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Abstract  Rising salinity in agricultural land is 
a major barrier limiting  yields of crops like  rice, 
which has been reported as a salt-sensitive plant. An 
improvement in salt tolerant ability of rice has been 
achieved by obstructing the sodium (Na) transpira-
tion flow via apoplastic route. Here we  assess the 
potential of an antitranspirant (AT) in modulating Na 
enrichment and yield in rice under salt stress. Sodium 
concentration in flag leaf was enriched in relation to 
the salt exposure time and significantly decreased 
in plants grown under 0.2% AT foliar application. 
Free proline accumulation in salt-stressed plants was 
increased by 15.3 folds over the control, whereas 
it was stable in plants grown under 0.2% AT foliar 
application. Chlorophyll a, chlorophyll b, total chlo-
rophyll, total carotenoids, photon yield of photosys-
tem II (PSII), net photosynthetic rate, transpiration 

rate, and stomatal conductance in salt-stressed plants 
were lower than the control with the exogenous foliar 
spray of 0.2% AT. Positive relationships between total 
chlorophyll and photon yield of PSII, photon yield of 
PSII and net photosynthetic rate, and net photosyn-
thetic rate and fertile seed were also evident. Number 
of seeds per panicle in salt-stressed plants was  sig-
nificantly enhanced by 0.2% AT foliar application, 
whereas other yield attributes declined. Antitran-
spirants could be a promising option to improve the 
growth and yield of rice cultivated on salt-affected 
soils. 

Keywords  Antitranspirant · Free proline · Net 
photosynthetic rate · Sodium ion · Transpiration rate · 
Yield traits

1  Introduction

Soil salinity is a major abiotic constraint regulated 
by global climate change (Corwin 2021), which 
negatively affects plant growth and development and 
reduces crop yield (Shahid et  al. 2018; Sahab et  al. 
2021). Salt-affected area in the arid and semi-arid 
regions is gradually and steadily increasing (Kılıc 
et  al. 2022; Singh 2022). A soil is saline due to the 
presence of high-concentrated salts, such as sodium 
chloride (NaCl), sodium sulfate (Na2SO4)  and mag-
nesium sulfate (MgSO4) (Kumar and Sharma 2020; 
Hopmans et al. 2021) In halophytic species, adaptive 
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mechanisms, i.e., Na+ homeostasis, compartmentali-
zation, secretion, osmoregulation, antioxidant pro-
duction, and hormonal regulation provide tolerance to 
high salt concentration (Loconsole et  al. 2019; Rah-
man et al. 2021; Islam et al. 2022). In contrast, gly-
cophytic plants, including many cultivated crop spe-
cies, are very sensitive to high soil salinity, due to the 
lack of key salt-defense mechanisms (Hasegawa et al. 
2000; Hasegawa 2013).

Rice (Oryza sativa L.) is a staple food crop for 
more than half of the world’s population, especially 
for 3.5 billion people in Asia (Devkota et al. 2019). It 
is a major source of carbohydrate, antioxidants, oils, 
fiber, minerals, and vitamins, which also help against 
metabolic disorders and cardiovascular diseases 
(Khush 2005; Sen et al. 2020; Behl et al. 2021). Rice 
has been reported as a salt-susceptible crop and salt 
stress leads to the inhibition of plant growth, devel-
opment, and crop yield (Fahad et al. 2019; Schneider 
and Asch 2020). In general, sodium (Na) is a domi-
nant cation, which is accumulated in large amounts in 
the root tissues (restriction) of rice (Plett and Møller 
2010; Chakraborty et  al. 2019) and bypass flow or 
apoplastic route to translocate Na from root to other 
organs (Faiyue et  al. 2010, 2012) via transpiration 
stream (Hasanuzzaman et  al. 2018), thereby reduc-
ing photosynthetic efficiency (Gadelha et  al. 2021). 
Moreover, the application of abscisic acid (ABA), a 
plant hormone, which controls the stomatal closure, 
has been reported to limit the Na movement via tran-
spiration flow (Parveen et  al. 2021; Sharmin et  al. 
2021).

