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Abstract Plant growth-promoting bacteria (PGPB)

present potential to be used in agriculture supporting

plant growth and improving physiological responses

even in N-fertilized soils. Thus, this study aimed to

evaluate PGPB inoculation, combined or not with

N-fertilizer, on growth and N metabolism of maize

and sorghum. A total of thirteen PGPB, with high

variability in producing indole-3-acetic acid and

nitrogenase activity were inoculated in maize and

sorghum grown with and without N fertilization. The

growth and physiological responses of plants were

assessed 50 d after plant emergence. In general, PGPB

increased maize and sorghum growth, N fixation

efficiency and N metabolites as compared to non-

inoculated plants. Particularly, IPACC55 and

IPACC10 increased leaf area, chlorophyll, shoot dry

mass, total N and symbiotic efficiency. The majority

of PGPB increased the relative and N use efficiencies

in maize. In addition, PGPB reduced free ammonia,

while increased nitrate and soluble protein in maize
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and sorghum. The results also showed that inoculated

maize and sorghum grown without N fertilization

displayed higher plant biomass and relative and N use

efficiencies, while that, in plants grown with N

fertilization, the inoculation improved shoot dry mass,

and symbiotic and N use efficiencies. As conclusion,

PGPB positively influence N fixation and metabolism

in maize and sorghum, even in N-fertilized soil. This

indicates that PGPB can provide N to maize and

sorghum and stimulate plant growth.

Keywords PGPB � N metabolism � Plant
physiology � Non-legume plants

1 Introduction

Chemical fertilizers have contributed to support crop

yield (Lu and Tian 2017). Particularly, N-fertilizers

are the most important chemical input used in

agriculture as the N is highly required by plants,

affecting their growth and yield, and also increasing

their photosynthetic rates (Sun et al. 2016; Bassi et al.

2018). Plants absorb N from the soil as nitrate or

ammonium; nitrate is more available and absorbed by

plants due to the adsorption of ammonium by soil

cation exchange matrix or microorganisms (Bloom

2015). Since N requirement by plants is high, this

nutrient is applied at high rates to avoid significant

losses of yield (Bloch et al. 2020). However, applica-

tion of high rates of N-fertilizers could promote soil,

air and water pollution (Good and Beaty 2011).

Particularly to soils, the intensive use of N-fertilizers

has promoted acidification and degradation and con-

sequently, these processes can decrease plant growth

(Lu and Tian 2013; Tian and Niu 2015).

Some ecological and sustainable alternatives to

support plant growth and decrease the dependence on

N-fertilizers have been proposed in the last decade,

such as the use of plant growth-promoting bacteria

(PGPB) (Souza et al. 2015; da Silva et al., 2020).

PGPB colonize plants rhizosphere, endosphere and

phyllosphere, and can enhance their growth (Dong

et al. 2019). These bacteria present direct strategies to

promote plant growth, such as production of phyto-

hormones and siderophores or N-fixing capacity (De

La Torre-Ruiz et al. 2016; Compant et al. 2019).

Indeed, previous studies have reported positive effects

of PGPB on growth of important crops such as

sugarcane, maize and soybean (Antunes et al. 2017;

Breedt et al. 2017; Di Salvo et al. 2018; Santos et al.

2018; Aquino et al. 2019; Bavaresco et al., 2020). For

instance, Breedt et al. (2017) reported increased maize

growth varying from 24 to 34% after inoculation of

Paenibacillus, Bacilus, and Brevundimonas. Recently,

Di Salvo et al. (2018) inoculated some cereal crops

with PGPB and observed improvement of plant

growth. In sugarcane, Santos et al. (2018) found

Bacillus subtilis improving its growth and yield. In

addition, some PGPB are also recognized as a

biological alternative to fix atmospheric N in cereals

crops (Kuan et al. 2016; Ladha et al. 2016; Antunes

et al. 2019). In maize, Kuan et al. (2016) found PGPB

providing N from the atmosphere to plants and

increasing their growth with a reduction of 30% in

N-fertilizers.

