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Abstract
Here we shall discuss analyticity results for several important partial differential equations. This includes the analytic regular-
ity of sub-Laplacians under the finite type condition; the analyticity of the solution in both variables to the Cauchy problem 
for the Camassa–Holm equation with analytic initial data by using the Ovsyannikov theorem, which is a Cauchy–Kowalevski 
type theorem for nonlocal equations; the Cauchy problem for BBM with analytic initial data; the Cauchy problem for KdV 
with analytic initial data examining the evolution of uniform radius of spatial analyticity; and finally the time regularity of 
KdV solutions, which is Gevrey 3.
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conservation law · Uniform radius of spatial analyticity
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1  Introduction

Analyticity in partial differential equations (PDE) appears 
naturally. For example, imagine that the temperature of a 
body occupying a region U in ℝ3 is at a steady state, that is, 
it does not change with time. If we know the temperature at 
each point of its surface (boundary), then to find the temper-
ature u(x) at each point x inside the body we must solve the 
boundary value problem consisting of the Laplace equation

and the boundary condition u = g , where g are the known 
values (data) of u on the boundary �U . For smooth enough 
boundary �U and data g we can find a solution formula 

for this problem (see, for example, Evans [26]). However, 
independently of the derivation of this solution formula 
we can prove that the temperature distribution u(x) inside 
the domain U is an analytic function. That is, at any point 
x0 ∈ U the solution u to the Laplace equation (1.1) can be 
represented by a power series in the variable x near x0 . In 
fact, this is a special case of a more general result stating that 
any solution to an elliptic linear equation P(x,D)u = f (x) , 
with analytic coefficients in a domain U ⊂ ℝ

n and analytic 
forcing (output) f(x) in U, is analytic in U (see, for example, 
Hörmander [45]).

In the direction of non-elliptic linear PDE there is an 
important class of operators, that look like the Laplacian 
and arise naturally in analysis, geometry and probability 
theory. These operators are called sub-Laplacians or “sums 
of squares of vector fields” and are of the form

where U is an open set in ℝn and X = {X1,… ,Xm} are m real 
vector fields with C∞ coefficients in U. When all points of U 
are of finite type, that is, the Lie algebra of the vector fields X 
has dimension n at every point of U, then all solutions (clas-
sical or weak) to the equation ΔXu = f  , f ∈ C∞(U) , are in 
C∞(U) (i.e., ΔX is hypoelliptic). This is the celebrated sums 
of squares theorem of Hörmander [46]. If the coefficients 

(1.1)Δu ≐ �2
x1
u + �2

x2
u + �2

x3
u = 0, in U,

(1.2)ΔX ≐ X2
1
+⋯ + X2

m
, in U,
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of the vector fields X are analytic, then the corresponding 
Hörmander type theorem in the analytic category is not true. 
Finding necessary and sufficient conditions for the analytic 
regularity (hypoellipticity) of sub-Laplacians remains an 
open problem that we will discuss here presenting some 
results, where Nick Hanges was involved.

Also, motivated by the work with Nick Hanges, here we 
shall present some results on the Cauchy problem of linear and 
nonlinear PDE with analytic initial data, starting with the clas-
sical Cauchy–Kowalevski theorem. Then, we will consider the 
Cauchy problem for nonlocal equations and state an abstract 
Cauchy–Kowalevski theorem, which is known as the Ovsyan-
nikov theorem. A well known nonlocal equation that this theo-
rem applies to is the so called Camassa–Holm (CH) equation

which in the framework of water wave theory was derived 
by Camassa and Holm [16] starting from the Euler equa-
tions. This is an integrable equation, and in this framework 
was derived by Fokas and Fuchssteiner [28]. The solution 
to the Cauchy problem of CH with analytic initial data is 
analytic in both variables x and t (see [40] for the circle and 
[3] for the line). We shall discuss this result here. Also, here 
we shall present a recent similar result [43] for the Benja-
min–Bona–Mahony (BBM) equation

which unlike the CH equation can be thought as an abstract 
ODE.

Finally, we will discuss the periodic Cauchy problem 
for the celebrated Korteweg–de Vries equation, which was 
derived in [11] and [50] as a model of water waves (solitons),

For initial data u(x, 0) that are analytic on the torus and have 
uniform radius of analyticity r0 , we will examine the evolution 
of the radius of spatial analyticity r(t) of the solution u(t) at 
any future time t. Following [44], we will show that the size 
of the radius of spatial analyticity persists for some time and 
after that it evolves in a such a way that its size at any time t is 
bounded below by ct−2 , for some c > 0 . It is worth mentioning 
that the optimality of this bound remains an open question.

2 � Analytic regularity of sub‑Laplacians

Here, following [38], we construct non-analytic solutions to 
a sub-Laplacian defined by three real vector fields in ℝ3 sat-
isfying the finite type condition everywhere. More precisely, 
we have the result.

(1.3)�tu + u�xu + �x

(
1 − �2

x

)−1[
u2 +

1

2
(�xu)

2
]
= 0,

(1.4)�tu + �x

(
1 − �2

x

)−1[
u2 +

1

2
(�xu)

2
]
= 0,

(1.5)�tu + �3
x
u + u�xu = 0.

Theorem 2.1  Let k be an odd positive integer, and ΔX be 
the sub-Laplacian in ℝ3 defined by

Then one can construct non-analytic solutions to the equa-
tion ΔXu = 0 near the origin.

If k = 1 then the operator ΔX in (2.1) is the well known 
Baouendi–Goulaouic operator which provided the first coun-
terexample to analytic hypoellipticity of a sum of squares 
operator satisfying the finite type condition [1]. The class of 
operators in (2.1) is contained in a class studied by Oleinik 
and Radkevic [58]. There, necessary and sufficient condi-
tions for analytic regularity are given. The existence of sin-
gular solutions is proved by indirect methods. Here, follow-
ing [38], we provide an explicit construction.

Proof of Theorem 2.1  First we observe that by using Hör-
mander’s sum of squares theorem we see that all solutions 
to equation ΔXu = 0 are in C∞ . Furthermore, separation of 
variables suggests that we should look for non-analytic solu-
tion of the form

where the functions A and w, and the positive constant � are 
to be determined. By applying ΔX formally to u we obtain

Thus u is a formal solution to ΔXu = 0 if A satisfies the fol-
lowing ordinary differential equation

For u to be well defined in x1 we shall require that A is in the 
space of Schwartz functions, that is A ∈ S(ℝ) . Also, for u 
to be well defined in x2 we shall choose

Furthermore, the following lemma in [37] shows that the 
generalized eigenvalue problem (2.2)–(2.3) has infinitely 
many solutions, although only one will suffice.

Lemma 2.1  The eigenvalue problem (2.2)–(2.3) has a non-
zero solution if and only if � ∈ M , where

(2.1)ΔX = �2
x1
+ xk−1

1
�2
x2
+ x2k

1
�2
x3
.

(2.2)u(x) = ∫
∞

0

ei�
k+1x3e

√
�x2�

(k+1)∕2

A(�x1)w(�)d�,

ΔXu(x)

= ∫
∞

0

ei�
k+1x3e

√
�x2�

(k+1)∕2

�2

�
A��(�x1) − [(x1�)

2k − �(x1�)
k−1]A(�x1)

�
w(�)d�.

(2.3)
(
−
d2

dt2
+ t2k

)
A(t) = �tk−1A(t).

(2.4)w(�) = e−�
(k+1)∕2

.
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Moreover the solution is unique up to a constant factor and 
is of the form

where B� is a polynomial which can be computed explicitly.

