of parabolic normal coordinates by Jerison
and Lee.
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1 Introduction

Normal coordinates are basic tools in geometric analysis,
which give optimal approximations by the flat model and
simplify technical computations. In Riemannian geometry,
geodesic normal coordinates x are the canonical choice; they
are parametrized by the orthogonal groupO(n) and themetric
tensor satisfies

gi j = δi j + O(|x |2).

If we allow conformal changes of the metric ĝ = e2ϒg, then
we can get better approximations,which are called conformal
normal coordinates. They are parametrized by the structure
group of conformal geometry, CO(n)� R

n , where CO(n) =
O(n) × R+ is the conformal orthogonal group.

There are (at least) two standard choices. The first one
was given by Robin Graham in his study of local conformal
invariant [5].He found that, for each point p, there is a confor-
mal scale ϒ such that the symmetrized covariant derivatives
of the Ricci tensor of ĝ vanish to the infinite order:

Ric(a1a2,a3...ak)(p) = 0 for k ≥ 2.
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Such a scale ϒ is uniquely determined once the first jets

(eϒ(p), ∂ jϒ(p)) ∈ R+ × R
n

are specified. Then the geodesic normal coordinates for ĝ
give conformal normal coordinates. Together with the choice
of an orthonormal frame of the tangent space at p, the coor-
dinates are parametrized by O(n) × R+ × R

n .
Another class of conformal normal coordinates was intro-

duced by Lee and Parker [11] in the analysis of Yamabe
functional. They normalized the scale ϒ by the condition:

det ĝi j (x) = 1 + O(|x |k) for k ≥ 2.

Again, such a scale is determined by the first jets of ϒ .
In CR geometry, or the biholomorphic geometry of real

hypersurfaces in a complex manifold, normal coordinates
were first introduce by Moser [3]. He imposed a condition
on the defining function of the surface and fixed holomorphic
coordinates up to an action of the structure group, CU(n) �

H
n , where CU(n) = U(n) × R+ is the conformal unitary

group and H
n = C

n × R is the Heisenberg group. Moser’s
normal coordinates were used in the invariant theory of CR
geometry by Fefferman [4], but they are not easy to handle
in the setting of intrinsic pseudo-hermitian geometry.

Another class of CR normal coordinates was constructed
by Jerison and Lee [8] in the study of CR Yamabe problem,
in analogy with the conformal case. They first fixed a con-
tact form by a curvature condition and then make parabolic
normal coordinates for the scale; see Sect. 3. The curvature
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condition is rather complicated: let

Qαβ = (n + 2)i Aαβ, Qαβ = Ricαβ,

Q0α = 4Aαβ,
β + 2i

n + 1
Scalα,

Q00 = 16

n
Im Aαβ,

αβ + 4

n(n + 1)
�b Scal,

where Ricαβ , Scal and Aαβ are respectively the Ricci tensor,
the scalar curvature and the torsion tensor of the Tanaka–
Webster connection for a contact form θ ; see Sect. 2. The
indices preceded by a comma denote covariant derivatives
and �b is the sublaplacian. If we use indices I , J which run
through {0, 1 . . . , n, 1, . . . , n}, then the two tensors can be
written in a unified form QI J ; for the components which
are note defined above, we set QI J = QI J , QI J = QJ I .
Then the normalization is givenby the symmetrized covariant
derivatives of QI J :

Q(I1 I2,I3...Ik )(p) = 0 for k ≥ 2. (1.1)

The contact forms satisfying this condition are parametrized
by R+ × H

n , which is the first jets of the scale. Then a
choice of orthonormal frame of CR tangent bundle T 1,0

p ,
parametrized by U(n), determines parabolic normal coor-
dinates. Hence such coordinates are parametrized by the
structure group CU(n) � H

n .
This construction gives intrinsic CR normal coordinates

that are useful for asymptotic anlysis of the CRYamabe func-
tional, but the properties of the normal scale θ is not easy to
understand.Moreover,while the recent progress ofCRgeom-
etry gives more focus on pseudo-Einstein contact forms in
connectionwith Q and Q-prime curvatures [1,2,6,7], the nor-
malization (1.1) is not compatiblewith the Einstein equations
(see Sect. 5)

Ricαβ = 1

n
Scal ·hαβ, Scalα = inAαβ,

β . (1.2)

In contrast with the conformal case, these Einstein equa-
tions always have solutions (at least as ∞-jets at a point;
see Remark 3.1), and it is natural to choose contact forms
within this class. Another merit to work within the class of
pseudo-Einstein contact forms is that the scaling functions
are restricted to CR pluriharmonic functions. It already gives
a strong normalization on the scale and very much simplifies
the computation.