PGPB also affect N metabolism in plants (Zeffa

et al. 2019) such as the biosynthesis of important N

compounds, i.e., chlorophylls, amino acids, nucleo-

tides and proteins (Bloom 2015). For example,

Bacillus sp. increased chlorophyll content in lima

bean (Lima et al. 2016). In maize, Azospirillum

brasilense increased leaf nitrate and ammonium,

while Bacillus sp. decreased leaf amino acids and

proteins (Calzavara et al. 2019). Therefore, these

bacteria, especially those with capability on biological

N fixation (BNF), exhibit potential to improve N

nutrition in cereals (Ladha et al. 2016).

Maize and sorghum are important cereals cropped

in several countries, being used as human food and

animal feeding (Ribeiro et al. 2019). Maize is

recognized as one of the most important crop species

worldwide providing a source of energy to almost the

total of population in Africa and the Americas

(FAOSTAT Food Balance Sheets 2020). Sorghum is

important for millions of people living in the subtrop-

ical and semi-arid regions of Africa, South America

and Asia, being a source of food and fodder, mostly in

the traditional, smallholder farming sector (Haripra-

sanna and Rakshit 2016). Therefore, the demand for

maize and sorghum in response to growing popula-

tions will require high productivity with consequent

increase on demand of chemical fertilizers, notably for

N-fertilizers resulting in both an increase in costs and

potential negative impact on the environment.

On the other hand, PGPB could be a sustainable and

ecological alternative to support maize and sorghum
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growth, decreasing their demand to N-fertilizers. In

addition, PGPB can improve some plants physiolog-

ical traits such as chlorophyll content (Rojas-Tapias

et al., 2012), amino acids, and proteins (Souza et al.

2015). Thus, it is necessary to evaluate potential PGPB

to be used as inoculants to maize and sorghum,

increasing their growth. In this study, we hypothesized

that PGPB, combined with N-fertilizer, would be able

to promote maize and sorghum growth, improving the

N metabolism and efficiency related to plant growth.

Thus, the aim of this study was to evaluate potential

PGPB on the growth and N metabolism in maize and

sorghum.

2 Material and methods

2.1 PGPB isolates

In this study, thirteen PGPB isolated by Antunes et al.

(2017) from sugarcane tissues were selected according

to their contrasting biochemical potential (Aquino

et al. 2019) (Table 1). Particularly, these PGPB present

high variability in producing indole-3-acetic acid

(IAA) and reducing acetylene (a measurement of

nitrogenase activity). Each PGPB were grown under

orbital shaking (200 rpm; 25 �C; 72 h) in Erlenmeyer

containing Tryptic Soy Broth liquid culture medium.

The optimum growth was verified by measuring the

optical density using a spectrophotometer at 540 nm,

and a final concentration of 109 CFU mL-1 was

considered for inoculation.

2.2 Experimental design

All PGPB were evaluated on maize and sorghum in a

pot-experiment under greenhouse conditions. Two

individual experiments were carried out to compare

the responses of maize (Zea mays L.) cv. AG-1051,

and sorghum (Sorghum bicolor L.) cv. Palo Alto

N52K1009, to inoculation of PGPB. For each plant

species, the treatments consisted of thirteen PGPB and

one control without inoculation. These treatments

were tested in two N levels (0% and 50% of total N

required by plants). Both experiments were performed

under a completely randomized blocks design in a

factorial scheme (14 treatments 9 2 levels of N) with

five replications.