Antitranspirants have been widely applied for 
enhancing abiotic defense mechanisms in various 
crops grown under drought (AbdAlla et  al. 2019), 
salt stress (Boari et al. 2016), high temperature stress 
(Cirillo et  al. 2021), and ozone pollution (Francini 
et  al. 2011), and are constituted by three classes, 
such as metabolic (s-ABA, chitosan, fulvic acid), 
reflective (kaolin, CaCO3, CaO), and film-forming 
(di-1-p-menthene, poly-1-p-menthene, acrylic poly-
mers) (Mphande et  al. 2020). The performance of 
the application of antitranspirants is highly depend-
ent on plant species, developmental stage, and plant 
density (Morsy and Mehanna 2022; Mphande et  al. 
2022). Antitranspirant (AT)-induced negative effects 
have also been reported, including stomatal closure 
to limit CO2 assimilation, leaf temperature increase, 
and sunburn (Rodriguez et  al. 2019). Pathumthani 1 

rice genotype has been reported as a salt-susceptible 
species, exhibiting reduced plant growth and develop-
ment when subjected to high salt treatment (Cha-um 
et al. 2009). It was hypothesized that the foliar spray 
of AT on the leaf tissues of Pathumthani 1 might limit 
transpiration, which in turn could reduce Na trans-
location from root to shoot and alleviate Na toxicity 
in terms of osmotic adjustment, photosynthetic pig-
ment stabilization, photosynthetic capacity, and yield 
stability. The objective of this study was to evaluate 
the potential of an AT in modulating crop growth and 
yield in rice under salt stress.

2 � Material and methods

2.1 � Plant material, antitranspirant, and salt 
treatments

Seeds of indica rice (Oryza sativa L. ssp. indica 
cv. Pathumthani 1) were collected from the Pathum 
Thani Rice Research Center, Rice Department, Min-
istry of Agriculture and Cooperatives, Thailand. 
The seeds were surfaced sterilized by 20% Clorox® 
[8.25% ai sodium hypochlorite (w/v), Clorox, CA, 
USA] for 15 min, primed in the water for 12 h, and 
sowed in the water-saturated soil (EC = 2.69 dS 
m−1, pH = 5.7, organic matter = 12.26%, total nitro-
gen = 0.30%, total phosphorus = 578  mg  kg−1, total 
potassium = 3073 mg  kg−1, calcium = 7020 mg  kg−1, 
and magnesium = 1034  mg  kg−1). Four weeks after 
seed germination, individual rice seedling was 
directly transplanted into clay pots (ϕ 15  cm and 
30  cm in height) containing soil. Fertilizer (16-16-
16: N-P-K) was applied three times after 15  days 
(initial establishment stage), 45  days (vegetative 
stage), and 90 days (booting stage) of transplanting, 
based on the recommendation of Rice Department, 
Ministry of Agriculture and Cooperatives, Thailand. 
At booting stage, 50 mL per plant of 0.0% and 0.2% 
AT [Gustec-S®, 25.2% ai (w/v) sucrose esters of fatty 
acids, BIOSAFFER Co., Ltd., Thailand] were applied 
as a foliar spray using a hand-held sprayer. Then, 0 
and 200 mM NaCl solution were applied to the pots, 
representing the control and salt stress treatments, 
respectively. Concentrations of Na+, K+, and Ca2+ 
were determined in the flag leaf collected at 1, 3, 5, 7, 
and 14 days after NaCl treatments. Biochemical and 
physiological data were also collected 14  days after 
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NaCl treatments. Yield attributes were recorded at 
harvesting stage in each treatment.

2.2 � Na+, K+, and Ca2+ assay

Na+, K+, and Ca2+ concentrations [mg g−1 dry mass 
(DM)] were assayed following the modified method 
of Tanaka et al. (1999) and Hossain et al. (2006). Flag 
leaf tissue of rice was washed by deionized water to 
remove excess ions on the surface of each leaf. Plant 
samples were dried at 80 °C for 3 days, ground into 
powder using mortar with liquid nitrogen, and then 
dissolved by deionized water. The ions in plant tis-
sues were extracted after boiling in water for 15 min 
and centrifuged at 10,000 × g for 10  min. Super-
natant was then diluted into 100 times and filtered 
through a 0.45  µm-filter membrane (VertiPure™, 
Vertical®, Thailand). Fifty µL of solution was applied 
into WATER IC-PACKTM ion exclusion column. 
The column was equipped with high-performance 
liquid chromatography (HPLC) system (e595 Alli-
ance, Waters Associates, Milford, MA, USA) and 
432-Conductivity Detector (Waters Associates, Mil-
ford, MA, USA). A mobile phase of 3 mM nitric acid 
and 0.1 mM EDTA was supplied with a flow rate at 
1  mL  min−1. Concentrations of Na+, K+, and Ca2+ 
were determined, based on standard curve of each ion 
(Sigma®, MA, USA).