Now by Lemmas 2.1 and (2.4) for any � ∈ M the function

is a well defined C∞ function in the open set 
{x ∈ ℝ

3 ∶ �x2� < 1∕
√
𝜇} , and a solution to ΔXu� = 0 . It 

remains to show that u� is not analytic near the origin. For 
any j ∈ {0, 1, 2,…} we have

where C0 = ∫ ∞

0
e−�

(k+1)∕2

d� . Here we may assume that 
A�(0) ≠ 0 . Therefore

for some C > 0 and independent of j. By (2.6) u� is not ana-
lytic near 0 ∈ ℝ

3 , and this completes the proof of Theo-
rem 2.1. 	� ◻

Remark 1  The function A� corresponding to � = k is given 
by A(t) = e

−
1

k+1
tk+1 . Therefore by (2.5) the non-analytic solu-

tion corresponding to � = k takes the following explicit form

Treves Conjecture. The characteristic set of the sub-
Laplacian ΔX defined by (2.1) is symplectic, and therefore 
contains no curves orthogonal to its tangent space with 
respect to the fundamental symplectic form. This shows 
that the existence of such curves is not the deciding factor 
which distinguishes hypoellipticity from analytic regularity. 
It also shows that a necessary condition for analytic regular-
ity, conjectured by Treves [70], can not be sufficient. Next, 
we shall explain this for general sub-Laplacians. If (x, �) 
are the variables in T∗U then the principal symbol of ΔX is 
p(x, �) = X2

1
(x, �) +⋯ + X2

m
(x, �) , and its characteristic set 

is Σ = {X1(x, �) = ⋯ = Xm(x, �) = 0} . We shall assume that 

M ={� ∶ � = 2j(k + 1) + k or � = 2j(k + 1) + k + 2,

j = 0, 1, 2,…}.

A�(t) = B�(t)e
−

1

k+1
tk+1

,

(2.5)u�(x) = ∫
∞

0

ei�
k+1x3+(

√
�x2−1)�

(k+1)∕2

A�(�x1)d�,

�j
x3
u�(0) = ijA�(0)∫

∞

0

�j(k+1)e−�
(k+1)∕2

d�

= ijA�(0)
(
2j − 1 +

2

k + 1

)(
2j − 2 +

2

k + 1

)

⋯

(
1 +

2

k + 1

)
2

k + 1
C0,

(2.6)|�j
x3
u�(0)| ≥ C(2j)!,

(2.7)u(x) = ∫
∞

0

e
i�k+1x3+(

√
kx2−1)�

(k+1)∕2−
1

k+1
(�x1)

k+1

d�.

Σ is a real analytic submanifold of T∗U . We recall that Σ is 
symplectic if the restriction of the fundamental symplectic 
form

to TΣ is non-degenerate. It has been proved by Treves [70] 
and Tartakoff [68], independently, that ΔX is analytic hypoel-
liptic in U if Σ is symplectic and p vanishes to second order 
on Σ . The symplecticity of Σ does not allow the existence 
of Treves curves in it. A non-constant curve �(t) inside the 
characteristic set Σ is said to be a Treves curve for Σ if 𝛼̇ is 
orthogonal to TΣ with respect to � at every point of � . That 
is,

If k = 1 then the sub-Laplacian ΔX in Theorem 2.1 is the 
well known Baouendi-Goulaouic operator which provided 
the first counterexample to analytic regularity of a sum of 
squares operator satisfying the finite type condition [1]. In 
this case the principal symbol is p(x, �) = −(�2

1
+ �2

2
+ x2

1
�2
3
) 

and the characteristic set is Σ = {x1 = �1 = �2 = 0} . Moreo-
ver the curve �(t) = (0, t + x0

2
, x0

3
;0, 0, �0

3
), �0

3
≠ 0 , is a Treves 

curve inside Σ . In fact in all counterexamples to analytic 
hypoellipticity for the operators ΔX found in the literature 
there exists a Treves curve inside their characteristic set, [1, 
18, 19, 25, 35, 36, 39, 55, 63]. This is consistent with the 
following conjecture of Treves [70].

Treves conjecture: A necessary condition for the ana-
lytic hypoellipticity of ΔX is the following condition (T): The 
characteristic set of ΔX contains no Treves curves.

Although this conjecture remains an open problem, Theo-
rem 2.1 implies the following related result.

Corollary 2.1  Condition (T) is not sufficient for the analytic 
hypoellipticity of ΔX.

Proof  If k = 3, 5, 7,… , then the characteristic set of ΔX in 
(1.1) is Σ = {x1 = �1 = 0} . Since Σ is symplectic it does not 
contain any Treves curves. Since by Theorem  2.1 ΔX is not 
analytic hypoelliptic we conclude that condition (T) is not 
sufficient, which proves the corollary. 	�  ◻

We mention that Grigis and Sjöstrand [32] have shown 
analytic regularity for a class of operators ΔX whose char-
acteristic set is not symplectic but it does not contain any 
Treves curves. For refined versions of Treves conjecture and 
more recent results on the problem of analytic regularity for 
sub-Laplacians we refer the reader to the works by Cordaro 
and Hanges [21–24], Bove and Chinni [13, 14], Bove and 
Treves [12], Chinni [17], and the references therein.

� =

n∑

j=1

d�j ∧ dxj

𝜎(𝛼̇,Θ) = 0, ∀Θ ∈ TΣ, at every point of 𝛼.
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3 � The Cauchy–Kowalevski 
and the Ovsyannikov theorems

For a Cauchy problem (or initial value problem (ivp)) of k-th 
order in normal form, that is

the Cauchy–Kowalevski theorem reads as follows.

Theorem 3.1  (Cauchy 1842, special version—Kowalevski 
1875, general version). If G,�0,… ,�k−1 are analytic near 
the origin, then the Cauchy problem (3.1) has a unique ana-
lytic solution defined in some neighborhood of the origin.

We would like to make a few remarks concerning the 
Cauchy–Kowalevski theorem. First, it is a very general theo-
rem with a very simple proof. It consists of reducing Cauchy 
problem (3.1) to a first order quasilinear system, which in the 
case of two variables reads as the following Burgers like ivp

and then using power series yields a simpler Cauchy prob-
lem that majorizes it and which can be solved by the method 
of characteristics in a neighborhood of the origin (see, for 
example, Folland [29]). Second, it provides no informa-
tion about the analytic lifespan of the solution and about its 
radius of spatial analyticity as time evolves. Third, it does 
not apply to important evolution equation, like the KdV, the 
Schrödinger and the heat equations.

Also, a major drawback of the Cauchy–Kowalevski theo-
rem is that the data-to-solution map may be highly unstable, 
as Hadamard demonstrates it in the case of Laplacian in ℝ2 
[33], where he introduces the notion of well-posedness.

However, it can be extended so that it applies to some 
important nonlocal evolution equations, like the CH equa-
tion and the Euler equations.

Before describing this extension to nonlocal equations, 
we will recall the needed analytic spaces G�,s introduced by 
Foias and Temam [27] and which in the periodic case are 
defined as follows

while in the non-periodic case are defined as

(3.1)

{
𝜕k
t
u(x, t) = G

(
x, t, (𝜕𝛼

x
𝜕
j

tu)|𝛼|+j≤k, j<k
)
,

𝜕
j

tu(x, 0) = 𝜑j(x), 0 ≤ j < k,

(3.2)
{

�tu = a(x, u)�xu + b(x, u),

u(x, 0) = 0,

(3.3)

G𝛿,s(𝕋 )

=
�
𝜑 ∈ L2(𝕋 ) ∶ ��𝜑��2

G𝛿,s(𝕋 )
=̇��𝜑��2

𝛿,s

=
�

k∈ℤ

⟨k⟩2se2𝛿�k���𝜑(k)�2 < ∞

�
,

where 𝛿 > 0, s ≥ 0 , ⟨k⟩ =
√
1 + k2 and ⟨�⟩ =

√
1 + �2 . Here, 

when a result holds for both the periodic and non-periodic 
case then we will use the notation || ⋅ ||�,s and G�,s for the 
norm and the space in both cases.

Next, we recall an important property of a function 
� ∈ G�,s . For 𝛿 > 0 and s ∈ ℝ , it is straightforward to check 
that a function � ∈ G�,s is a restriction to the real axis of a 
function analytic on a symmetric strip of width 2�.

Definition 1  This 𝛿 > 0 is called the radius of spatial ana-
lyticity of �.

In fact, the following Paley–Wiener theorem provides an 
alternative description of G�,s (see [48]).

Theorem  3.2  (Paley–Wiener). � ∈ G�,s iff �(x) is the 
restriction to the real line of a holomorphic function 
�(x + iy) in the strip

and satisfies  sup�y�<𝛿 ‖𝜑(x + iy)‖Hs < ∞.