2.3 Experimental setup

The experiments were carried out in plastic pots

containing 18 dm3 of soil (83% sand, 11% silt, and 6%

clay) (Table 2). Before sowing, the seeds were

disinfected with 70% alcohol (30 s) followed by 2%

sodium hypochlorite (60 s), and then washed with

sterile distilled water. Seeds were inoculated with

1.0 mL of the cell suspensions containing PGPB. Ten

days after sowing, one plant was left in each pot. All

pots received the application of P2O5 (2.5 and 2.1 g

per pot to maize and sorghum, respectively) and K2O

(2.1 and 2.4 g per pot to maize and sorghum,

respectively). For treatments with 50% of N required

by plants, it was applied ammonium sulfate (3.37 and

Table 1 Isolates of plant

growth-promoting bacteria

(BPCP) used in this study

and their capability to

produce indole-3-acetic

acid (IAA) and perform N2

fixation by the acetylene-

reducing activity (ARA)

*Identified according to

NCBI byAntunes et al.

(2017)

**IAA (mg L-1) or ARA

(nmol C2H4 h
-1): ( ?) 0 to

2.0; (? ?) 2.0 to 5.0;

(? ? ?)[ 5.0

PGPB Genus/Species* IAA ARA

IPACC01 Bacillus sp. ? ? ? ?

IPACC08 Herbaspirillum seropedicae ? ? ? ?

IPACC07 H. seropedicae ? ? ? ?

IPACC10 Burkholderia sp. ? ? ? ? ?

IPACC26 B. subtilis ? ? ? ? ?

IPACC29 B. subtilis ? ? ? ?

IPACC36 B. pumilus ? ? ? ? ? ?

IPACC38 Paenibacillus sp. ? ? ? ?

IPACC55 Paenibacillus sp. ? ? ? ?

IPACC53 No identified ? ? ?

IPACC58 No identified ? ?

IPACC59 No identified ? ?

IPACF40 No identified ? ? ? ?
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2.47 g per pot to maize and sorghum, respectively) at

the sowing.

2.4 Plant measurements

The plants were collected 50 d after germination. Leaf

area was measured using an automatic leaf area meter

(Model LiCor LI-3000). Shoots were separated from

roots, and both were oven-dried at 65 �C to determine

shoot and root dry mass. Fresh leaves were collected

for biochemical analysis. Total chlorophyll was

quantified according to Lichtenthaler and Wellburn

(1983). Free ammonia, nitrate, total free amino acids

and soluble protein were quantified using aliquots of

supernatant (extract) obtained in water bath at 100 �C
(60 min). Free ammonia was measured by the phenol-

hypochlorite method (Weatherburn 1967), while

nitrate concentration was measured by the nitration

of salicylic acid (Cataldo et al. 1975). Total free amino

acids were quantified by ninhydrin (Yemm and

Cocking 1955), while soluble protein was measured

according to Bradford (1976). The N content in shoot

was measured according to the semi-micro Kjeldahl

method (Bremner and Mulvaney 1982).

Based on the aforementioned data, the relative,

symbiotic and N use efficiencies were calculated. The

relative efficiency was calculated according to Ber-

gensen et al. (1971) using non-inoculated plants

fertilized with 50% of N. The interaction efficiency

(inoculated plants) was quantified according to the

formula: (total N in inoculated plants)—(total N in

N-fertilized plants)/(total N in N-fertilized plants—

total N in non-fertilized plants) 9 100 (Brockwell

et al. 1966). The N use efficiency for each treatment

was calculated according to Siddiqi and Glass (1981).

2.5 Data analysis

All statistical analyses were carried out separately for

maize and sorghum. Data were analyzed using

analysis of variance (ANOVA), preceded by an

F test, and means were compared by the Scott-Knott’s

test (p B 0.05). These statistical analyses (univariate

tests) were performed using the statistical software R

Studio (version 3.5.2). Principal component analysis

(PCA) was performed with all standardized data, in

order to identify the effects of PGPB on maize and

sorghum. This analysis was performed using Past

(v.4.02) (https://folk.uio.no/ohammer/past/).

3 Results

The analysis of variance showed individual and

interactive effects by the inoculation and N-fertiliza-

tion on the majority of variables determined in maize

and sorghum (Table 3). In maize, the exceptions were

free ammonia and N use efficiency, in N-fertilization,

and total chlorophyll, in the interaction. Total free

amino acids did not present significant differences for

inoculation and N-fertilization. In sorghum, the

exceptions were total chlorophyll, root dry mass,

nitrate, total free amino acids and soluble proteins, in

N-fertilization, while that total free amino acids did

not vary significantly in the interaction. Interestingly,

except for total free amino acids in maize (Scott–

Knott’s test; p = 0.07), PGPB influenced significantly

all variables in maize and sorghum.

