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Abstract
In this paper we introduce a new distance by means of the so-called Szegő kernel and examine some basic properties and 
its relationship with the so-called Skwarczyński distance. We also examine the relationship between this distance, and the 
so-called Bergman distance and Szegő distance.
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1 Introduction

In this paper, we introduce and describe some new distance 
by means of the Szegő kernel, called here by the Szegő pro-
jective distance and denoted by �S

Ω
 . Since the Szegő kernel 

doesn’t respect the transformation rule, we also consider the 
so-called Fefferman–Szegő kernel (described below) and the 
Fefferman-Szegő projective distance defined by it (denoted 
by �SF

Ω
 ). Both are defined on the same way and in a fash-

ion similar to the so-called Skwarczyński distance (denoted 
by �Ω ) (see [1, p. 20], and the definition actually based on 
ideas from projective geometry. The Skwarczyński distance 
is given more explicitly than the so-called Bergman distance 
and this is also our motivation too. Since this is new, we list 
and prove properties of this distance like completeness. The 
above considerations are nothing but natural generalizations 
of theorems valid in the case for the Bergman kernel and the 
Skwarczyński distance. We decided, however, to enclose it 
here for the sake of completeness.

The new results can be found in Sect. 3.2.1 and at the end 
of the paper. The main results of the paper are Theorems 23 
and 24. We examine the relationship between completeness 
in the Szegő projective distance and completeness in the 
Skwarczyński distance.

2  Definitions and notation

Let Ω ⊆ ℂ
n be a bounded domain with C2-smooth boundary. 

Let A(Ω) be those functions on Ω , which are both continuous 
on Ω and holomorphic in Ω . Denote by H2

E
(�Ω) the space 

consisting of the closure in the L2(�Ω, d�E) topology of the 
restrictions to �Ω of elements of A(Ω) (here d�E denotes the 
Euclidean surface area measure on �Ω ). Then H2

E
(�Ω) is a 

proper Hilbert subspace of L2(�Ω, d�E) . Recall that each 
element f ∈ H2

E
(�Ω) has a natural holomorphic extension 

to Ω given by its Poisson integral (see [2, p. 66]). The Szegő 
kernel S(z, w) is the reproducing kernel for H2

E
(�Ω) , that is

The problem is that the Euclidean surface measure does 
not transform nicely under biholomorphic mappings. We 
deal with this problem by instead using the so-called Feffer-
man surface area measure �F (see [3]), which is given by:

f (z) = ∫�Ω

S(z,w)f (w)d�E(w), ∀f ∈ H2

E
(�Ω),

d�F = cn
n+1

�
− det

�
0 �

k

�j �jk

�

1≤j,k≤n
d�E
‖d�‖ ,
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where �j ≡ ��∕�zj , �k ≡ ��∕�zk , �jk ≡ �2�∕�zj�zk , and � is a 
defining function for Ω (here ‖ ⋅ ‖ denotes the usual Euclid-
ean distance). The constant cn is a dimensional constant (see 
[3]). We should consider the space H2

F
(�Ω) defined in the 

same way as H2

E
(�Ω) with d�F instead of d�E . The space 

H2

F
(�Ω) is a Hilbert space with reproducing kernel in the 

sense of Aronszajn (see [4]). So it has the reproducing ker-
nel SF(z,w) . Of course, this new kernel is in general not the 
same as the usual Szegő kernel, but it certainly obeys the 
reproducing property (see [2, p. 66] and [5]):

Throughout the paper we are working with both SF and 
S. We always try to highlight what kernel is actually consid-
ered. When considering S (denoted also by SΩ ) we automati-
cally assume that Ω is a bounded domain with C2-smooth 
boundary in ℂn . If SF (denoted also by SF,Ω ) is considered, 
Ω ⋐ ℂ

n is assumed to be strongly pseudoconvex with C∞

-smooth boundary.

3  The Fefferman–Projective Szegő distance 
and some remarks

It turns out that, like the Bergman kernel, the Feffer-
man–Szegő kernel respects the so-called transformation rule 
(see ([5], Prop. 2 and also [6], Prop. 3.3):

Proposition 1 Let Ω1,Ω2 ⊂ ℂ
n and � ∶ Ω1 → Ω2 be a biho-

lomorphic mapping. Assume there exists a well-defined holo-
morphic branch of (det J

ℂ
�(z))n∕(n+1) on Ω1 . Then we have

where SF,Ωj
(z,w) is the Fefferman-Szegő kernel on Ωj for 

j = 1, 2.

This property leads us to the biholomorphically invariant 
distance induced by the Fefferman–Szegő kernel. We have 
to point out here that for n > 1 the classical Szegő kernel 
doesn’t obey the above transformation rule.