2.3 � Biochemical and physiological traits

Free proline concentration [μmol g−1 fresh mass 
(FM)] in the flag leaf was estimated according to the 
method of Bates et al. (1973). In brief, 50 mg of fresh 
samples were ground in a mortar with liquid nitrogen. 
One mL of aqueous sulfosalicylic acid (3%, w/v) was 
added into the homogenate powder and then filtered 
through a filter paper (Whatman™ #1). The superna-
tant was reacted with an equal volume of glacial ace-
tic acid and ninhydrin reagent (1.25 mg ninhydrin in 
30 mL glacial acetic acid and 20 mL 6 M H3PO4) and 
boiled at 95 °C in water bath for 1 h. Then, the reac-
tion was stopped by incubating the reaction mixture 
in an ice bath. The reaction mixture was mixed vigor-
ously with 2 mL of toluene. After cooling at 25 °C, 
the chromophore (pink color) was collected and 
measured at 520 nm using UV–VIS spectrophotom-
eter (HACH DR/4000; HACH Company, Loveland, 

CO, USA). L-proline (0 − 20  μmol  mL−1) standard 
was validated as the calibration standard.

Chlorophyll a (Chla), chlorophyll b (Chlb), total 
chlorophyll (TChl), and total carotenoid (Cx+c) con-
centrations in the flag leaf were measured accord-
ing to the method of Shabala et  al. (1998). In brief, 
100 mg of leaf tissues were chopped and transferred 
to glass vials containing 10  mL of 99.5% acetone 
and blended using a homogenizer. The glass vials 
were sealed with Parafilm® (Sigma-Aldrich, USA) 
to prevent acetone evaporation, and kept at 4  °C in 
the darkness for 48  h. Chla, Chlb, and Cx+c concen-
trations [μg g−1 fresh mass (FM)] were measured at 
662  nm, 644  nm, and 470  nm, respectively, using 
UV–VIS spectrophotometer against acetone (99.5%) 
as a blank.

Chlorophyll a fluorescence in the flag leaf was 
measured using a fluorescence monitoring system 
(FMS 2; Hansatech Instruments Ltd., Norfolk, UK) 
with the pulse amplitude modulation mode (Log-
gini et al. 1999). In brief, a dark-adapted leaf kept for 
30  min was subsequently exposed to the modulated 
measuring beam of far-red light (LED source) with 
a typical peak at wavelength 735 nm. Initial fluores-
cence (F0) and maximum fluorescence (Fm) yields 
were measured under weakly-modulated red light 
(< 85  μmol  m‒2  s‒1) with 1.6  s pulse of saturating 
light (> 1,500  μmol  m−2  s−1photosynthetic photon 
flux density) and calculated using FMS software for 
Windows®. The variable fluorescence yield (Fv) was 
calculated by the equation: Fv = Fm – F0. The ratio of 
variable to maximum fluorescence (Fv/Fm) was cal-
culated as the maximum quantum yield of PSII pho-
tochemistry. The photon yield of PSII (ΦPSII) in the 
light was calculated as: ΦPSII = (Fm′ − F)/Fm′ after 45 s 
of illumination when steady state was achieved (Max-
well and Johnson 2000), where F is a steady-state 
yield and Fm′ is a maximum fluorescence yield.