To state our result, let

Aα0 = A0α := −i

n + 1
Aαβ,

β, A00 := −1

n(n + 1)
Aαβ,

αβ .

If we use indices I , J ∈ {0, 1, . . . , n}, we obtain a symmetric
two tensor AI J . We say that θ is formally pseudo-Einstein at

p if the Einstein equations (1.2) hold to the infinite order at
p.

Theorem Let M be a strictly pseudoconvex CR manifold of
dimension 2n+ 1. For each point p ∈ M, there is a formally
pseudo-Einstein contact form θ at p such that Scal(p) = 0
and

A(I1 I2,I3...Ik )(p) = 0 for k ≥ 2.

Here each I j runs thought {0, 1, . . . , n}. Moreover, all jets
of such θ at p is uniquely determined if one fixes the first jet,
which is parametrized by R+ × H

n.

Once a contact form is fixed, parabolic normal coordinates
are determined by a choice of orthonormal frame of T 1,0

p M ;
see Sect. 3. Hence the coordinates are parametrized by the
structure group CU(n) � H

n .
From the normalization given in the theorem, we can

easily observe the vanishing of several derivatives of the cur-
vature and torsion tensors.

Proposition For a pseudo-Einstein contact form θ for which
Scal and AI J vanish at p, the following tensors also vanish
at p.

Scalα, Scal0, Scalα
α, Scalα α,

Ricαβ, Ricαβ,
β, Ricαβ,

αβ,

Aαβ, Aαβ,
β, Aαβ,

αβ .

(1.3)

The vanishing of the tensors in (1.3) and

Aαβ,γ (p) = A(αβ,γ )(p) = 0

are used in [8, Theorem 4.1] to estimate the CR Yamabe
functional. In [8], the vanishing of these tensors are derived
from (1.1) for k ≤ 4 with some computations. Our construc-
tion also simplifies this part of their argument.

This paper is organized as follows. In Sect. 2, we quickly
review the definition and fundamental facts on the Tanaka–
Webster connection and the pseudo-Einstein contact forms
by following [6,10]. In Sect. 3, we recall the parabolic normal
coordinates of [8] and modify them to C

n+1-valued coor-
dinates, which give an approximate CR embedding. With
these coordinates, we give an algorithm for approximating
polynomials in the coordinates by CR holomorphic func-
tions; this will be used in the inductive construction of CR
pluriharmonic normal scale. We prove the theorem in Sect.
4 by giving an inductive construction of the jets of pseudo-
Einstein contact form. We follow [8, Sect. 3] and emphasize
on the key steps which need modifications. The proof of the
proposition, which may be obvious from the Einstein equa-
tions, is given at the end.
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Notes. In his Master’s thesis [9], Satoshi Katsumi claimed
that there is a pseudo-Einstein contact form for which the
holomorphic derivatives of Scal and Aαβ vanish at a point p:

Scalα1...αk (p) = 0, Aα1α2,α3...αk (p) = 0 for all k.

His argumnet is based on Moser’s normal form; the ambigu-
ity of the normalized contact forms is yet to be studied.

Notations. We adopt the following index conventions:
The lower case Greek indices α, β, . . . run though

{1, 2, . . . , n}.
The upper case Latin indices I , J , . . . run though

{0, 1, 2, . . . , n}.
For a list of indices, we use calligraphic fontsI = I1 . . . Ik

and its length is denoted by |I| = k. The weight ‖I‖ of a list
of indices is defined by

‖I1 . . . Ik‖ = ‖I1‖ + · · · + ‖Ik‖, ‖α‖ = 1 and ‖0‖ = 2.

We will also use the index notation of Einstein and Penrose.
Repeated indices are summed:

fαθα =
n

∑

α=1

fαθα, aI z
I =

n
∑

I=0

aI z
I .

For the (anti-) symmetrizations of indices, we use ( ) and
[ ], e.g.

f(αβ) = 1

2
( fαβ + fβα), f[αβ] = 1

2
( fαβ − fβα).

We use overlined indices to denote the conjugate of tensors,
e.g.

Zα = Zα, θα = θα, ωα
β = ωα

β, Aαβ = Aαβ.