In general, PGPB promoted higher leaf area,

chlorophyll and dry biomass (shoot and roots) in

maize and sorghum as compared to non-inoculated

plants (Figs. 1 and 2). Interestingly, some PGPB

improved the plants performance without N fertiliza-

tion when compared with those N-fertilized plants.

Thus, IPACC55 promoted the highest leaf area in

maize and sorghum grown without N fertilization as

compared to N-fertilized plants (Fig. 1a). By the way,

IPACC55 exhibited higher total chlorophyll (Fig. 1b)

and shoot dry mass (Fig. 2a) in sorghum. In maize,

IPACC10 promoted the highest leaf area and

Table 2 Chemical characterization of the soil used in the experiments

Sample pH P K? Na? Mg?2 Ca?2 Al?3 H ? Al CEC V

(cm) H2O mg kg-1 cmolc kg
-1 (%)

0–20 5.7 ± 0.1 0.4 ± 0.1 14.0 ? 1.3 3.5 ± 0.2 0.8 ± 0.1 1.3 ± 0.1 0.1 ± 0.1 1.1 ± 0.2 3.4 ± 0.3 66 ± 3.6

CEC cation exchange capacity, V base saturation
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chlorophyll in plants grown without and with N

fertilization, respectively.

In both plants, PGPB increased shoot and roots

biomass than non-inoculated plants (Fig. 2). In maize

grown without N fertilization, IPACC01, IPACC08,

IPACC26, IPACC29, IPACC38, IPACC55 and

IPACC58 increased the shoot dry mass; while

IPACC07, IPACC10, IPACC38, IPACC53, and

IPACF40 increased the root dry mass. In N-fertilized

maize, IPACC29, IPACC53, IPACC55, and IPACC59

increased the plant biomass. In sorghum grown

without N fertilization, IPACC07, IPACC26,

IPACC38, and IPACC55 increased the roots biomass

as compared to non-inoculated plants. Interestingly,

IPACC55, in sorghum, and IPACC38, in both plants,

promoted the highest roots growth when they were

grown without N fertilization (Fig. 2).

In maize, IPACC55 and IPACC10 increased the

total N and symbiotic efficiency in maize grown with

and without N fertilization, respectively (Fig. 3a and

b). In sorghum, IPACC29 and IPACC38 increased the

total N and interaction efficiency in N-fertilized

plants. Interestingly, IPACC07 increased the total N

and interaction efficiency in plants grown without N

Table 3 Analysis of variance (ANOVA) in double factorial scheme with an additional treatment performed with experimental data

obtained from maize and sorghum plants

Analysis of variance (F value) Coefficient of variation (%)

Inoculation (IN) Nitrogen (NT) Interaction (IN 9 NT)