Net photosynthetic rate (Pn; μmol CO2 m‒2  s‒1), 
stomatal conductance (gs; mmol H2O m‒2  s‒1), and 
transpiration rate (E; mmol H2O m‒2  s‒1) in the 
flag leaf were recorded using a portable photosyn-
thesis system fitted with an infra-red gas analyzer 
(LI 6400XT, LI-COR, Lincoln, NE, USA), fol-
lowing the method of Cha-um et  al. (2007). The gs 
and E were auto-calculated by monitoring the H2O 
of air entering and exiting the infra-red gas ana-
lyzer head space chamber. The flow rate of air in 
sample line and micro-chamber temperature was 
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set at 500  μmol  m‒2  s‒1 and 27 ± 1  °C block tem-
perature, respectively. The light intensity was set at 
1,000 μmol  m‒2  s‒1 photosynthetic photon flux den-
sity by 6400-02B red-blue light emitting diode (LED) 
light source.

2.4 � Yield attributes

Panicle mass, panicle length, number of panicles per 
plant, number of seeds per panicle, fertile seed per-
centage, and one-hundred grain mass in each treat-
ment were recorded (IRRI 2002).

2.5 � Experimental layout and data analysis

The experiment was arranged in 2 × 2 factorials in 
completely randomized design with four replica-
tions. The data were subjected to a two-way analysis 
of variance (ANOVA) and were analyzed using Sta-
tistical Package for the Social Sciences (SPSS) soft-
ware (version 11.5 for Window®). The mean values 
obtained from four treatment combinations, from 

either antitranspirant or NaCl, were compared using 
Tukey’s honest significant difference test at p ≤ 0.05.

3 � Results

3.1 � Morphology and biochemical changes

Leaf burning, leaf rolling, and leaf chlorosis in salt-
stressed plants without the application of AT (0.0%) 
were observed, whereas the toxic damages were 
reduced by 0.2% AT foliar application (Fig.  1). 
Under 200 mM NaCl, Na+ concentration in older leaf 
(third from the top) without AT was the maximal at 
31.1 mg g−1 DM, causing leaf chlorosis. A reduction 
of Na+ in the leaf tissues was observed (19.6 mg g−1 
DM) when sprayed with 0.2% AT (Fig. S1). In flag 
leaf, Na+ was significantly increased in relation to 
NaCl exposure period, whereas the increment was 
comparatively slower under 0.2% AT application 
(Fig.  2a). In contrast, K+ concentration in plants 
under salt stress was significantly declined irrespec-
tive of AT applications when compared with the 

Fig. 1   Morphological char-
acteristics of Pathumthani 1 
rice genotype treated with 
or without antitranspirant 
(AT) and subsequently 
exposed to 0 and 200 mM 
NaCl for 14 days

0.0% AT 0.2% AT

0 mM NaCl

200 mM NaCl
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control (Fig. 2b). Na:K ratio was also the maximal in 
plants without foliar application of AT when exposed 
to 200  mM NaCl for 14  days (Fig.  2c). Likewise, 
Ca2+ concentration was also increased in salt-stressed 
plants and it was the highest in 0.2% AT-treated 
plants under salt stress. Free proline accumulation in 
flag leaf tissues of salt-stressed plants without AT was 
the maximal at 3.98 μmol g−1 FM and it was reduced 
to 1.08  μmol  g−1 FM in 0.2% AT-treated plants 
(Table 1).  

3.2 � Physiological changes

Chla, Chlb, and Cx+c concentrations in the salt-stressed 
plants without AT were significantly decreased 
by 50.43%, 49.13%, and 80.16% over the control, 
respectively. Interestingly, in the salt-stressed plants 
with 0.2% AT, these parameters were reduced by 
33.21%, 47.29%, and 68.61%, respectively, compared 
with the control (Table  1). Total chlorophyll (TChl) 