2 The Tanaka–Webster connection and the
pseudo-Einstein condition

A CR manifold is a real (2n + 1)-dimensional manifold
M with a distinguished n-dimensional integrable subbundle
T 1,0 ⊂ CT M such that T 1,0 ∩ T 1,0 = {0}. For example,
if M is real hypersurface in a complex manifold X , then
T 1,0 = T 1,0X ∩ CT M gives a structure of CR manifold. In
this case, we say M is embeddable. Let H = Re T 1,0 ⊂ T M
and take a real one form θ such that ker θ = H . Then
we can define the Levi form Lθ (X ,Y ) = −idθ(X ,Y ) for
X ,Y ∈ T 1,0. If Lθ is positive definite, we say M is strictly
pseudoconvex. In such a case, θ ∧ (dθ)n 
= 0 and call θ a
(positive) contact form.Note that any (positive) contact form
is given by a scaling ̂θ = e2ϒθ , ϒ ∈ C∞(M).

In the following,we always assume thatM is strictly pseu-
doconvex and θ is a positive contact form on it. The Reeb
vector field for θ is defined by the condition

θ(T ) = 1, dθ(T , ·) = 0.

We take a local frame Wα of T 1,0. Then Wα,Wα, T form
a local frame of CT M . Let θα, θα, θ be its dual coframe,
called admissible coframe, for which

dθ = ihαβθα ∧ θβ,

for a positive definite hermitian matrix hαβ . We will use hαβ

and its inverse hαβ to lower and raise indices.
A choice of θ determines a linear connection ∇ on CT M ,

called the Tanaka–Webster (TW) connection. In the frame,
Wα, T , we have ∇T = 0 and ∇Wα = ωα

β ⊗ Wβ . The con-
nection from ωα

β is determined by the following equations:

dθβ = θα ∧ ωα
β + Aβ

αθ ∧ θα, ωαβ + ωβα = dhαβ.

A part of the torsion of∇ is given by Aαβ , which is called the
TW torsion. It is shown that Aαβ = Aβα . The TW curvature
Rαβγσ is defined by the θγ ∧ θσ part of the curvature form:

dωα
β − ωα

γ ∧ ωγ
β = Rα

β
γσ θγ ∧ θσ

mod θ, θα ∧ θβ, θα ∧ θβ.

Other components can be expressed in terms of the torsion.
We then define the Ricci tensor and the scalar curvature by

Ricαβ = Rαβγ
γ , Scal = Ricα

α.

Wewill denote the covariant derivatives of a tensor by indices
preceded by a comma, e.g. Aαβ,γ . Then a part of the Bianchi
identities can be written as Aαβ,γ = A(αβ,γ ). For a scalar
function, we will omit the comma. For the covariant deriva-
tive in T , we use the index 0. So, a commutative relation of
covariant derivative for a function u can be written as

uαβ − uαβ = ihαβu0. (2.1)

Under the scaling ̂θ = e2ϒθ , we choose ̂θα = θα + 2iϒαθ

as an admissible coframe. Then we have

̂Aαβ = Aαβ + 2iϒαβ − 4iϒαϒβ,

Ŝcal = e−2ϒ(

Scal−2(n + 1)(�bϒ + 2nϒαϒα)
)

,

where �b = ϒα
α + ϒα

α .
A function f is CR holomorphic if fα = 0. A real valued

function u is CR pluriharmonic if u can be locally written as
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the real part of a CR holomorphic function. We are particu-
larly interested in the scaling by a CR pluriharmonic function
ϒ = Re f . For a CR holomorphic f , we have fα = 0 and
�b f = in f0; hence the transformation laws above give

̂Aαβ = Aαβ + i fαβ − i fα fβ, (2.2)

Ŝcal = e−2ϒ(

Scal−4n(n + 1)(− Im f0 + fα f α)
)

. (2.3)

Let us define the Einstein tensors by

Einαβ = Ricαβ −1

n
hαβ Scal,

Einα = Scalα −inAαβ,
β .

We say θ is pseudo-Einstein if

Einαβ = 0 and Einα = 0. (2.4)

When n ≥ 2, the first equation is the original definition of
the pseudo-Einstein condition in [10]. Since

n Einαβ,
β = (n − 1)Einα,

the second equation follows from the first. When n = 1, the
first equation is trivial and we only have Ein1 = 0. See [1,7]
for more geometric aspects of the system (2.4). We will use
the following basic facts [6,10]:

(1) If M is embeddable, then a pseudo-Einstein contact form
exists locally.

(2) If θ is pseudo-Einstein, then̂θ = e2ϒθ is pseudo-Einstein
if and only if ϒ is CR pluriharmonic.