In order to introduce the distance, we recall some ideas 
from the theory of Hilbert spaces.

Let (H, ⟨⋅ , ⋅⟩ ) be an arbitrary separable Hilbert space. 
Let us consider the following relation between two nonzero 
elements: x ∼ y if and only if there exists a complex constant 
c ≠ 0 such that x = cy . The set of equivalence classes forms 
the (generally infinite dimensional) projective Hilbert space 
P(H). This is a complete metric space with respect to the 
distance

f (z) = ∫�Ω

SF(z,w)f (w)d�F(w), ∀f ∈ H2

F
(�Ω).

SF,Ω1
(z,w) =SF,Ω2

(�(z),

�(w))(det J
ℂ
�(z))n∕n+1(det J

ℂ
�(w))n∕n+1,

where SH ⊂ H  is the unit sphere, and as usual 
dist(A,B) = inf{d(x, y)|x ∈ A, y ∈ B} for two nonempty sub-
sets A, B of H. Explicitly,

where ⟨⋅, ⋅⟩ denotes the scalar product of the Hilbert space 
H. Using this idea, M. Skwarczyński introduced in [1, p. 20] 
the biholomorphically invariant pseudodistance on domains 
in ℂn . It is directly based on the so-called Bergman kernel 
(see for example [7, p. 410] and [2, p. 49]). At first, we need 
an analogue of this idea for Szegő kernels.

Note that SF(z, z) does not vanish at any point z ∈ Ω 
(see [2, p. 66]). Define the map � ∶ Ω → P(H2

F
(�Ω)) by the 

formula

This enables us to introduce the following continuous pseu-
dodistance on Ω × Ω ∶

(we recall that the symbol �Ω is fixed for the so-called 
Skwarczyński distance (see [1, p. 20])).

Remark 2 Observe that the following conditions are 
equivalent: 

(a) � is injective;
(b) for each two distinct points z,w ∈ Ω the functions 

SF(⋅, z), SF(⋅,w) are linearly independent;
(c) �

SF
Ω

 is a distance.

Let us note the following:

Remark 3 Since Ω is bounded, �SF
Ω

 is a distance.

Proof of the Remark 3 Let w, t ∈ Ω,w ≠ t . The points w and 
t differ by at least one coordinate, let us say the k th one. 
The polynomial g(z) = zk − wk is an element of H2

F
(�Ω) and 

dH([x], [y]) = dist([x] ∩ SH , [y] ∩ SH) ,

d2
H
([x], [y]) = inf

�,�∈[0, 2�]

�����
�����
ei�x

��x�� −
ei�y

��y��
�����
�����

2

= inf
�,�∈[0, 2�]

�
2 − 2Re

ei(�−�)⟨x, y⟩
��x���y��

�

= 2 − 2

�⟨x, y⟩⟨y, x⟩
⟨x, x⟩⟨y, y⟩

�1∕2

�(z) ∶= [SF(⋅, z)].

(1)

�
SF
Ω
(z,w) ∶=

1√
2

dH2(�Ω)(�(z), �(w))

=

�
1 −

�SF(z,w)�√
SF(z, z)

√
SF(w,w)

�1∕2

.
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g(w) = 0, g(t) ≠ 0 . Let us note now that point evaluations Et 
and Ew are linearly independent. Indeed, if

for all f ∈ H2

F
(�Ω) , then for f = g we have that � = 0 . The 

choice f ≡ 1 implies that � = 0 , which shows that Et and 
Ew are linearly independent. Since the transformation given 
in the Riesz Representation Theorem, which assigns to any 
linear, continuous functional its representing vector, is an 
antilinear isometry, then the vectors SF,Ω(⋅, t) and SF,Ω(⋅,w) 
are linearly independent. The conclusion follows now from 
Remark 2.   ◻

We call �SF
Ω

 the Fefferman–Szegő projective distance 
(taking KΩ—the regular Bergman kernel instead of SΩ , 
we get the so-called Skwarczyński distance—see [1, p. 
20]). The advantage of this distance is that, compared to 
the (regular) Szegő distance (given by the Szegő metric—
see [5]), it is given in a more explicit way and thus seems 
to be advantageous from the computational point of view. 
Moreover, it is uniquely determined by the real analytic 
function

on Ω × Ω.

Remark 4 We define the Szegő projective distance on the 
same way just taking SΩ instead of SF,Ω . We note, however, 
that in contrast to �SF

Ω
 , the distance �S

Ω
 is not biholomorphi-

cally invariant. We call �SF
Ω

 the Fefferman–Szegő projective 
distance, and �S

Ω
 the Szegő projective distance.