concentration in the leaf tissues of salt-stressed plants 
without AT was significantly declined by 49.83% 
over the control and TChl of salt-stressed plants with 
0.2% AT was also degraded by 39.65% over the con-
trol without NaCl (Fig.  3a). A negative relationship 
between Na+ enrichment and TChl concentration 
was demonstrated (Fig. 3b; R2 = 0.87). Fv/Fm did not 
vary significantly among the treatments (Fig. S2a), 
whereas ΦPSII in the salt-stressed plants without AT 
and 0.2% AT was significantly diminished by 17.15% 
and 9.53% over the control, respectively (Fig. 3c). A 
positive relationship between TChl concentration and 
ΦPSII was evident (Fig. 3d; R2 = 0.57). Consequently, 
Pn in the salt-stressed plants without AT and 0.2% AT 
was sharply dropped by 93.94% and 75.14% over the 
control, respectively (Fig. 4a). Moreover, gs and E in 
the salt-stressed plants were also decreased (Fig. S2b; 
R2 = 0.80) in plants without AT (50.0% and 85.71% 
reduction over the control, respectively) (Table 1). A 
positive relationship between ΦPSII and Pn (Fig.  4b; 
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Table 1   Free proline, chlorophyll a (Chla), chlorophyll b 
(Chlb), total carotenoids (Cx+c), stomatal conductance (gs), and 
transpiration rate (E) of Pathumthani 1 rice genotype treated 

with or without antitranspirant (AT) and subsequently exposed 
to 0 and 200  mM NaCl for 14  days. Data are presented as 
means of four replications ± standard errors

Mean values followed by different letters in a column indicate significant difference based on Tukey’s honest significant difference 
test at p ≤ 0.05; ns and ** represent not significant and significantat p ≤ 0.01,respectively

Antitranspirant 
(%)

NaCl (mM) Free proline 
(μmol g−1 
FM)

Chla
(μg g−1 FM)

Chlb
(μg g−1 FM)

Cx+c
(μg g−1 FM)

gs (mmol H2O 
m−2 s−1)

E (mmol H2O 
m−2 s−1)

0 0 0.26 ± 0.07c 293.3 ± 11.8a 231.0 ± 15.5a 24.7 ± 1.0a 0.02 ± 0.003a 0.77 ± 0.06a
200 3.98 ± 0.26a 145.4 ± 7.9b 117.5 ± 14.8b 4.9 ± 0.8b 0.01 ± 0.001b 0.11 ± 0.02b

0.2 0 0.69 ± 0.08bc 290.0 ± 12.2a 250.8 ± 6.06a 25.8 ± 6.4a 0.03 ± 0.005a 0.72 ± 0.08a
200 1.08 ± 0.08b 193.7 ± 17.8b 132.2 ± 21.9b 8.1 ± 0.6b 0.01 ± 0.001b 0.31 ± 0.03b

Significance 
level

AT ** ns ns ns ns ns
NaCl ** ** ** ** ** **
AT × NaCl ** ** ** ** ** **
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R2 = 0.65) and Pn and fertile seed percentage of rice 
grain was demonstrated (Fig. 4d; R2 = 0.74). 

3.3 � Yield attributes

Fertile seed percentage in salt-stressed plants with 
and without AT was significantly decreased by 
75.14% and 93.94% over the control, respectively 
(Fig. 4c). Under 200 mM NaCl, panicle mass, panicle 
length, number of panicles per plant, number of seeds 
per panicle, and one-hundred grain mass were sharply 
declined by 81.70%, 39.92%, 91.67%, 71.15%, and 
43.50% in plants without AT over the control, respec-
tively. On the other hand, panicle mass, number of 
panicles per plant, and number of seeds per panicle 
in AT-treated plants were significantly dropped by 
48.08%, 25.0%, and 31.23% over the control, respec-
tively. Number of seeds per panicle of AT-treated 

plants under salt stress was retained. Moreover, yield 
attributes under salt stress were increased with the 
application of 0.2% AT (Table 2).

4 � Discussion

Pathumthani 1 rice genotype exhibited leaf roll-
ing, chlorosis, and leaf burn when plants were 
exposed to 200  mM NaCl. Previously, growth per-
formance, including number of leaves, plant fresh 
mass, plant dry mass, and root length, of seedlings 
of Pathumthani 1 rice genotype under 342 mM NaCl 
has been reported to significantly decline (Cha-um 
et  al. 2009). Similarly, tip burn and leaf chlorosis 
in 21-day-old seedlings of Pathumthani 1 genotype 
under hydroponic culture with 10 dS m−1 or 68 mM 
NaCl have been reported (Pongprayoon et al. 2019). 
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and fertile seed (d) in flag leaf tissues of Pathumthani 1 rice 
genotype treated with or without antitranspirant (AT) and sub-