Next, we discus the initial value problem (ivp) of two 
simple models, one linear and one nonlinear, with data in 
G�,s.

Example 1  (The transport equation). To solve the initial 
value problem for the transport equation

where the initial datum g(x) is in G�,s using the power series 
method we find the solution

(3.4)
G𝛿,s(ℝ) =

�
𝜑 ∈ L2(ℝ) ∶ ��𝜑��2

G𝛿,s(ℝ)
=̇��𝜑��2

𝛿,s

= ∫
ℝ

⟨𝜉⟩2se2𝛿�𝜉���𝜑(𝜉)�2d𝜉 < ∞

�
,

S𝛿 = {x + iy ∶ |y| < 𝛿},

(3.5)
{

ut + cux = 0

u(x, 0) = g(x),
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which has the following properties:

•	 It exists for all time, i.e., its lifespan is infinite (solution 
is global).

•	 It is analytic in both the space and the time variables.
•	 At any time t it extends holomorhically to the same strip 

S� , i.e., its radius of spatial in analyticity persists!

Example 2  (The inviscid Burgers equation). Also, the 
Cauchy–Kowalevski theorem applies for the (inviscid) Burg-
ers equation ivp

where the initial datum g(x) is in G�,s , which by Theorem 3.2 
means that it is analytic on ℝ and can be extended as a holo-
morphic functions in the strip

Using the power series method we see that the solution has 
following properties:

•	 The solution may exist only for finite time T, i.e., 
0 ≤ t < T .

•	 It is analytic in both the space and the time variables.
•	 The radius of spatial analyticity may shrink as time t goes 

on.

We note that in both examples above, the solution can be 
found with the method of characteristics.

3.1 � Autonomous Ovsyannikov theorem

We consider the following initial value problem for a nonlo-
cal autonomous equation

and prove existence and uniqueness of solution in a space 
of analytic functions under appropriate conditions on F(u), 
which is defined on a scale of Banach spaces. Furthermore, 
we prove an estimate for the analytic lifespan. The motiva-
tion comes from the 2003 work in [40] about the Cauchy 

u(x, t) =

∞∑

k=0

�k
t
u(x, 0)

k!
tk

=

∞∑

k=0

g(k)(x)

k!
(−ct)k = g(x − ct),

(3.6)
{

ut + uux = 0

u(x, 0) = g(x),

S𝛿 = {z = x + iy ∈ ℂ ∶ |Imz| < 𝛿}.

(3.7)
du

dt
= F(u), u(0) = u0,

problem of the Camassa–Holm (CH) equation with analytic 
initial data on the circle 𝕋 = ℝ∕(2�ℤ),

There it was proved the following Cauchy–Kowalevski type 
result for CH. If u0(x) is analytic on �  , then there exist an 
𝜀 > 0 and a unique solution u(x, t) of the CH Cauchy prob-
lem (3.8), which is analytic on (−�, �) × � .

While this result provides the analyticity of the solution 
in both the spatial and time variables (a phenomenon which 
does not hold for KdV, see [47] and [30]) it gives no estimate 
about the size of the analytic lifespan � . Also, it provides no 
information about the evolution of the uniform radius of ana-
lyticity. Considering these to be important questions for CH 
and other nonlocal equations and systems, we shall discuss 
them here on both the circle and the line. Furthermore, we 
will study the stability of their solution map.

To do this in a unified way we shall need a refined version 
of the so called Ovsyannikov theorem in the autonomous 
case, that is the function F depends only on u.

Hypothesis of Ovsyannikov theorem. First we state the 
hypothesis of the autonomous Ovsyannikov theorem. 

1.	 {X𝛿}0<𝛿≤1 is a scale of decreasing Banach spaces, i.e., 

2.	 F ∶ X� → X�� is a function such that for any given 
u0 ∈ X1 and R > 0 there exist L and M positive numbers, 
depending on u0 and R, such that for any 0 < 𝛿′ < 𝛿 ≤ 1 
and all u, v ∈ X� with ‖u − u0‖𝛿 < R and ‖v − u0‖𝛿 < R 
we have the following “Lipschitz condition” 

 and 

3.	 For 0 < 𝛿′ < 𝛿 < 1 and a > 0 , if the function t ⟼ u(t) 
is holomorphic on {t ∈ ℂ ∶ |t| < a(1 − 𝛿)} with values 
in X� and sup�t�<a(1−𝛿) ‖u(t) − u0‖𝛿 < R , then the function 
t ⟼ F(u(t)) is holomorphic on {t ∈ ℂ ∶ |t| < a(1 − 𝛿)} 
with values in X�′.

Next, we state an autonomous version of Ovsyannikov theo-
rem, which as we mentioned earlier in addition to existence 
and uniqueness provides an estimate about the analytic lifes-
pan of the solution.

(3.8)
du

dt
= −u�xu −

(
1 − �2

x

)−1
�x
[
u2 +

1

2
(�xu)

2
] ≐ F(u)

u(0) = u0 ∈ C�(� ).

X𝛿 ⊂ X𝛿′ , || ⋅ ||𝛿′ ≤ || ⋅ ||𝛿 , 0 < 𝛿′ < 𝛿 ≤ 1.

(3.9)‖F(u) − F(v)‖�� ≤ L

� − ��
‖u − v‖� ,

(3.10)||F(u0)||𝛿 ≤ M

1 − 𝛿
, 0 < 𝛿 < 1.
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Theorem 3.3  (Baouendi–Goulaouic [2], improved in [3]). 
Assume that the scale of Banach spaces X� and the function 
F(u) satisfy the above conditions (1)–(3). For given u0 ∈ X1 
and R > 0 set

Then there exists a unique solution u(t) to the Cauchy prob-
lem (3.7), which for every � ∈ (0, 1) is a holomorphic func-
tion in the disc D(0,T(1 − �)) valued in X� satisfying

Remark 2  The novelty in Theorem 3.3 is that it contains 
estimate (3.11) for the analytic lifespan of the solution u(t). 
A slightly more general version of Theorem 3.3, where 
F = F(u, t) but no estimate on T, was proved by Baouendi 
and Goulaouic [2], Ovsyannikov [59], Nirenberg [56], 
Nishida [57], and Treves [69].

3.2 � The Cauchy problem for CH with analytic 
initial data

By using our autonomous version of Ovsyannikov theorem 
we are going to present our result about the Cauchy problem 
for the Camassa-Holm equation. For this we use the spaces 
G

𝛿,s

0<𝛿≤1 . It is easily seen that they form a scale of decreasing 
Banach spaces like the spaces X� in the autonomous Ovsyan-
nikov theorem for

Also, these spaces and F(u) satisfy condition (1) and (3) 
in the autonomous Ovsyannikov theorem. Furthermore, in 
order to obtain the analytic lifespan for the solution to the 
Cauchy problem for the CH we need good estimates.

For this we begin with the properties of the G�,s and the 
estimates needed to prove the three conditions of the autono-
mous Ovsyannikov theorem. These are listed in the follow-
ing lemma whose proof is straightforward and is omitted.

Lemma 3.1  If 0 < 𝛿′ < 𝛿 ≤ 1 , s ≥ 0 and � ∈ G�,s on the 
circle or the line, then

(3.11)T =
R

16LR + 8M
.

(3.12)sup
�t�<T(1−𝛿)

‖u(t) − u0‖𝛿 < R, 0 < 𝛿 < 1.

(3.13)
du

dt
= F(u) = (1 − �2

x
)−1[−3uux + 2uxuxx + uuxxx],

u(0) = u0.

(3.14)||�x�||��,s ≤ e−1

� − ��
||�||�,s

(3.15)||�x�||�,s ≤ ||�||�,s+1

(3.16)||(1 − �2
x
)−1�||�,s+2 = ||�||�,s

Furthermore, we shall need an algebra property for these 
spaces, which is the main result in the following lemma.

Lemma 3.2  ([4] Lemma 4). For � ∈ G�,s on the circle or 
the line the following properties hold true:

(1)	 If 0 < 𝛿′ < 𝛿 and s ≥ 0 , then || ⋅ ||2
�′,s

≤ || ⋅ ||2
�,s

 ; i.e. 
G�,s

↪ G�′,s.
(2)	 If 0 < s′ < s and 𝛿 > 0 , then || ⋅ ||2

�,s′
≤ || ⋅ ||2

�,s
 ; i.e. 