3 Parabolic normal coordinates

Fix a point p ∈ M and a contact form θ on M . Using the
splitting T M = H ⊕ RT , we write a tangent vector at p as

X + cT , X ∈ Hp, c ∈ R.

Then we consider a curve γ satisfying the ordinary differen-
tial equation

∇γ̇ γ̇ = 2cT , γ (0) = p, γ̇ (0) = X . (3.1)

For W + cT near 0 ∈ TpM , the solution γ = γW ,c exist on
[0, 1] and we may define a map

� : TpM → M, �(X + cT ) = γW ,c(1),

which is shown to be diffeomorphic near 0. If we fix an
orthonormal frame Wα of TpM , we can give coordinates of

TpM by H
n = C

n × R,

H
n � (zα, t) �→ zαWα + zαWα + tT ∈ TpM .

Composingwith�, we obtain a local diffeomorphismH
n →

M . Its local inverse M → H
n defined near p is called

parabolic normal coordinates. By taking the parallel trans-
port ofWα along each γ , we may define a local frame, called
a special frame, which is also denoted by Wα .

On H
n , there is an action of s ∈ R+ given by δs(zα, t) =

(szα, s2t), called dilations. Its generator is

X = zα∂α + zα∂α + 2t∂t ,

where ∂α = ∂/∂zα . Note that any tensor ϕ defined near p
can be decomposed into homogenous parts with respect to
the dilations:

ϕ ∼
∑

m

ϕ(m), LXϕ(m) = mϕ(m),

where LX denotes the Lie derivative. Here the sum is under-
stand in a formal sense and do not consider its convergence.
If ϕ = ϕ(m), we say that ϕ has weight m.

We write ϕ = Om if ϕ( j) = 0 for all j < m. On a CR
manifold, we can also define the notion of Om at p ∈ M via
parabolic normal coordinates. While the definition depends
on the choice of contact form, it is easy to check that Om

depends only on the contact bundle H . In fact, for a function,
f = Om if and only if

X1 · · · Xl f (p) = 0 for any l < m and X j ∈ �(H).

As usual, we write f = O∞ if f = Om for any m.
On H

n , the standard contact form is given by

θ = dt − i

2
(zαdz

α + zαdzα),

where zα = zα , the index is lowered by δαβ . Then dθ =
idzα ∧ dzα and the Reeb vector field is T = ∂t . The bundle
T 1,0 is defined by the frame

Zα = ∂α + i

2
zα∂t ,

which is orthonormal for dθ . We also set Z0 = −iT and
z0 = −|z|2/2+i t , where |z|2 = zαzα . (The factor “−i” in Z0

makes computations simpler as Z0z0 = 1.) Then Zαz0 = 0
and we call z I the complex coordinates of H

n , which give an
embedding of H

n into {2Re z0 + |z|2 = 0} ⊂ C
n+1.

If we use the notation ZI1...Ik = ZI1 · · · ZIk , we have

Z[αβ] = 0, 2Z[αβ] = δαβ Z0, Z[α0] = 0.
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It is clear that z I (and dzI ) has weight ‖I‖ and ZI has weight
−‖I‖. A monomial

zI = z I1 · · · z Ik

has weight ‖I‖. We now show that a CR holomorphic func-
tion has Taylor series in powers of z I .

Lemma 3.1 Let f be aCRholomorphic function definednear
0 ∈ H

n. Then, for any m, the weight m part of f is given by

f(m) =
∑

‖I‖=m

1

|I|! z
I ZI f (0).

Proof IdentifyingH
n with the boundary of the Siegel domain

� = {(zα, z0) ∈ C
n+1 : 2Re z0 + |z|2 < 0},

we take a function ˜f (zα, z0) defined near 0 ∈ C
n+1 which is

holomorphic in � such that ˜f (zα,−|z|2/2+ i t) = f (zα, t).
Writing the Taylor series of ˜f at 0 ∈ C

n+1 in the form

˜f (zα, z0) ∼
∑

I

1

|I|! z
I∂I ˜f (0),

we will show ZI f (0) = ∂I ˜f (0). Since Zα can be extended
to ∂α + zα∂0 on C

n+1 and zα commutes with ∂I , we may
replace Zα by ∂α when evaluated at 0. For a holomorphic
function, we have ∂0 ˜f = −i∂t ˜f and hence Z0 can be
replaced by ∂0. ��

Now we consider parabolic normal coordinates (zα, t)
centered at p ∈ M and set

z0 = −|z|2/2 + i t .