Remark 5 We see that, for any biholomorphic mapping 
� ∶ Ω1 → Ω2 , we have

The proof follows from the transformation rule for the Szegő 
kernel (see Proposition 1).

3.1  The Fefferman–Szegő projective distance 
on the unit ball

Let 𝔹n = {z ∈ ℂ
n ∶ 𝜌(z) ∶= |z|2 − 1 < 0} ⊂ ℂ

n . Then the 
Szegő kernel for the unit ball �n is given by

�Et(f ) + �Ew(f ) = 0

H(z,w) =
SF(z,w)SF(w, z)

SF(z, z)SF(w,w)

�
SF
Ω1

(z,w) = �
SF
Ω2

(�(z),�(w)) .

SF(z,w) =
(n − 1)!

2�n

1

(1 − z ⋅ w)n
.

From the formula (1) it follows directly that

Recall now that the Skwarczyński distance for the unit 
disc in ℂ is

(see [1, p. 21]). Thus

Moreover, for n = 1 , we have

Remark 6 The same formulas hold for �S.

3.2  Completeness with respect to the %S

Ä
 distance

In this subsection we are interested in the Szegő projective 
distance rather than Fefferman–Szegő projective distance. 
The reason is that arguments from this subsection repeated 
for the Fefferman–Szegő projective distance give that 
every strongly pseudoconvex domain with smooth bound-
ary is automatically �SF-complete, and also complete in the 
Szegő metric (introduced in [5]).

We list here some important theorems which are 
directly taken from the Bergman kernel theory (see [7, 
Theorem 12.9.6.] for instance). We are doing this for the 
sake of completeness of the paper.

Following ideas of [8] and particularly [1, p. 22] we can 
study completeness with respect to the invariant distance. 
Additionally, we will prove now that the so-called Kob-
ayashi condition implies �S

Ω
-completeness.

Theorem 7 A sequence (zm) ∈ Ω, m = 1, 2,… , is Cauchy 
with respect to the distance �S

Ω
 if and only if the sequence 

�(zm) is Cauchy in P(H2(�Ω)).

Proof This is a direct consequence of the definition of �S
Ω

 .  
 ◻

Theorem 8 A sequence zm ∈ Ω, m = 1, 2,… , is Cauchy 
with respect to �S

Ω
 if and only if there exists an f ∈ H2(�Ω) 

such that ||f ||H2 = 1 and

(
�
SF
�n

)2

(z,w) = 1 −

(
(1 − |z|2)(1 − |w|2)

|1 − z ⋅ w|2
)n∕2

.

�
SF

�2
(z,w) =

|z − w|2
|1 − z ⋅ w|2

�
�
(z,w) =

||||
z − w

1 − zw

||||

�
SF

�2
((z1, 0), (w1, 0)) = �2

�
(z1,w1) .

�
�
(z,w) = �

SF

�1
(z,w)

√
2 − (�

SF

�1
)2(z,w) .
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Proof By the previous theorem, a sequence (zm) is Cauchy 
in Ω if and only if (�(zm)) is Cauchy in P(H2(�Ω)) . By com-
pleteness of P(H2(�Ω)) , the sequence (�(zm)) converges to 
some [f]. We may assume that ||f ||H2 = 1 . Thus

but this is equivalent (by the definition) to (2). The reverse 
implication is a direct consequence of the definition of �S

Ω
 .  

 ◻

Theorem 9 (see p. 494 in [7]) The Euclidean distance and 
�S
Ω

 induce the same topology in Ω.

Proof Assume that zj ∈ Ω converges to z ∈ Ω in the Euclid-
ean norm. Then limj→∞ �S

Ω
(zj, z) = 0 since the Szegő func-

tion is continuous. Conversely, limj→∞ �S
Ω
(zj, z) = 0 implies 

that

where (�j) is a suitable sequence of real numbers. Thus 
there exist constants cj ≠ 0, j = 1, 2,… , such that 
cjSΩ(⋅, zj)

H2

����������→ SΩ(⋅, z). Since 1 ∈ H2(�Ω) , we see that

Let �k denote the kth coordinate function. We have

  ◻

Hence the two topologies coincide. Having this result 
in hand, we can prove (in a fashion similar to that for the 
Bergman kernels see [9, p. 93]) that the �S

Ω
 completeness 

is closely related to the dimension of H2(�Ω) ( L2
H
(�Ω)).

Theorem 10 If Ω is �S
Ω

 complete, then dimH2(�Ω) = ∞.