Maize variables

Foliar area 26.6** 66.0** 7.51** 6.9

Total chlorophyll 24.9** 44.4** 1.6NS 8.4

Shoot dry mass 9.4** 10.0** 4.8** 8.5

Root dry mass 7.1** 5.8** 7.0** 13.7

Total nitrogen 98.9** 129.4** 13.6** 3.8

Symbiotic efficiency 101.5** 130.0** 13.5** 12.6

Relative efficiency 9.3** 9.9** 4.8** 8.6

Nitrogen use efficiency 7.5** 2.8NS 5.8** 18.8

Free ammonia 91.4** 0.15NS 5.4** 8.8

Nitrate 36.1** 29.1** 11.0** 9.3

Total free amino acids 1.7NS 2.5NS 2.8** 8.7

Soluble proteins 13.2** 3.5** 3.3** 8.8

Sorghum variables

Foliar area 38.8** 30.9** 10.0** 7.9

Total chlorophyll 11.7** 1.6NS 4.4** 8.9

Shoot dry mass 87.6** 26.2** 6.8** 7.7

Root dry mass 21.5** 1.9NS 7.9** 13.2

Total nitrogen 180.4** 112.6** 18.6** 3.3

Symbiotic efficiency 191.6** 119.5** 19.7** 7.8

Relative efficiency 87.6** 26.2** 6.7** 7.7

Nitrogen use efficiency 60.4** 5.3** 9.4** 15.1

Free ammonia 19.6** 1.8** 16.1** 8.7

Nitrate 77.4** 0.25NS 14.9** 9.3

Total free amino acids 15.2** 3.7NS 0.63NS 8.9

Soluble proteins 8.6** 0.48NS 0.89NS 8.9

Degrees of freedom 13 1 13 –

**Significant at 5%. NSNon-significant. CV coefficient of variation
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fertilization. The majority of PGPB increased the

relative and N use efficiencies in maize (Fig. 3c and

d). Plants grown without N fertilization increased their

relative efficiency by inoculation of IPACC01,

IPACC08, IPACC10, IPACC26, IPACC29,

IPACC38, IPACC55 and IPACF40. In N-fertilized

maize, IPACC26 or IPACC29 promoted the highest

values of relative efficiency (Fig. 3c). Regarding to N

use efficiency, IPACC01, IPACC07, IPACC10,

IPACC29, IPACC38, and IPACF40 promoted better

performance in plants grown without N fertilization.

However, in N-fertilized plants, IPACC26, IPACC29,

and IPACC59 were most effective. IPACC55 pro-

moted the highest values of relative efficiency and N
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sorghum plants inoculated with PGPB (IPACC01, IPACC07,

IPACC08, IPACC10, IPACC26, IPACC29, IPACC36,

IPACC38, IPACC53, IPACC55, IPACC58, IPACC59 and

IPACF40) and supplied or not with nitrogen at 50% of full

fertilization. CT plants non-inoculated, FM fresh mass.

Different lowercase letters indicate the significant differences

among plants when non-supplied with N, while capital letters

show the significant differences among plants when supplied

with 50% of full fertilization. The double asterisk (**) indicates

significant differences between non-fertilized and fertilized

plants in each treatment (Scott–Knott’ test; p B 0.05)
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use efficiency in both plants grown with and without N

fertilization; while IPACC07 increased these param-

eters in N-fertilized plants.

The content of N compounds varied between

inoculated maize and sorghum grown (Fig. 4). In

general, PGPB reduced free ammonia in maize

(Fig. 4a). In sorghum, lowest values of free ammonia

were found in N-fertilized plants and inoculated with

IPACC01, IPACC07, IPACC26, IPACC29 and

IPACF40. Plants grown without N fertilization and

inoculated with IPACC04, IPACC26, IPACC59 and

IPACF40 showed lowest values of free ammonia

(Fig. 4a). In N-fertilized maize, IPACC01, IPACC08,

IPACC10, IPACC26, IPACC59 or IPACF40

increased the content of nitrate (Fig. 4b). In sorghum,

IPACC01 and IPACC07 increased the content of

nitrate in plants grown without and with N fertiliza-

tion, respectively (Fig. 4b).

The values of total free amino acids varied between

maize and sorghum (Fig. 4c). In N-fertilized maize

and inoculated with PGPB, no differences were found

in total free amino acids as compared to non-inocu-

lated ones; however, plants grown without N fertil-

ization and inoculated with IPACC07, IPACC10,

IPACC29 and IPACC38 displayed higher values of

total free amino acids (Fig. 4c). In sorghum grown

with and without N fertilization, IPACC29 and

IPACC55 increased the total free amino acids,

respectively (Fig. 4c). IPACC07 or IPACC55 pro-

moted higher soluble proteins in maize, while

IPACC29 or IPACC38 increased the soluble protein

in sorghum (Fig. 4d). Non-inoculated plants displayed

lower content of soluble protein in maize and sorghum

grown with or without N fertilization (Fig. 4d).