G�,s
↪ G�,s′.

(3)	 For s > 1∕2 and �,� ∈ G�,s we have

where cs =
�

2(1 + 22s)
∑∞

k=0

1

⟨k⟩2s  in the periodic case and 

cs =
�

2(1 + 22s) ∫ ∞

0

1

⟨�⟩2s d� in the non-periodic case.
Now we are ready to describe the proof of the following 

important result that provides the desired analytic lifespan T.

Theorem 3.4  ([3]). Let s > −
1

2
 . If u0 ∈ G1,s+2 on the circle 

or the line, then there exists a positive time T, which depends 
on the initial data u0 and s, such that for every � ∈ (0, 1) , 
the Cauchy problem (3.13) has a unique solution u which 
is a holomorphic function in the disc D(0,T(1 − �)) valued 
in G�,s+2 . Furthermore, the analytic lifespan T satisfies the 
estimate

Proof  We need only to prove the condition (2) in the autono-
mous Ovsyannikov theorem. We start by recalling that the 
CH equation can be written in the following form

Applying Lemma 3.1 and the triangle inequality we get

Also, applying the algebra property (3.19) and inequality 
(3.15) we get the estimates

(3.17)||(1 − �2
x
)−1�||�,s ≤ ||�||�,s

(3.18)||�x(1 − �2
x
)−1�||�,s ≤ ||�||�,s.

(3.19)||��||�,s ≤ cs||�||�,s||�||�,s,

(3.20)T ≈
1

||u0||G1,s

.

(3.21)

du

dt
=F(u)=̇ − 𝜕x
(
1

2
u2 +

(
1 − 𝜕2

x

)−1[
u2 +

1

2
(𝜕xu)

2
])
.

||F(u) − F(v)||��,s+2

≤ e−1

� − ��(
1

2
||u2 − v2||�,s+2 + ||u2 − v2||�,s

+
1

2
||(�xu)2 − (�xv)

2||�,s
)
.
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Finally, bounding ||u + v||�,s+2 as follows

and combining the above three inequalities gives the desired 
estimate (3.9) with

where cs is given in Lemma 3.2
Next we prove (3.10) for CH. Using the properties of our 

scale of Banach spaces G�,s stated in Lemmas 3.1 and 3.2 for 
0 < 𝛿′ < 𝛿 ≤ 1 we have

Combining these we get the inequality

which, by replacing �′ by � and � by 1, gives the desired 
estimate (3.10), with

Now, we are ready to complete the proof of Theorem 3.4. 
For any u0 in G1,s+2 and R > 0 , according to (3.24) and (3.25) 
and thanks to Theorem 3.3 we have

where C = 4e−1cs and there exists a unique solution u(t) to 
the Cauchy problem (3.13), which for every � ∈ (0, 1) is a 
holomorphic function in D(0,T(1 − �)) → G�,s+2 and

Thus, by letting R = ||u0||1,s+2 we obtain

(3.22)
||u2 − v2||�,s ≤ ||u2 − v2||�,s+2

≤ cs||u − v||�,s+2||u + v||�,s+2,

(3.23)
||(�xu)2 − (�xv)

2||�,s = ||�x(u − v)�x(u + v)||�,s
≤ cs||u − v||�,s+2||u + v||�,s+2.

||u + v||�,s+2 ≤ ||u − u0||�,s+2 + ||v − u0||�,s+2
+ 2||u0||�,s+2 ≤ 2(R + ||u0||1,s+2)

(3.24)L = 4e−1cs(R + ||u0||1,s+2),

||�x(u20)||��,s+2 ≤
e−1cs||u0||2�,s+2

� − ��
,

||�x(1 − �2
x
)−1(u2

0
)||��,s+2 ≤

e−1cs||u0||2�,s+2
� − ��

,

||�x(1 − �2
x
)−1(�xu0)

2||��,s+2 ≤
e−1cs||u0||2�,s+2

� − ��
.

||F(u0)||��,s+2 ≤
2e−1cs||u0||2�,s+2

� − ��
,

(3.25)M = 2e−1cs||u0||21,s+2.

(3.26)
T =

R

16LR + 8M

=
R

16C(R + ||u0||1,s+2)R + 4C||u0||21,s+2
,

(3.27)sup
�t�<T(1−𝛿)

‖u(t) − u0‖𝛿,s+2 < R.

This completes the proof of Theorem 3.4. 	�  ◻

Estimate (3.20) besides being interesting on its own 
merit, it is also the key ingredient for proving continuity for 
the solution map. More precisely, for the CH equation we 
have the following important result.

Theorem 3.5  If s > −
1

2
 , then the data-to-solution map 

u(0) ↦ u(t) of the Cauchy problem (3.13) for the CH equa-
tion is continuous from G�,s+2 into the solutions space.

3.3 � Global analytic CH solutions and the evolution 
of the uniform radius of analyticity.

Here, we consider the Cauchy problem for the Cama-
ssa–Holm (CH) equation on the line

and study the problem of analyticity of the smooth solu-
tions for initial data u0(x) that are analytic on the line and 
can be extended as holomorphic functions in a strip around 
the x-axis. Under the condition that the McKean quantity 
(1 − �2

x
)u0(x) (see [53, 54]) does not change sign we obtain 

explicit lower bounds on the radius of spatial analyticity 
r(t) at any time t ≥ 0 . We recall that the Cauchy problem 
for the CH equation is globally well-posed for initial data in 
H∞(ℝ) =

⋂
s≥0 Hs(ℝ) and satisfying the McKean condition 

(see, e.g., [5, 64]). Furthermore, under the above analytic-
ity assumption on initial data, it has been shown in [5] that 
the solution to the CH Cauchy problem is globally analytic 
in x ∈ ℝ , t ≥ 0 , and a lower bound of double exponential 
decay was derived for the radius of space analyticity at later 
times. More precisely, the lower bound for r(t) is of the form 
L3 exp(−L1 exp(L2t)) , where L1, L2 and L3 are appropriate 
positive constants.

More recently we improved the double exponential decay 
above by replacing it with a single exponential. In order 
to do this we shall need the following spaces of analytic 
functions, which were first introduced by Kato and Masuda 
(see [47]). For each r > 0 , we define A(r) to be the set of all 
real-valued functions f that can be extended analytically in 
the strip S(r) of width 2r around the x-axis in the complex 
plane and also belong in L2(S(r�)) for every 0 < r′ < r . More 
precisely, we have

(3.28)T =
e

144cs
⋅

1

||u0||1,s+2
.

(3.29)

{
ut = −u�xu − �x(1 − �2

x
)−1

[
u2 +

1

2
(�xu)

2
]

u(x, 0) = u0(x), x ∈ ℝ, t ≥ 0,

(3.30)
A(r) ≐ {f ∶ ℝ → ℝ ∶ f (z) is analytic in S(r)}

∩ {f ∶ f ∈ L2(S(r�)) for all 0 < r� < r},
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where S(r) = {z ∈ ℂ ∶ −∞ < Re z < ∞,−r < Im z < r} . 
Also, we note that A(r) is a Fréchet space with these L2(S(r�))
-norms as the generating system of seminorms.

We would like to point out that the topology that we are 
going to use on A(r) was set by Kato and Masuda in [47]. 
More precisely, in [47] they used the following set of norms

where ‖ ⋅ ‖s denotes the standard Sobolev norm. Further-
more, we note that the space A(r) is a Fréchet space with the 
set of norms {‖ ⋅ ‖�,s} , e𝜎 < r, s ≥ 0 . The equivalence of the 
set of norms (3.31) to the previous ones given in the defini-
tion of the spaces A(r) is proved in the following key lemma.

Lemma 3.3  (See Lemma 2.2 in [47]). If f ∈ A(r) then 
‖f‖𝜎,s < ∞ for any � , with e𝜎 < r , and s ≥ 0 . Conversely, if 
f ∈ H∞(ℝ) satisfies ‖f‖𝜎,s < ∞ for some s ≥ 0 and for each 
e𝜎 < r then f ∈ A(r).

Now, we are ready to state our improved lower bound for 
the radius of space analyticity for CH.