Proof We can adapt the proof in [9, p. 93]. Assume that 
dimH2(𝜕Ω) < ∞ . Then the closed unit ball in H2(�Ω) is 
compact. Let gz(⋅) =

SΩ(⋅, z)√
SΩ(z, z)

 , where z ∈ Ω . Then

(2)lim
m→∞

|f (zm)|2
SΩ(zm, zm)

= 1.

lim
m→∞

dH2(�Ω)(�(zm), [f ]) = 0 ,

lim
j→∞

��������

��������

ei�j SΩ(⋅, zj)�
SΩ(zj, zj)

−
SΩ(⋅, z)√
SΩ(z, z)

��������

��������H2

= 0 ,

lim
j→∞

cj = lim
j→∞

(1, cjSΩ(⋅, zj))� = (1, SΩ(⋅, z))H2 = 1 .

lim
j→∞

�k(zj)

= lim
j→∞

(�k(⋅), SΩ(⋅, zj))� = lim
j→∞

1

cj
(�k(⋅), cjSΩ(⋅, zj))H2

= (�k(⋅), SΩ(⋅, z))H2 = �k(z), i.e. lim
j→∞

zj = z .

If (zk)∞k=1 → z0 ∈ �Ω (in the usual Euclidean topology), 
then (by compactness of the unit ball) (gzkj )

∞
j=1

 has a subse-
quence that is convergent to g ∈ H2(�Ω) , where ||g||H2 = 1 . 
Denote this sequence by (gzk )

∞
k=1

 . Let us see that (zk)∞k=1 is 
�S
Ω
−Cauchy. Indeed

i.e.

Since the term on the right hand side tends to 0 when 
m, n → ∞ we conclude that 𝜚S

Ω
(zm, zn) < 𝜖 for m, n large 

enough. Thus we found a �S
Ω

-sequence which has the limit 
z0 ∈ �Ω . This should not happen since Ω is assumed to be 
�S
Ω

-complete.   ◻

Some of the ideas below—particularly Theorems 11 
and 12—follow upon the ones in [1, p. 23, 24] .

Theorem 11 (Szegő version of the Kobayashi theorem) 
Assume that, for every sequence (zm) ∈ Ω without an accu-
mulation point in Ω and for every f ∈ H2(�Ω),

Then Ω is �S
Ω

-complete.

Proof Suppose that (zm) ∈ Ω is a Cauchy sequence without 
limit in Ω . Thus (zm) has no accumulation point in Ω , and 

��gz��2 = ∫Ω

gz(w)gz(w)�(w)dV

= ∫Ω

SΩ(w, z)√
SΩ(z, z)

SΩ(w, z)√
SΩ(z, z)

dV

=
1

SΩ(z, z) ∫Ω

SΩ(w, z)SΩ(w, z)dV

=
1

SΩ(z, z)
SΩ(z, z).

= 1.

�⟨gzm , gzn⟩�
=
����∫Ω

gzm(w)gzn(w)�(w)dV
����

=

������∫Ω

SΩ(w, zm)√
SΩ,�(zm, zm)

SΩ(w, zn)√
SΩ(zn, zn)

�(w)dV

������
=

1√
SΩ(zm, zm)

√
SΩ,�(zn, zn)

����∫Ω

SΩ(w, zm)SΩ(w, zn)�(w)dV
����

=
�SΩ(zm, zn)�√

SΩ(zm, zm)
√
SΩ(zn, zn)

,

(�S
Ω
)2(zm, zn) = 1 − �⟨gzm , gzn⟩�

(3)lim
m→∞

|f (zm)|2
SΩ(zm, zm)

= 0.
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(3) holds. But (3) contradicts (2). Thus there is a limit point 
of (zm) in Ω .   ◻

The hypothesis of the above theorem applied to the Berg-
man kernel K instead of S, and to the Szegő space H2(�Ω) 
instead of L2

H
(�Ω) , is the so-called Kobayashi condition (see 

[8]). Kobayashi showed that this condition implies that the 
considered domain is Bergman complete. Skwarczyński has 
a proof that this condition implies �Ω-completeness—[10] 
(see Sect. 3.4 for the definition of �Ω).

Theorem 12 Suppose that, for each boundary point z0 ∈ �Ω 
(of a bounded domain Ω with C2-smooth boundary), there is 
a function h ∈ O(Ω) such that

(a)  |h(z)| < 1 for z ∈ Ω,

(b)  limz→z0
|h(z)| = 1.

 Then Ω is complete with respect to �S
Ω

.
Proof Let (zm) be a sequence with no accumulation point in 
Ω . It suffices to show that, for any f ∈ H2(�Ω),

We may assume that zm → z ∈ �Ω . For any 𝜖 > 0 , there 
is k such that ||hkf ||2

H2
< 𝜖 (by the Lebesgue dominated con-

vergence theorem). If m is large enough, then

Thus

  ◻

Recall the definition of a peak point with respect to (some 
family) F .