We call z I = (zα, z0) the complex parabolic coordinates.
With the coordinates, we can also define Zα and Z0 = −i∂t
on M . The differences between ZI and the special frameWI

(we set W0 = −iT ) have estimate ([8, Proposition 2.5])

Wα = Zα + O1, W0 = Z0 + O0.

It follows that the coordinates z I satisfy Wα z I = O‖I‖+1.

Hence, for a monomial, the Leibniz rule gives

Wα zI = O‖I‖+1. (3.2)

While a polynomial in z I may not be CR holomorphic, we
can approximate it by a CR holomorphic function as follows.

Lemma 3.2 Let f be a function satisfying Wα f = Om. Then
there exists a function g = Om+1 such that Wα( f + g) =
O∞. Moreover, if M is embeddable, there is a CR holomor-
phic function fm such that fm = f + Om+1.

Proof We set

g1 =
m+1
∑

l=1

(−1)l

l! zα1 · · · zαl Wα1···αl f .

The summands are Om+1 as zα1 · · · zαl Wα1...αl−1 = O1 and

Wαl f = Om . Using Wαzβ = δ
β
α + O2 and the integrability

condition W[αβ] = ϕ
γ

αβ
Wγ , we get

Wα0( f + g1) = (−1)m+1

(m + 1)! z
α1···αm+1Wα0α1...αm+1 f + Om+1,

which is also Om+1 as the derivatives of f are in O0.
Repeating this procedure, we can find gk = Om+k such that
fk = f +g1+· · ·+gk satisfiesWα fk ∈ Om+k . Then

∑

k gk
defines a formal power series at p and Borel’s lemma gives
the required g.

Now we consider the case M is realized, near p = 0, as a
surface

ρ = 2u + |z|2 + F(z, z, t) = 0,

where (zα,w) = (zα, u + i t) ∈ C
n+1 and F vanishes to

the 3rd order at 0. Moreover, by linear coordinates change,
we can also assume that Wαzβ = δ

β
α at 0. By restriction, we

regard (zα,w) as functions on M . Since the contact form is
O2 and

θ = − i

2
(∂ − ∂)ρ = dt + O2,

we have t = O2. On the other hand, from the equation 2u =
−|z|2 − F on M , we have u = O2 and thus w = O2.

With these holomorphic coordinates (zα,w) (which are,
in general, different from the parabolic coordinates), we con-
sider the Taylor expansion of f up to Om+1:

fm =
∑

p+q+2l≤m

Cl
α1...αpβ1...βq

zα1...αp zβ1...βqwl .

Since WαOm+1 ⊂ Om , the assumption Wα f = Om froces
Wα fm = Om . But, by Wαzβ = δ

β
α +O1, we see that fm can

not contain zβ . Thus fm is a holomorphic polynomial. ��
If we apply this lemma to complex parabolic coordinates

z I , we obtain z̃ I such that

z̃α = zα + O3, z̃0 = z0 + O4 and Wα z̃
I = O∞.

The algorithm for constructing z̃ I is given in the lemma and
we can write down the Taylor expansion of z̃ I in the coordi-
nates (zα, t) in terms of the jets of Rαβγσ and Aαβ ; see [8,
Proposition 2.5].
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Remark 3.1 The coordinates z̃ I give a C∞ embedding of M
into C

n+1 as a surface

˜M = {(z, u + iv) ∈ C
n+1 : 2u + |z|2 + F(z, z, v) = 0}

and the ∞-jets of CR structure at p is isomorphic to that for
˜M at 0. So, the computation depending only on the jets of CR
structure at a point p ∈ M can be done equivalently for ˜M at
0. For such calculations, we lose no generality by assuming
the CR embeddability. For example, we obtain a formally
pseudo-Einstein contact form at p from the pull-back of the
one on ˜M and the the statement (2) in the end of Sect. 2 also
holds for formally CR pluriharmonic functions, which are
real parts of functions f such that Wα f = O∞.

4 Proof of the theorem

The proof is done by the induction on the weightm. For each
step, we prove the following

Theorem 4.1 Let θ0 be pseudo-Einstein contact from defined
near p ∈ M. For any m ≥ 2, there is a CR pluriharmonic
function ϒ such that the scalar curvature and the torsion for
θ = e2ϒθ0 satisfies

Scal(p)=0 and A(I1 I2,I3···Ik )(p)=0, ‖I1 . . . Ik‖≤m.

(4.1)

Moreover, ϒ(p) and ϒI (p) can be chosen arbitrary and,
once they are fixed,ϒ moduloOm+1 is uniquely determined.