Theorem 3.6  ([42]). Let u0 ∈ G𝛿0,𝜃(ℝ), 𝛿0 > 0, 𝜃 >
3

2
 . Also, 

assume that the McKean quantity m0(x) = (1 − �2
x
)u0(x) does 

not change sign so that the Cauchy problem (3.29) has a 
unique global solution u ∈ C([0,∞);H∞(ℝ)) . Then, for 
every time t the solution u(t, ⋅) has an analytic continuation 
that belongs to the space A(�(t)) with 𝛿(t) > 0 . Furthermore, 
for any time T ≥ 0 we have the following lower bound for the 
radius of space analyticity r(t)

where A ≥ 1 , B ≥ 9

4
||u0||H5(ℝ) , C0,C1 are positive constants 

and T is a given positive number.

For the proof of Theorem 3.6 we refer the reader to [42]. 
It has been motivated by the work of Kukavica and Vicol on 
the Euler equations [51] and [52].

Open question. Is the single exponential decay estimate 
(3.32) for CH optimal?

4 � The periodic BBM equation with analytic 
data

Here we consider the Cauchy problem for the periodic Ben-
jamin-Bona-Mahony (BBM) equation

(3.31)
‖f‖2

𝜎,s
=

∞�

j=0

1

j!2
e2j𝜎‖𝜕j

x
f‖2

s
,

0 < e𝜎 < r, s ≥ 0,

(3.32)
r(t) ≥ 𝛿(t)=̇A−1(1 + C1Bt)

−1 exp{−C0||u0||H1(� )t},

t ∈ [0, T],

with data in G�,s(� ) and discuss the analyticity properties 
of its solution, following our recent work in [43]. The BBM 
or regularized long-wave equation was derived in [6] and 
[61] as a model for the unidirectional propagation of long-
crested, surface water waves. It is an alternative to the clas-
sical Korteweg-de Vries equation (see [11] and [50])

If the initial data belong in a Sobolev space Hs , s ≥ 0 , then 
it has been shown by Bona and Tzvetkov [8] that the Cauchy 
problem for the BBM equation is globally well-posed. On 
the other hand, Panthee [60] has shown that the BBM equa-
tion is ill-posed for initial data that belong in Hs , s < 0.

The main result to be discussed here is about global solu-
tions to the BBM Cauchy problem with initial data in G�,s , 
and the evolution of the uniform radius of spatial analyticity. 
It reads as follows.

Theorem  4.1  ([43]). For u0 ∈ G�0,s(� ) with 𝛿0 > 0 and 
s ≥ 0 , the Cauchy problem (4.1) has a global in time solu-
tion u(t) such that for any T > 0 we have

with 𝛿(T) > 0 . Furthermore, the radius of spatial analyticity 
r(T) satisfies the lower bound estimate

We mention that for the non-periodic Cauchy problem of 
the BBM equation with analytic initial data, Bona and Grujić 
[7] have proved that the radius of spatial analyticity r(t) sat-
isfies the lower bound estimate r(t) ≥ c0(r

−1
0

+ t + t2∕3)−1 , for 
all t ≥ 0 and some c0 > 0.

The proof of this result is done in two steps. In the first 
step we study the BBM by viewing it as an ODE on G�,s(� ) 
and applying a simpler version of a method developed for the 
Cauchy problem of the Camassa-Holm equation with data in 
an analytic space (see [3]). This way we obtain a local solu-
tion whose uniform radius of analyticity persists during its 
lifespan, which is given explicitly. The second step consist 
of deriving an approximate conservation law, which is based 
on the fact the H1 norm is conserved by BBM solutions. 
This provides a certain control on the growth of the G�,s(� )

-norm of the solution u(t) at time t which allows us to extend 
the solution for all times in G�(t),s(� ) if �(t) is chosen as in 
(4.4). This strategy is motivated by the recent advances in 
the study of the KdV equation on the line [65] and the circle 
[44], as well as the quartic generalized KdV equation on the 

(4.1)
{

�tu + �xu + u�xu − �2
x
�tu = 0,

u(0, x) = u0(x), t ∈ ℝ, x ∈ 𝕋 ,

(4.2)�tu + �xu + u�xu + �3
x
u = 0.

(4.3)u ∈ C�
(
[−T , T],G�(T),s(� )

)

(4.4)
r(T) ≥ 𝛿(T) = min{𝛿0, cT

−1}, T > 0, where

c = c(u0, 𝛿0, s) > 0.



Complex Analysis and its Synergies (2020) 6:15	

1 3

Page 9 of 16  15

line [67] and the modified Kawahara equation on line [62] 
(see also [66] where the 1-D Dirac–Klein–Gordon equation 
is considered). In these works Bourgain type spaces are used 
to prove the local existence of solution and also to obtain an 
approximate conservation law in G�,s spaces. For example, 
in the case of the KdV this approximate conservation law 
is based on the fact that its solutions conserve the L2-norm 
and that the KdV bilinear estimates in Bourgain spaces hold 
for s > −

3

4
 on the line, and for s > −

1

2
 on the circle (see [10, 

20, 49]). For the uniform radius of spatial analyticity r(t), 
these yield the asymptotic lower bound of r(t) ≥ c�t

−
4

3
−� on 

the line, and r(t) ≥ ct−2 on the circle. Finally, it is worth 
mentioning that in the case of the Camassa–Holm equation 
(another nonlocal equation) it is proved in [42] that its radius 
of spatial analyticity r(t) satisfies the asymptotic lower 
bound of r(t) ≥ ce−bt for some positive constants b and c.

4.1 � An abstract ODE Theorem and local BBM 
solutions

We begin by writing the BBM equation in the following 
nonlocal form

To prove that BBM in this form is an ODE on the Hilbert 
space G�,s(� ) with 𝛿 > 0 and s ≥ 0 , we need the following 
two estimates:

where c2
s
= 2s

(
1 +

�2

3

)
 , and

where �,� ∈ G�,s(� ) with 𝛿 > 0 and s ≥ 0.
Using these two properties we see that the BBM 

equation in its nonlocal form (4.5) is an ordinary dif-
ferential equation (ODE) on the Hilbert space G�,s(� ) , 
if s ≥ 0 and � ≥ 0 . More precisely, if u ∈ G�,s(� ) then 
F(u)=̇ −

(
1 − 𝜕2

x

)−1
𝜕x
[
1

2
u2 + u

]
∈ G𝛿,s(� ).

The existence and uniqueness of solution for the BBM 
Cauchy problem (4.5) will follow from solving the following 
more general Cauchy problem

where the space G�,s(� ) is replaced by a Banach space 
(X, || ⋅ ||X) and the function F has the following properties. 

1.	 F ∶ X ⟼ X  is a function such that for any given 
u0 ∈ X and R > 0 there exist L and M positive numbers, 

(4.5)

{
du

dt
= F(u)=̇ −

(
1 − 𝜕2

x

)−1
𝜕x

[
1

2
u2 + u

]

u(0) = u0(x) ∈ G𝛿,s(� ).

(4.6)||(1 − �2
x
)−1�x(��)||�,s ≤ cs||�||�,s||�|||�,s,

(4.7)||(1 − �2
x
)−1�x�||�,s ≤ ||�||�,s,

(4.8)

{
du

dt
= F(u)

u(0) = u0 ∈ X,

depending on u0 and R, such that for all u, v ∈ X with 
‖u − u0‖X < R and ‖v − u0‖X < R we have 

 and 

2.	 For T > 0 , if the function t ⟼ u(t) is holomor-
phic on {t ∈ ℂ ∶ |t| < T} with values in X and 
sup�t�<T ‖u(t) − u0‖X < R , then the function t ⟼ F(u(t)) 
is holomorphic on {t ∈ ℂ ∶ |t| < T} with values in X.

For the more general abstract ODE Cauchy problem (4.8) 
we have the following result.

Theorem 4.2  Assume that the space X and the function 
F satisfy the properties (1) and (2) above. For given data 
u0 ∈ X and R > 0 set

Then there exists a unique solution u(t) to the Cauchy 
problem (4.8) which is a holomorphic function on the disc 
D(0, T) valued in X satisfying

Proof  Its proof follows the lines of the proof of the 
autonomous Ovsyannikov theorem, with the appropriate 
simplifications.