Definition 13 Let D be a bounded domain in ℂn . A bound-
ary point z0 ∈ �D is called a peak point with respect to 
F ⊂ C(D) if there is h ∈ F  such that 

(a) h(z0) = 1

(b) |h(z)| < 1 on D ⧵ {z0}

Recall some classical results concerning peak points.

Theorem 14 (cf. [7, p. 802]; [11, 12]) If D is a strongly 
pseudoconvex domain in ℂn and z0 ∈ �D , then z0 is a peak 

lim
m→∞

|f (zm)|2
SΩ(zm, zm)

= 0 .

(1 − �)|f (zm)|2 ≤ |hk(zm)f (zm)|2 ≤ SΩ(zm, zm)||hkf ||2H2
.

|f (zm)|2
SΩ(zm, zm)

≤ �

1 − �
.

point with respect to O(D) . If D is a strongly pseudoconvex 
domain in ℂn with a smooth boundary and z0 ∈ �D then z0 
is a peak point with respect to O(D) ∩ C(D) . Moreover, if D 
is a bounded pseudoconvex domain in ℂ2 with real analytic 
boundary, then any boundary point z0 ∈ �D is a peak point 
with respect to O(D) ∩ C(D).

We infer from this and Theorem 12 the following:

Corollary 15 Every strongly pseudoconvex domain Ω in ℂn 
with C2-smooth boundary is complete with respect to �S

Ω
 . 

Moreover, every bounded pseudoconvex domain Ω in ℂ2 with 
real analytic boundary is complete with respect to �S

Ω
.

Remark 16 So now one can clearly note, that the above argu-
ments, repeated for SF rather than S provide every strongly 
pseudoconvex domain with C∞-smooth boundary is auto-
matically complete in the �SF

Ω
 distance.

3.2.1  Comparison of the Bergman and Szegő kernels 
off the diagonal

Using recent estimates obtained in [13] we may estimate the 
quotient |SΩ(z,w)∕KΩ(z,w)| on domains which are not �Ω
-complete (Skwarczyński distance). Note that, if (zn)∞n=1 is a 
�Ω-Cauchy sequence then, for any 𝜖 > 0,

if only m, n are large enough. We now have the following:

Theorem 17 If Ω ⋐ ℂ
n is a pseudoconvex domain with C2

-smooth boundary and which is not �Ω-complete then

for any �Ω-Cauchy sequence (zp)∞p=1 , where m is large 
enough.

Proof Let 𝜖 > 0 . Then for n, m large enough we have

1 − � ≤ �KΩ(zn, zm)�√
KΩ(zn, zn)

√
KΩ(zm, zm)

≤ 1

lim
n→∞

||||
S(zn, zm)

K(zn, zm)

|||| = 0

����
KΩ(zn, zm)

SΩ(zn, zm)

����
=

�KΩ(zn, zm)�√
KΩ(zn, zn)

√
KΩ(zm, zm)

√
KΩ(zn, zn)

√
KΩ(zm, zm)√

SΩ(zn, zn)
√
SΩ(zm, zm)

⋅

√
SΩ(zn, zn)

√
SΩ(zm, zm)

�SΩ(zm, zn)� �������������������→
n→∞

∞
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(since S(z, z)
K(z, z)

≤ c �(z)| ln(�(z))|� ���������������������→
z→�Ω

0—see [13]).   ◻

Thus we have

Corollary 18 If Ω ⋐ ℂ
n is a pseudoconvex domain with C2

-smooth boundary such that its Bergman kernel KΩ(z,w) 
satisfies |KΩ(z,w)| ≤ M, |SΩ(z,w)| > 0 on Ω × Ω ⧵ F , where 
F = {(z,w) ∈ �Ω × �Ω, z = w} then Ω is �Ω-complete, and 
thus Bergman complete.

In particular, every strongly pseudoconvex domain 
Ω ⋐ ℂ

n with C∞-boundary is �Ω-complete (see [14]) (we 
know this already from Corollary 15 applied to the Berg-
man kernel—see [1, p. 25]).

3.3  Relation of %S to the Skwarczyński distance

It turns out that �S
Ω

 is related to �Ω (Skwarczyński distance) 
by some biholomorphic invariants introduced below. Let us 
recall that �S

Ω
 , by its definition, is uniquely determined by 

the real analytic function

Define LΩ(z,w) a corresponding quotient for the Bergman 
kernel, i.e.