Here we have assumed the existence of a pseudo-Einstein
contact form in order to avoid the term “formally”. As we
explained in Remark 3.1, we will lose no generality by this
change.

The first step is the case m = 2. Setting 2 Reϒ = f +
f for a CR holomorphic function with f (0) ∈ R, we see
thatϒ(p),ϒα(p) andϒ0(p) correspond to f (p), fα(p) and
Re f0(p) up to factors of 2.

Lemma 4.1 For given ( f (p), fα(p),Re f0(p)) ∈ R×C
n ×

R, one may take a CR holomorphic f so that θ = e2Re f θ0
satisfies

Scal(p) = 0, Aαβ(p) = 0. (4.2)

Moreover, such f is unique modulo O3.

Proof We use complex parabolic normal coordinates z I for
θ0 centered at p. Let us fix g = c+aαzα and set θ = e2Re gθ0.
Then, under the scaling ̂θ = e2Re uθ for a polynomial of
weight 2

u = aαβ z
αzβ + a0z

0,

we obtain from the transformation law (2.2) and (2.3) that

Ŝcal = Scal−4n(n + 1)Re a0 + O2,

̂Aαβ = Aαβ + iaαβ + O2.

Thus we can fix Re a0 and aαβ so that Ŝcal(p) = 0 and
̂Aαβ(p) = 0 hold. Note that Im a0 = −Re u0(p) can be
taken arbitrary.

Let f = g + u. Then from the estimate (3.2), we have
Wα f = O2. Thus we can use Lemma 3.2 to modify f to
a CR holomorphic function by adding O3-term, which does
not change the normalization (4.2). ��

We next compute the effect of terms ofOm in the scaling.

Lemma 4.2 Let m ≥ 2. For a CR holomorphic function
f = Om, set ̂θ = e2Re f θ . Then the following approximate
transformation laws, computed in a fixed spacial from Wα

for θ , hold:

̂AI J − AI J = i‖I J‖−1ZI J f + Om+2−‖I J‖. (4.3)

Proof Recall from [8, Lemma 3.6] that, for a scaling by
ϒ ∈ Om , we have

̂Aαβ − Aαβ = 2iϒαβ + Om,

̂Aαβ,
β − Aαβ,

β = 2iϒαβ
β + Om−1,

̂Aαβ,
αβ − Aαβ,

αβ = 2iϒαβ
αβ + Om−2.

In our setting, 2ϒ = f + f and hence 2ϒα = fα , 2ϒαβ =
fαβ . Using the commutation relations of covariant derivatives
(see e.g. [10, Lemma 2.3]) and f α = 0, we obtain

fαβ
β = i(n + 1) fα0 + Om−1,

fαβ
βα = i(n + 1) fα0

α + Om−2 = −n(n + 1) f00 + Om−2.

Comparing with the normalization in the definition of AI J

and substituting T = i Z0, we get (4.3). ��
By induction, suppose thatwehave a pseudo-Einstein con-

tact form θ satisfying (4.1) with m replaced by m − 1. We
first choose f = Om as a polynomial of weight m so that
(4.1) holds.

For I = I1 . . . Ik of weightm, we apply∇Ik ...I3 to the both
sides of (4.3). Then, using T = i Z0, we get

̂AI = AI + im−|I|+1ZI f + O2.

(Note that m − |I| is the number of 0 in the list I.) Hence
̂A(I) = O1 for all I with weight m if and only if

f = −
∑

‖I‖=m

im−|I|+1

|I|! AI zI + Om+1.
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We define fm by this formula. Then (3.2) gives Wα fm =
Om+2. Thus we can make Om+1-correction and get a CR
holomorphic f satisfying (4.1). This completes the proof of
the theorem.

Remark 4.1 In the inductive step above, we have changed the
parabolic normal coordinates according to the modification
of the contact forms and hence we need to estimate the errors
caused by that.We have omitted this part as it is exactly same
as [8, Sect. 3].

We will conclude the paper with the proof of the proposi-
tion stated in the introduction. For a pseudo-Einstein contact
form, Scalα,Scalα α,Scal0 are respectively constant multi-
ples of Aα0, A00,Re A00, which vanish at p. Thus we are
done for the case n = 1. When n ≥ 2, the Einstein equation
n Ricαβ = Scal hαβ gives

n Ricαβ,
β = Scalα, n Ricαβ,

αβ = Scalα
α.

We have already seen that the left-hand sides vanish at p and
the proof is completed.
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