Next, applying the abstract ODE Theorem 4.2 to the 
Cauchy problem (4.8) for the nonlocal BBM, we obtain the 
following local well-posedness result.

Theorem 4.3  Let s ≥ 0 , 𝛿 > 0 and u0 ∈ G�,s(� ) . Then there 
exists a lifespan T�,s = T�,s(||u0||�,s) given by the formula

such that the periodic Cauchy problem for BBM (4.5) has a 
unique solution u in the space

where |w|T𝛿,s = sup|t|≤T𝛿,s ||w(t)||𝛿,s < ∞ , satisfying the fol-
lowing estimate

The constant cs in the lifespan is as in (4.6), that is 
c2
s
= 2s

(
1 +

�2

3

)
.

(4.9)‖F(u) − F(v)‖X ≤ L‖u − v‖X ,

(4.10)||F(u0)||X ≤ M.

(4.11)T ≐ R

RL + 2M
.

(4.12)sup
|t|<T

||u(t) − u0||X < R.

(4.13)T�,s =
1

3(1 + cs||u0||�,s)
,

(4.14)
ET𝛿,s

=̇{H(|t| ≤ T𝛿,s;G
𝛿,s(� )) ∶ |u − u0|T𝛿,s

≤ ||u0||𝛿,s
2

},

(4.15)||u(t)||�,s ≤ 2||u0||�,s, for 0 ≤ t ≤ T�,s.
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This way we obtain a local solution whose uniform radius 
of spatial analyticity persists during its lifespan, which is 
given explicitly by (4.13).

4.2 � Approximate conservation law

We start by recalling that solutions u(t) to the BBM equation 
conserve the H1 norm, that is

We now state an approximate conservation law for the BBM 
equation in G�,1(� ) space, which for � = 0 gives the H1 con-
servation law (4.16) just presented above.

Theorem 4.4  Fix � ∈ (0, 1] . For u0 ∈ G�,1(� ) , 𝛿 > 0 , let 
u ∈ C�([−T�,1, T�,1],G

�,1(� )) be the local solution of (4.1) 
obtained in Theorem 4.3. Then, for 0 < 𝜌 ≤ T𝛿,1 we have that

Applying the size estimate (4.15) for the solution, that is 
supt∈[0,�] ||u(t)||�,1 ≤ 2||u(0)||3

�,1
 , we obtain the following key 

corollary, since 0 < 𝜌 ≤ T𝛿,1 ≤ 1.

Corollary 4.1  Under the assumptions of Theorem 4.4 we 
have the following almost conservation law

Outline of Proof of Theorem 4.4  Defining the function U by 
U=̇e𝛿|Dx|u or Û(t, �) = e�|�|û(t, �) , where u is the real-valued 
solution to our BBM Cauchy problem described in the state-
ment of Theorem 4.4, we see that first U is a real-valued 
function, and second U is a solution to the inhomogeneous 
BBM equation

Since ||U(t)||2
H1(� )

= ||u(t)||2
�,1

 , using equation (4.19) and 
integration by parts we find that

Integrating (4.20) over [0, t] with 0 ≤ t ≤ T�0,1 , and using the 
last equality we obtain

(4.16)||u(t)||2
H1(� )

≐ �
�

[u2(t) + u2
x
(t)]dx = ||u(0)||2

H1(� )
.

(4.17)

sup
t∈[0,�]

||u(t)||2
�,1

≤ ||u(0)||2
�,1

+ C��
�� sup

t∈[0,�]

||u(t)||3
�,1
,

where C� = 4�+1
(
1 +

�2

3

)1∕2

.

(4.18)
sup
t∈[0,�]

||u(t)||2
�,1

≤ ||u(0)||2
�,1

+ L��
�||u(0)||3

�,1
,

where L� = 23C� .

(4.19)
�tU + �xU + U�xU − �2

x
�tU = F, where

F ≐ 1

2
�x
[
U2 − e�|Dx|(u2)

]
.

(4.20)
d

dt
||U(t)||2

H1(� )
= 2∫

�

UFdx.

Then, estimating the term ∫
�
UFdx appropriately (see [43]) 

we get the inequality

which combined with (4.21) gives the desired almost 
approximation law (4.17). 	� ◻

4.3 � Outline of the proof of Theorem 4.1 for s = 1

The general case s ≥ 0 and s ≠ 1 follows from the case s = 1 
by exploiting the relations in of G�,s spaces. Also, by a simple 
change of variables we can assume t ≥ 0 . So, for given data 
u0 ∈ G�0,1(� ) with 𝛿0 > 0 , applying Theorem 4.3 (restricted 
to t ≥ 0 ), it gives a unique solution u ∈ C�([0, T�0,1];G

�0,1(� )) 
to the Cauchy problem (4.1) satisfying the size estimate

where T�0,1 is the following estimate for the lifespan

Next, we define the maximal lifespan by

and distinguish two possible cases. The first case is T∗ = ∞ , 
which means that u ∈ C�([0,∞);G�0,1(� )) and thus we have 
persistence of the uniform radius of spatial analyticity of 
u(t) for all time. That is

which proves Theorem 4.1 in this case. The second case is 
T∗ to be finite, which means u ∈ C�([0, T∗);G�0,s(� )) and

Now, taking enough time-steps of length �∗ we can arrive 
at any T ≥ T∗ . More precisely, there is a positive integer n 
(namely the integer part of T∕�∗ ) such that

(4.21)||u(t)||2
�,1

= ||u(0)||2
�,1

+ 2∫
t

0 ∫
�

UFdxdt�.

(4.22)2
|||�

�

UFdx
||| ≤ 4�+1��

(
1 +

�2

3

)1∕2

||u||3
�,1
,

(4.23)||u(t)||�0,1 ≤ 2||u0||�0,1, 0 ≤ t ≤ T�0,1,

(4.24)T�0,1 =
1

3(1 + c1||u0||�0,1)
.

(4.25)
T∗=̇ sup{T𝛿0,1 ∶ u ∈ C𝜔([0, T𝛿0,1];G

𝛿0,1(� ))

solves (4.1)&satisfies (4.23)},

(4.26)r(T) = 𝛿0, for all T > 0,

(4.27)

∞ >T∗ ≥ T𝛿0,s =
1

3(1 + cs||u0||𝛿0,s)

>
1

3(1 + 2cs||u0||𝛿0,1)
= 𝜌∗.

n𝜌∗ ≤ T < (n + 1)𝜌∗.
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Now, if � satisfies the following size conditions

then applying induction on k ∈ {1, 2,… , n + 1} , with the 
first step being the almost conservation law, after n + 1 steps 
we arrive at the estimate

In other words we prove the implication

Since n𝜌∗ ≤ T < (n + 1)𝜌∗ we have that

Therefore, the second �-size condition (4.28) holds if we 
chose � to satisfy the condition

Furthermore, since [0, T] ⊂ [0, (n + 1)𝜌∗] , from (4.30) and 
(4.31) we conclude that if 0 < 𝛿 ≤ 𝛿0 and 0 < 𝛿 ≤ cT

−
1

𝜃 then 
u ∈ C�([0, T],G�,1(� )) . Choosing the biggest � satisfying 
both conditions gives

which proves Theorem 4.1 in the case s = 1 . 	�  ◻

Open question: Is the estimates r(t) ≥ ct−1 optimal for 
the periodic BBM equation?

5 � The KdV Cauchy problem with analytic 
initial data

Here, we discuss analyticity properties in the spatial and 
time variables for solutions to the Cauchy problem of the 
periodic Korteweg–de Vries equation with analytic initial 
data.

5.1 � Analyticity in spatial variable

We begin by presenting a lower bound estimate for the uni-
form radius of spatial analyticity following [44].

(4.28)0 < 𝛿 ≤ 𝛿0 and (n + 1)L𝜃𝛿
𝜃2

3

2 ||u(0)||𝛿0,1 ≤ 1,

(4.29)sup
t∈[0,(n+1)�∗]

||u(t)||2
�,1

≤ 2||u(0)||2
�0,1

.