Now define a new biholomorphically invariant HLΩ(z,w) 
by

We can write it by means of another biholomorphic invar-
iant SKΩ(z,w) , where

introduced (for SF,Ω in fact) in [5, formula (3.1)]. See also 
[13]. Now

By its definition, HLΩ is a symmetric, real analytic function 
on Ω × Ω . Moreover

HΩ(z,w) =
SΩ(z,w)SΩ(w, z)

SΩ(z, z)SΩ(w,w)
.

LΩ(z,w) =
KΩ(z,w)KΩ(w, z)

KΩ(z, z)KΩ(w,w)
.

HLΩ(z,w) =
LΩ(z,w)

n

HΩ(z,w)
n+1

=
|KΩ(z,w)|2n
|SΩ(z,w)|2n+2

SΩ(z, z)
n+1

KΩ(z, z)
n

SΩ(w,w)
n+1

KΩ(w,w)
n

SKΩ(z,w) =
SΩ(z,w)

n+1

KΩ(z,w)
n

z,w ∈ Ω

HLΩ(z,w) =
1

|SKΩ(z,w)|2
SKΩ(z, z)SKΩ(w,w) .

Lemma 19 The following holds: 

(a)  For any z ∈ Ω , HLΩ(z, z) = 1

(b)  HLΩ(z,w) =
(1 − �2(z,w))2n

(1 − (�S)2(z,w))2n+2

(c)  HL
�n(z,w) = 1 for all z,w ∈ �

n.

Proof Properties (a), (b), (c) follows directly from the defini-
tion of HL and from the formulas:

  ◻

However, the Szegő kernel SΩitself blows up on the bound-
ary. Indeed :

Remark 20 Similarly to the Bergman kernel KΩ , the Szegő 
kernel SΩ satisfies

Proof By the definition (see [5]),

But 
SΩ(z, z)

KΩ(z, z)
≤ c �(z)| ln(�(z))|� ���������������������→

z→�Ω
0—see [13], and (as 

previously) limz→𝜕Ω SKΩ(z, z) = constant > 0 .   ◻

One can note that both �Ω(z,w) and �S
Ω
(z,w) tend to 1 for 

w → �Ω, z ≠ w . But, in view of Lemma 19, the quantity � has 
stronger boundary asymptotic properties than �S.

Remark 21 When considering {Ω = 𝜌 < 0} ⋐ ℂ
n a strongly 

pseudoconvex domain with C∞ boundary, and SF,Ω rather 
than SΩ beside of the above properties one also has that

Proposition 22 If SF,Ω(z,w) ≠ 0 for z ∈ Ω and any w ∈ �Ω 
then limw→�Ω HLΩ(z,w) exists and is finite.

Proof Note first that since Ω is smoothly bounded, strongly 
pseudoconvex domain the assumptions are always fulfilled 
for w in or near the boundary �Ω and z near to w. This is 
because SF,Ω(z,w) (as well as KΩ(z,w) ) does not vanish in 
this case (as follows from [15]). Recall (see [5]) that, for a 
strongly pseudoconvex domain Ω with the defining function 
suitably normalized,

SΩ(z,w) =
(n − 1)!

2�n

1

(1 − z ⋅ w)n
, KΩ(z,w)

=
1

vol(�)

1

(1 − z ⋅ w)n+1
.

lim
z→�Ω

SΩ(z, z) = ∞.

SKΩ(z, z) =
S(z, z)n+1

K(z, z)n
= S(z, z)

S(z, z)n

K(z, z)n
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for z close to the boundary, where �2,�3 ∈ C∞(Ω) and qΩ, q̃Ω 
are certain local geometric boundary invariants and r ∶= −� . 
From the above follows

Now, since the Szegő kernel SF (like the Bergman ker-
nel K) extends continuously outside diagonal on �Ω × �Ω 
then, of course, |SF,Ω(z,w)| > M > 0, |KΩ(z,w)| < N (by the 
assumption from (c)) and so

Putting this together and using the definition of HLΩ we 
ends the proof.   ◻

Theorem 23 Assume that Ω is a �S
Ω

-complete domain on 
which HLΩ(z,w) ≤ 1 for all z,w ∈ Ω . Then Ω is �Ω-complete 
(that is, complete in the Skwarczyński distance).