sequently exposed to 0 and 200 mM NaCl for 14 days. Data are 
presented as means of four replications ± standard errors. Dif-
ferent letters in a bar represent significant difference based on 
Tukey’s honest significant difference test at p ≤ 0.05
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The overall performance of rice crop under salt stress 
was markedly improved by 0.2% AT foliar applica-
tion. Plant canopy and height of 6% kaolin (a mem-
ber of antitranspirants) pretreated sesame (Sesamum 
indicum L.) under 2.3 dS m−1 NaCl salt stress have 
been reported to significantly improve over the con-
trol without AT (Gaballah et al. 2007). Likewise, the 
aboveground traits of tomato (Solanum lycopersicum 
L.) under salt stress have been observed to be slightly 
improved by kaolin application (Boari et  al. 2016). 
The concentration of Na in the older leaves and flag 
leaf at the booting stage of rice under salt stress was 
the maximal. In IR2153-26–3-5–2 rice genotype, the 
maximal Na concentration (0.513 mmol g−1 DM) has 
been reported in old leaf (first from the base), whereas 
it has been observed as the lowest (0.170 mmol  g−1 
DM) in young leaf (fifth from the base) (Yeo et  al. 
1985). At the reproductive stage, Na concentration 
has been recorded in the order root > stem > mid-
dle leaf > flag leaf of Pokkali and Chettiviruppu 
rice genotypes under 8 dS m−1 NaCl for 4  weeks 
(Chakraborty et al. 2019).

An enrichment of Na and a decrement of K in 
antagonism have been well established in several 
rice genotypes grown under salt stress, leading to 
increased Na:K ratio (Sriskantharajah et  al. 2020; 
Yong et al. 2020). However, the increase depends on 
the degree of salt concentration (Sriskantharajah et al. 
2022), salt exposure period (Chakraborty et al. 2020; 
Gadelha et  al. 2021), and environmental variations 
(Yong et  al. 2020). Potassium has been reported as 
a macronutrient that controls the movement of Na in 
relation to transpiration rate, especially in K-starved 

plants (Quintero et al. 2007). In general, Na is directly 
absorbed by root tissues and translocated to other 
organs by apoplastic route (Yeo et  al. 1987; Ochiai 
and Matoh 2002; Foster and Miklavcic 2017) and is 
closely related with transpiration stream (Naito et al. 
1994; Quintero et  al. 2008; Nomiyama et  al. 2013; 
Hasanuzzaman et  al. 2018). Abscisic acid (ABA) is 
one of signaling hormones induced by NaCl-mediated 
salt stress, which controls stomatal closure to limit the 
Na transpiration flow (Park et al. 2020; Parveen et al. 
2021; Sharmin et  al. 2021; Xue et  al. 2021). Sup-
pression of transpiration rate using polyethylene gly-
col, exogenous glycinebetaine, and proline has been 
reported as an effective way to limit transpiration rate, 
Na uptake, and apoplastic flow in rice crops (Ochiai 
and Matoh 2004; Sobahan et al. 2009).

Enrichment of Ca in epidermal cells near stomata 
plays a key role in stomatal closure, especially under 
environmental stress conditions (Fricke 2004). Alter-
natively, free proline accumulation is an important 
indicator of salt toxicity as it is a major osmolyte 
(Chakraborty et al. 2020; Sriskantharajah et al. 2022) 
due to increased Δ1-pyrroline-5-carboxylate syn-
thetase and ornithine-δ-aminotransferase activities 
(Irakoze et al. 2022). An exogenous foliar spray of AT 
(chitosan) has been reported to strongly restrict Na 
concentration in the leaf tissues, stabilize photosyn-
thetic pigments, and regulate enzymatic antioxidants 
(Attia et al. 2021; Zhang et al. 2021).