(4.30)
0 < 𝛿 ≤ 𝛿0 and (n + 1)L𝜃𝛿

𝜃2
3

2 ||u(0)||𝛿0,1 ≤ 1 ⟹

u ∈ C𝜔([0, (n + 1)𝜌∗],G𝛿,1(� )).

n + 1 ≤ T

𝜌∗
+ 1 <

T

𝜌∗
+

T

𝜌∗
=

2T

𝜌∗
.

(4.31)

2T

�∗
L��

�2
3

2 ||u(0)||�0,1 ≤ 1 ⟺ � ≤ cT
−

1

�

where c =
( �∗

2L�2
3∕2||u(0)||�0,1

) 1

� .

(4.32)
u ∈ C𝜔

(
[0, T],G𝛿(T),1(� )

)
with

𝛿(T) = min{𝛿0, cT
−

1

𝜃 }, T > 0.

Theorem 5.1  ([44]). If 𝛿0 > 0 , s ≥ −1∕2 , � ∈ G�0,s(� ) real-
valued, then for any T > 0 the solution to ivp

satisfies u ∈ C
(
[−T , T];G�(T),s(� )

)
 where

We mention that on ℝ a decay like t−12 was proved by 
Bona-Grujić-Kalisch [9], and like t−(

4

3
+�) it was by Selberg-

Silva [65].
The proof of Theorem 5.1 is based on a local analyticity 

result proved in [41], and an almost L2-conservation law 
proved in [44]. We begin with the local well-posedness in 
G�,s(� ) spaces.

Theorem 5.2  ([41]). Given 𝛿 > 0 and s ≥ −
1

2
 , then for any 

u0 ∈ G�,s(� ) , that is

there exists a time T0 = T0(
‖‖u0‖‖G𝛿,s(� )

) > 0 and a solution 
u ∈ C

(
[−T0, T0];G

�,s(� )
)
 of the Cauchy problem (5.1). 

Moreover,

for some constants a, c0 > 0 depending only on s. Also, we 
have

for some constant C > 0 depending only on s.

The proof of local well-posedness is based on bilinear 
estimates in Bourgain space Xs,b on 𝕋 ×ℝ , defined by the 
norm

where ⟨k⟩ =
√
1 + k2 and û(k, �) is the Fourier transform

(5.1)

{
�tu + �3

x
u + u�xu = 0,

u(x, 0) = �(x),

(5.2)
r(T) ≥ 𝛿(T) = min

{
𝛿0,

c

T2

}
, with

c = c(𝜑, 𝛿0, s) > 0.

��u0��G𝛿,s(𝕋 )
= ��u0��𝛿,s =

��

k∈ℤ

e2𝛿�k�⟨k⟩2s��u0(k)�2
�1∕2

< ∞,

T0 =
c0(

1 + ‖‖u0‖‖G�,s(� )

)a

sup
�t�≤T0

��u(⋅, t)���,s ≤ 2C‖u(0)‖�,s

‖u‖Xs,b =

�
�

k∈ℤ
∫
ℝ

⟨k⟩2s⟨� − k3⟩2b�û(k, �)�2 d�
�1∕2

,

û(k, �) =
1

2� ∫
ℝ
∫
𝕋

e−i(kx+�t)u(x, t) dx dt

(k ∈ ℤ, � ∈ ℝ).
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Following [20], we iterate in the norms

where the inclusion of the last term ensures that 
Ys

↪ C(ℝ;Hs(𝕋 )) . The nonlinearity is then estimated in the 
norm

We will also use the corresponding spaces X�,s,b , Y�,s and 
Z�,s , where u is replaced by U = e�|Dx|u in the definition of 
the norm. Thus, Y�,s

↪ C(ℝ;G�,s(𝕋 )) . We denote by Y�,s

I
 the 

restriction to a time interval I, defined by the norm

where Int(I) is the interior of I. The restriction Z�,s

I
 is simi-

larly defined.
The next ingredient for deriving the lower bound (5.2) 

for the uniform radius of spatial analyticity for KdV is the 
following almost conservation in G�,0(� ) , which is based on 
the L2 concervation law

Theorem 5.3  (Almost conservation law). Given 𝛿 > 0 and 
u0 ∈ G�,0(� ) , let u ∈ C([−�, �];G�,0(� )) be the local solution 
obtained in theorem above (with s = 0). Then

for some constant C > 0.

Remark 3  Observe that the conservation index s = 0 is well 
above the critical local well-posedness index s = −1∕2.

We recall that ∫
ℝ
u2(x, t) dx is conserved for a KdV solu-

tion u, since

Next we define the (real-valued) function

‖u‖Ys = ‖u‖Xs,1∕2 +

�
�

k∈ℤ

⟨k⟩2s
�

∫
ℝ

�û(k, �)� d�
�2

�1∕2

,

‖u‖Zs = ‖u‖Xs,−1∕2 +

�
�

k∈ℤ

⟨k⟩2s
�

∫
ℝ

�û(k, �)�
⟨� − k3⟩

d�

�2
�1∕2

.

‖u‖Y�,s
I

= inf
�
‖v‖Y�,s ∶ v ∈ Y�,s, v = u onT × Int(I)

�
,

∫
�

u2(t)dx = ∫
�

u2(0)dx.

(5.3)sup
|t|≤�

||u(t)||2
�,0

≤ ||u(0)||2
�,0

+ C�1∕2||u(0)||3
�,0

(5.4)

1

2

d

dt ∫�

u2dx

= ∫
�

u�tu dx = −∫
�

u�3
x
u dx − ∫

�

u2�xu dx

=
1

2 ∫
�

�x(�xu�xu)dx −
1

3 ∫
�

�x(u
3) dx = 0.

Since u satisfies KdV, we see that U satisfies the forced KdV

where

Doing for U similar L2-conservation computations we get

Integrating in time from 0 to t ∈ [0, T] , we get

Now applying the Cauchy–Schwarz inequality we can get

And, using the KdV bilinear estimates, which hold for 
s ≥ −

1

2
 , we get

Also, using the solution size estimate from the local theo-
rem, we get

Finally, the above relations and letting T = � , we get the 
almost conservation law

Outline of main theorem proof for s = 0  ( t ≥ 0 ). Denote 
by T∗ the maximal lifespan for which the solution corre-
sponding to the initial data u0 ∈ G�0,0(� ) remains in G�0,0(� ) . 
If T∗ = ∞ then r(t) = �0 and we are done. Otherwise,

Now, for any given T > T∗ there is n ∈ ℕ such that

(5.5)
U ≐ e��Dx�u, which gives ‖U(t)‖2

L2(� )
= ‖u(t)‖2

G�,0(� )
.

�tU + �3
x
U + U�xU = F,

F =
1

2
�x
(
(e�|Dx|u) ⋅ (e�|Dx|u) − e�|Dx|(u ⋅ u)

)
.

(5.6)
1

2

d

dt ∫�

U2dx = ∫
�

UFdx.

(5.7)

‖u(t)‖2
G�,0(� )

≤ ‖u(0)‖2
G�,0(� )

+ 2
������

t

0 �
�

UF(x, t�) dx dt�
�����
.

(5.8)
������

t

0 �
�

UF(x, t�) dx dt�
�����
≤ C‖U‖Y0

I
‖F‖Z0

I
, I = [0, t].

(5.9)‖F‖Z0
I
≤ C�1∕2‖U‖2

Y0
I

.

(5.10)‖U‖Y0
I
= ‖u‖Y�,0

I

≤ C‖u(0)‖G�,0(� ).

sup
|t|≤�

||u(t)||2
�,0

≤ ||u(0)||2
�,0

+ C�1∕2||u(0)||3
�,0
.

(5.11)

∞ >T∗ ≥ T0 ≐ c0(
1 + ‖‖u0‖‖G𝛿0,0(� )

)a

>
c0(

1 + 2‖‖u0‖‖G𝛿0,0(� )

)a ≐ 𝜌∗.