Proof Let (zn) be any �-Cauchy sequence. Then, for any 
𝜖1 > 0 , we have that 𝜚(zk, zp) < 𝜖1 if k, p large enough. In 
view of Lemma 19b we have

which is equivalent to

or

We want to show that (zn) is convergent by proving it is 
�S
Ω

-Cauchy. So, for any 𝜖 > 0 , we want to have 𝜚S
Ω
(zk, zp) < 𝜖 

for k, p large enough. Note that (⋆) implies �S
Ω
(zk, zp) ≤ 1 , 

thus for � ≥ 1 one has 𝜚S
Ω
(zk, zp) < 𝜖 . For � ∈ (0, 1) one can 

pick any �1 in 

(
0,

√
1 − (1 − �2)

2n+2

2n 2n

√
HLΩ(zk, zp)

)
 . Note 

that the quantity under the square root is nonnegative, since

SFKΩ(z, z) =

⎧
⎪⎨⎪⎩

(n − 1)!∕(cn+1
n

(n𝜋)n) + (n − 3)!qΩr
2∕(cn+1

n
nn) + O(r3), n ≥ 4

2∕(c4
3
27𝜋3) + qΩr

2∕(9c4
3
) + O(r3� ln r�), n = 3

1∕(c3
2
4𝜋2) + 𝜇2r

2 + 𝜇3r
4 ln r + 3𝜋2q̃2

Ω
r6 ln2 r∕(16c3

2
) + O(r6� ln r�), n = 2

lim
z→𝜕Ω

SFKΩ(z, z) = constant > 0

1

|SFKΩ(z,w)|2
=

|KΩ(z,w)|2n
|SF,Ω(z,w)|2n+2

≤ NM < ∞ .

𝜖2
1
> 𝜚2

Ω
(zk, zp) = 1 − 2n

√
HL(zk, zp)(1 − (𝜚S

Ω
)2(zk, zp))

2n+2

2n ,

(1 − �2
1
)

2n

2n+2

2n+2

√
HLΩ(zk, zp)

≤ 1 − (�S
Ω
)2(zk, zp)

(
𝜚S
Ω

)2
(zk, zp) < 1 −

(
1 − 𝜖2

1

) 2n

2n+2

2n+2

√
HLΩ(zk, zp)

. (⋆)

as we assumed that HLΩ ≤ 1 on Ω × Ω . Now, after squaring 
and rearranging, one has

which implies by (⋆) that 𝜚S
Ω
(zk, zp) < 𝜖 , for k, p sufficiently 

large.   ◻

Theorem 24 Assume Ω is a �Ω-complete domain on which 
HLΩ(z,w) ≥ 1 for all z,w ∈ Ω . Then Ω is �S

Ω
-complete.

Proof Let (zn) be any �S-Cauchy sequence. Then, for any 
𝜖1 > 0 , we have that 𝜚S

Ω
(zk, zp) < 𝜖1 if k, p large enough. In 

view of Lemma 19b we have

which is equivalent to

or

We want to show that (zn) is convergent by proving it is �Ω
-complete. So, for any 𝜖 > 0 , we want to have 𝜚Ω(zk, zp) < 𝜖 
for k,  p large enough. Note that (⋆⋆) implies that 
�Ω(zk, zp) ≤ 1 , thus for � ≥ 1 one has 𝜚Ω(zk, zp) < 𝜖 . For 

� ∈ (0, 1) one can pick any �1 in 
(
0,

√
1 − (1 − �2)

2n

2n+2

)
 . 

Note that the quantity under the square root is nonnegative, 
since 𝜖 > 0 . That means

which together with (⋆⋆) yields 𝜚Ω(zk, zp) < 𝜖 .   ◻

Corollary 25 If Ω is a domain for which HLΩ(z,w) = 1 for 
all z,w ∈ Ω , then Ω is �-complete if and only if Ω is �S

Ω

-complete.

HLΩ(zk, zp) <
1

(1 − 𝜖2)2n+2
,

(1 − 𝜖2) 2n+2

√
HLΩ(zk, zp) < (1 − 𝜖2

1
)

2n

2n+2 ,

𝜖2
1
>
(
𝜚S
Ω

)2
(zk, zp) = 1 −

(
1 − 𝜚2

Ω
(zk, zp)

) 2n

2n+2

2n+2

√
HLΩ(zk, zp)

(
1 − 𝜚2

Ω
(zk, zp)

) 2n

2n+2 >
(
1 − 𝜖2

1

)
2n+2

√
HLΩ(zk, zp)

𝜚2
Ω
(zk, zp) < 1 −

(
1 − 𝜖2

1

) 2n+2

2n 2n

√
HLΩ(zk, zp). (⋆⋆)

1 − 𝜖2

(1 − 𝜖2
1
)
2n+2

2n

< 1 ≤ 2n

√
HLΩ(zk, zp) ,
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Thus we have derived a characterization of those 
domains on which �-completeness is equivalent to �S
-completeness.