Chlorophyll degradation in salt-stressed rice 
without AT was observed, leading to diminished 
ΦPSII, reduced Pn, and impaired stomatal functions 
(declined gs and E). The photosynthetic abilities of 

Table 2   Panicle mass (PM), panicle length (PL), number of 
panicles per plant (NP), number of seeds per panicle (NS), and 
one-hundred grain mass (OHM) of Pathumthani 1 rice geno-

type treated with or without antitranspirant (AT) and subse-
quently exposed to 0 and 200 mM NaCl for 14 days. Data are 
presented as means of four replications ± standard errors

Mean values followed by different letters in a column indicate significant difference based on Tukey’s honest significant difference 
test at p ≤ 0.05; ns and ** represent not significant and significant at p ≤ 0.01, respectively

Antitranspirant (%) NaCl (mM) PM (g) PL (cm) NP NS OHM (g)

0 0 1.04 ± 0.07a 23.8 ± 0.5a 12 ± 1.2a 65.0 ± 4.5a 2.23 ± 0.09a
200 0.19 ± 0.02c 14.3 ± 1.8b 1 ± 0.1d 15.5 ± 1.3c 1.26 ± 0.04c

0.2 0 0.54 ± 0.10b 20.4 ± 1.2a 9 ± 0.4b 44.7 ± 7.7b 2.09 ± 0.03a
200 0.23 ± 0.01c 15.3 ± 1.0b 5 ± 0.6c 31.8 ± 3.4bc 1.56 ± 0.03b

Significance level
AT ** ns ** ** **
NaCl ** ** ** ** **
AT × NaCl ** ** ** ** **
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0.2% AT-treated plants grown under 200  mM NaCl 
were improved. In African rice (Oryza glaberima 
L.), Chla, Chlb, and Cx+c in the leaves of seedlings 
under 50 mM NaCl for 15 days have been observed 
to be significantly degraded, causing diminished ΦPSII 
and decreased Pn (Prodjinoto et  al. 2021). In addi-
tion, chlorophyll degradation and ΦPSII diminution 
in indica rice genotypes have been reported as sen-
sitive parameters under salt stress (Tsai et  al. 2019; 
Chakraborty et al. 2020; Gadelha et al. 2021). Stoma-
tal closure in salt-stressed rice is a primary adaptation 
response of plants, leading to decreased Pn, gs, and 
E (Fu et  al. 2018; Prodjinoto et  al. 2021), which is 
regulated by large amount of endogenous ABA syn-
thesis (Park et al. 2020; Xue et al. 2021). A positive 
relationship between TChl concentration and ΦPSII 
(R2 = 0.72), ΦPSII and Pn (R2 = 0.84), and Pn and plant 
dry mass (R2 = 0.61) in Pathumthani 1 rice seedlings 
under salt stress has been reported in a previous study 
(Cha-um et  al. 2009). A key function of antitran-
spirants in salt-stressed plant is to limit transpiration 
rate and Na translocation from root to shoot (Malash 
and Flowers 1984; Oddo et al. 2019).

Yield attributes of a crop species are very impor-
tant criteria while considering salt tolerance improve-
ment using antitranspirants. Increased percent ste-
rility and reduced grain yield in rice crop grown 
under saline soil have been previously reported 
(Chakraborty et  al. 2019). In the present study, the 
overall yield traits of salt-stressed Pathumthani 1 
rice genotype were sustained by 0.2% AT foliar 
application. The harvest index and biological yield 
of wheat (Triticum aestivum L.) plants under salt 
stress have been reported to be retained by AT foliar 
spray (Gaballah and Moursy 2004). In tomato, the 
fruit yield traits have been reported to be strongly 
improved due to the application of AT even when 
exposed to salt stress (Boari et al. 2016; Ullah et al. 
2020). Moreover, seed yield and oil percentage in 
sunflower (Helianthus annuus L.) grown under salt 
stress have been significantly improved by foliar 
application of AT (Bakhoum et al. 2020).

In conclusion, Na translocation from root to shoot 
via bypass flow (apoplastic route) in salt-stressed 
plants at the booting stage of Pathumthani 1 rice 
genotype was reduced by foliar application of anti-
transpirant, depending on stomatal closure. Photo-
synthetic pigments, photon yield of PSII, and net 
photosynthetic rate in salt-stressed plants with AT 

application were better retained than the control, thus 
maintaining grain yield attributes. Based on the pre-
sent study, it can be concluded that the foliar appli-
cation of antitranspirant in rice crop grown in saline 
soils is beneficial. However, studies are required to 
validate these findings under field conditions.
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