(5.12)n𝜌∗ ≤ T < (n + 1)𝜌∗.
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Claim:   If for � the conditions

hold, then for each k ∈ {1, 2,… , n + 1} we have that

and

This claim is proved by induction, where the first step is 
provided by the almost conservation law. Applying estimate 
(5.15) with k = n + 1 we get

if �-size conditions (5.13) hold. In other words we have 
proved the implication

Since n𝜌∗ ≤ T < (n + 1)𝜌∗ we have that

Therefore, the second �-size condition (5.13) holds if we 
chose � to satisfy the condition

(5.13)0 < 𝛿 ≤ 𝛿0 and (n + 1)C𝛿1∕223∕2‖‖u0‖‖G𝛿0,0(� )
≤ 1

(5.14)
sup

t∈[0,k�∗]

||u(t)||2
�,0

≤ ||u(0)||2
�,0

+ kC�1∕22
3

2 ||u(0)||3
�0,0

(5.15)sup
t∈[0,k�∗]

||u(t)||2
�,0

≤ 2||u(0)||2
�0,0

.

(5.16)sup
t∈[0,(n+1)�∗]

||u(t)||2
�,0

≤ 2||u(0)||2
�0,0

,

(5.17)

0 < 𝛿 ≤ 𝛿0 and (n + 1)C𝛿1∕22
3

2 ||u(0)||𝛿0,0 ≤ 1 ⟹

u ∈ C([0, (n + 1)𝜌∗],G𝛿,0(� )).

n + 1 ≤ T

𝜌∗
+ 1 <

T

𝜌∗
+

T

𝜌∗
=

2T

𝜌∗
.

(5.18)

2T

�∗
C�1∕22

3

2 ||u(0)||�0,0 ≤ 1 ⟺ � ≤ cT−2

where c =
( �∗

2C23∕2||u(0)||�0,0

)2
.

Furthermore, since [0, T] ⊂ [0, (n + 1)𝜌∗] , from (5.17) and 
(5.18) we conclude that if 0 < 𝛿 ≤ 𝛿0 and 0 < 𝛿 ≤ cT−2 then 
u ∈ C([0, T],G�,0(� )) . Choosing the biggest � satisfying both 
conditions gives

which completes the proof of the theorem in the case s = 0 . 
The general case s ≥ −1∕2 is reduced to the case s = 0.

Open Question. Does the KdV radius of analyticity per-
sist for all time?

5.2 � Time regularity for KdV and non‑analytic 
solutions

In 1977 Trubowitz [71] proved that a spatially periodic solu-
tion of the KdV equation, �tu = 3u�xu −

1

2
�xxxu , which is 

initially real analytic is spatially real analytic for all time. 
In 1986 Kato and Masuda [47] showed that if the initial 
state of the KdV type equation �tu = −�3

x
u − a(u)�xu , where 

x ∈ ℝ, t ≥ 0 , and a(�) is real analytic in � ∈ ℝ , has a ana-
lytic continuation that is analytic and L2 in a strip contanin-
ing the real axis, then the solution has the same property for 
all time, though the width of the strip might decrease with 
time. Here we will show that analyticity in time variable of 
the solutions to the KdV equation fails. However, we will 
show that in time the solution belongs to G3 for initial data 
analytic. More precisely, for the Cauchy problem for the 
KdV equation

following [15], we shall present examples demonstrating the 
non-analyticity of the solution in time.

(5.19)
u ∈ C

(
[0, T],G𝛿(T),0(� )

)

with 𝛿(T) = min{𝛿0, cT
−2}, T > 0,

(5.20)
{

�tu = �3
x
u + u�xu,

u(0, x) = u0(x), t ∈ ℝ, x ∈ 𝕋 or ℝ,
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Theorem 5.4  ([15]). The solution to the KdV initial valaue 
problem (5.20) with initial data analytic may not be analytic 
in the time variable t. More precisely, in the periodic case, if

then u is not analytic in t near t = 0 . While in the non-peri-
odic case, if

then u is not analytic in t near t = 0 . Finally, if we replace 
�(x) with its real part then we obtain a real-valued solution 
u which is not analytic in t = 0.

Proof  The main tool of the proof is the following result, 
which proof can be done by induction.

Lemma 5.1  If u(x, t) is a solution to the initial value prob-
lem (5.20), then

S i n c e  fo r  t h e  p e r i o d i c  c a s e  we  h ave 
�(x) =

−eix

2−eix
= −

∑∞

k=1
2−keikx then

and therefore

where

Let u(x, t) be a solution to the initial value problem (5.20) 
with initial data �(x) = −

∑∞

k=1
2−keikx . Then by (5.23), we 

have

and by (5.26), we have that for any j,

(5.21)�(x) =
−eix

2 − eix
= −

∞∑

k=1

2−keikx,

(5.22)�(x) = (i − x)−2,

(5.23)
�
j

tu = �3j
x
+

∑

|�|+2𝓁=3j+2
C�(�

�1
x
u)⋯ (�

�
𝓁

x u),

with C� ≥ 0.

(5.24)�(n)(x) = −

∞∑

k=1

2−k(ik)neikx

(5.25)�(n)(0) = in+2An

(5.26)An =

∞∑

k=1

2−kkn > 2−nnn.

(5.27)

�tu(0, 0)

= �3j(0) +
∑

|�|+2𝓁=3j+2
C�(�

�1 (0))⋯ (��
𝓁 (0))

=
(
A3j +

∑

|�|+2𝓁=3j+2
C�A�1

⋯A�
𝓁

)
i3j+2,

(5.28)|𝜕jtu(0, 0)| ≥ A3j > 2−3j(3j)3j > (j!)2.

Therefore u(x, t) is not analytic in the t variable at the point 
(0, 0). The proof of the other cases is similiar. 	�  ◻

5.3 � G3 regularity in time for the KdV

For the Airy equation �tu + �3
x
u = 0 , we see that one time-

derivative is equal three space-derivatives. Therefore, if the 
solution is analytic in x, that is �k

x
u grow like k!, then the time 

derivatives �k
t
u grow like (3k)!. This means that the solution 

is in Gevrey class 3 in time. Following [34], here we prove 
that this phenomenon is also true for the KdV equation.

Theorem 5.5  ([34]). The solution u(x, t) to the periodic 
KdV initial value problem (5.20) with analytic initial data 
belongs to G3 in the time variable t.

Proof  We already know that the solution u(x, t) is analytic 
in the spatial variable (see [71] and [31]). We shall use the 
analyticity estimates obtained in [31] to complete the proof. 
More precisely, there exist C > 0 and 𝛿 > 0 such that

In order to prove Theorem 5.5 it is enough to prove the 
following

Lemma 5.2  For k = 0, 1,… and j = 0, 1, 2,… the following 
inequality holds true

In fact, taking k = 0 we obtain

and therefore we can conclude that u is G3 in time t variable 
for all x ∈ � .

Outline of the proof of Lemma 5.2. We will prove it by 
using induction on j. For j = 0 inequality (5.30) holds for all 
k ∈ {0, 1, 2,…} since it is nothing else but inequality (5.29). 
For j = 1 , k ∈ {0, 1, 2,…} and by using the KdV equation 
we obtain

First, from (5.29) we obtain that

(5.29)
|�k

x
u(x, t)| ≤ Ck+1k!, k = 0, 1, 2,… , t ∈ (−�, �),

x ∈ � .

(5.30)
|||�

j

t�
k
x
u(x, t)

||| ≤ Ck+j+1(k + 3j)!(C2 + C∕2)j,

for t ∈ (−�, �), x ∈ � .

|||�
j

tu(x, t)
||| ≤ Cj+1(3j)!(C2 + C∕2)j ≤ C

j+1

1
(j!)3

(5.31)

�t�
k
x
u = �k+3

x
u + �k

x
(u�xu)

= �k+3
x

u +

k∑

p=0

(
k

p

)
�k−p
x

u�p+1
x

u.
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Now we notice that

for t ∈ (−�, �), x ∈ �  , where we have used the fact that ∑k

p=0
(p + 1) = (k + 1)(k + 2)∕2 . It follows from (5.32) and 

(5.33) that

for t ∈ (−�, �), x ∈ �  , which complete the proof in this 
case.

Now supposing that (5.30) holds for all derivatives in t 
of order ≤ j and k ∈ {0, 1, 2,…} , and following the lines of 
what we have done in the first step, i.e., j = 1 , we are able 
to prove that (5.30) holds for j + 1 and k ∈ {0, 1, 2,…} . The 
proof is complete. 	�  ◻
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