Corollary 26 For a domain Ω with HLΩ ≡ 1 on Ω × Ω , con-
sider the statements: 

(1)  Ω is �-complete.
(2)  Ω is �S

Ω
-complete.

(3)  Ω is Bergman complete.

 Then (1) ⟺ (2) , (2) ⇒ (3).
The proof of (1) ⇒ (3) is given in [16]. According to our 

knowledge it is still open question whether (3) ⇒ (1).

3.4  Relation of the Fefferman–Szegő projective 
distance %SF to the Bergman distance 
and the Szegő distance

Assume that now we do consider the Fefferman–Szegő ker-
nel SF . Let us recall that the Bergman metric FB on Ω at z 
in the direction vector � based at z, FB(z, �) is related to the 
Fefferman-Szegő metric FSF

(z, �) by

where 0 < mΩ < MΩ < ∞ and z ∈ Ω and � ∈ TΩ (see [5, 
Theorems 3–5], [15, 17]).

Denote by sF(z,w) and b(z, w) the distances induced by 
the Szegő and Bergman metric respectively (on the standard 
way—see [7] (p.482) for instance).

Theorem  27 There are some positive constants 
c, m̃(Ω), M̃(Ω) , such that for every z,w ∈ Ω one has:

Proof This clearly follows from the estimation (2) and tech-
niques analogous to the ones used for the Bergman kernel 
in [16].   ◻

4  The relationship between HL, 
the Bergman metric and the Fefferman–
Szegő metric

In this section we get an exact connection between the Berg-
man and Szegő metrics by means of the quantity given by 
HLΩ . The key idea is a simple remark. Note that, by the 
definition, we have

(2)mΩFSF
(z, 𝜉) ≤ FB(z, 𝜉) < MΩFSF

(z, 𝜉)

�
SF
Ω
(z,w) ≤ c ⋅ sF(z,w) ≤ m̃(Ω)b(z,w) ≤ M̃(Ω)sF(z,w).

or just

for z,w ∈ Ω . Taking the natural logarithm ln on both sides, 
one gets

so

Now, we can do the same for SF,Ω instead of KΩ and HΩ 
instead of LΩ and thus

Using Lemma 19 (b) one gets

or just

But this right hand side expression is the quantity E(z, �) 
introduced in [5]. Thus we get

Remark 28 In the case of the unit ball �n in ℂn , E(z, �) ≡ 0 , 
since HL ≡ 1 by the hypothesis of Lemma 19. In particular, 
we have a direct connection between the Bergman and Szegő 
metrics on the unit ball in ℂn , namely:

LΩ(z,w) = (1 − �2
Ω
(z,w))2

|KΩ(z,w)|2
(1 − �2

Ω
(z,w))2

= KΩ(z, z)KΩ(w,w),

lnKΩ(z, z) + lnKΩ(w,w) = lnKΩ(z,w) + lnKΩ(w, z)

− 2 ln(1 − �2
Ω
(z,w)) ,

�2

�zi�zj
lnKΩ(z, z) = −2

�2

�zi�zj
ln(1 − �2

Ω
(z,w)) .

�2

�zi�zj
ln SF,Ω(z, z) = −2

�2

�zi�zj
ln(1 − (�

SF
Ω
)2(z,w)) .

n∑
i,j=1

�2

�zi�zj
lnHLΩ(z,w)�i�j

= 2n

n∑
i,j=1

�2

�zi�zj
ln(1 − �2

Ω
(z,w))�i�j

− (2n + 2)

n∑
i,j=1

�2

�zi�zj
ln(1 − (�

SF
Ω
)2(z,w))�i�j

(4)

n∑
i,j=1

𝜕2

𝜕zi𝜕z̄j
lnHLΩ(z,w)𝜉i𝜉j = −nF2

B
(z;𝜉) + (n + 1)F2

SF
(z;𝜉).

(5)

n∑
i,j=1

�2

�zi�zj
lnHLΩ(z,w)�i�j = E(z, �)

=

n∑
i,j=1

�2

�zi�zj
ln SKΩ(z, z)�i�j
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This is also derived in [5]. Note that (4) clearly implies that 
E(z;�) defines a semi-positive definite form on a set

{� ∈ TΩ;FB(z, �) ≤
√

n+1

n
FSF

(z, �)} . So for example if Ω 
is simply connected, and biholomorphic to the ball (see 
properties of E(z;�) in [5]).

5  Closing remarks

It has become increasingly clear that analysis on domains in 
ℂ

n must be formulated in the language of invariant metrics. 
Thus it is worthwhile to develop and study new invariant 
metrics, and to compare them with the more familiar metrics 
that were developed in the twentieth century. This contribu-
tion is a step in that direction.
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