Through the PCA both inoculated and non-inocu-

lated plants were clustered separately, showing that all

PGPB promoted distinct effect those found in non-

inoculated plants, mainly in plants grown without N

fertilization (Fig. 5). The two principal axes explained

66.1% and 73.9% of the total variation in maize and
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sorghum grown without N fertilization, respectively

(Fig. 5a and 5c). In N-fertilized plants, the two

principal axes explained 57.8% and 69.5% of the total

variation in maize and sorghum, respectively (Fig. 5b

and d). Inoculated maize and sorghum grown without

N fertilization displayed higher plant biomass and

relative and N use efficiencies (loadings[ 0.4). In

N-fertilized plants, the inoculation improved the shoot

dry mass and symbiotic and N use efficiencies

(loadings[ 0.5) (Fig. 5d).

4 Discussion

In this study, potential PGPBwere inoculated in maize

and sorghum that were grown with and without N

fertilization. In line with the hypothesis, PGPB were

able to promote plant growth and improve N

metabolism and efficiency in maize and sorghum. It

is an interesting finding since N is the most required

nutrient by maize and sorghum and can confirm that

these selected PGPB could be used as potential

inoculant to these crops. In addition, the inoculation

of PGPB is an ecological and sustainable strategy to

increase plant performance and, at the same time,

reduce the dependence on N-fertilizers. Interestingly,

all PGPB used in this study were previously inoculated

in sugarcane and showed high potential for increasing

the growth and N fixation (Antunes et al. 2017).

Therefore, this study presents potential PGPB to be

indicated in further field studies to find a potential

inoculant to be recommended to maize and sorghum.

In general, all PGPB increased the growth and N

metabolism in maize and sorghum. However, there

were differences between PGPB on the responses of

plants, even when the plants were grown without N

fertilization as compared to those fertilized ones.

Therefore, IPACC55 can be highlighted as a potential

PGPB by increasing leaf area in both plants, while

promoted higher chlorophyll content and shoot dry
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mass in sorghum. On the other hand, IPACC10 has

promoted higher leaf area and chlorophyll content in

maize. Leaf area and chlorophyll are important

parameters related to photosynthesis and plant growth,

and previous studies have reported high leaf area

associated with chlorophyll content, CO2 assimilation

rates, and growth of maize (Li et al. 2015) and

sorghum (Silva et al. 2019). Leaf growth, chlorophyll

content, and CO2 assimilated by plants are severely

reduced under N deficiency (Sun et al. 2016; Silva

et al. 2019). Although in this study we did not estimate

the CO2 assimilation rate, our results suggest

IPACC55 and IPACC10 as potential to promote maize

and sorghum growth, since they could induce higher

CO2 assimilation rates. Interestingly, IPACC55 also

contributed for increasing the root growth in maize,

while IPACC38 stimulated more roots in both plants.

All PGPB used in this study were selected accord-

ing to their biochemical capabilities (Antunes et al.

2017). Particularly, IPACC10 (Burkholderia sp.)

presents high capability to produce IAA, while

IPACC55 and IPACC38 (Paenibacillus sp.) have high

acetylene-reduction activity, i.e., nitrogenase activity.

These features could explain the higher maize growth

after inoculation of IPACC10, and the values of total

N and symbiotic efficiency in maize and sorghum after

inoculation of IPACC55 and IPACC38, respectively,

even when plants were grown with N fertilization.

Burkholderia and Paenibacillus are well recognized

plant growth promoters with high performance on N

fixation. Particularly, Burkholderia presents high

efficiency on nitrogenase activity and N fixation in

non-legumes plants, being identified as plant growth

promoter in maize and sorghum (Perin et al. 2006;

Aquino et al. 2019). Paenibacillus presents nifH gene

encoding Fe protein of nitrogenase and shows nitro-

genase activity (Liu et al. 2019), being potentially

suggested to be used as biofertilizer to some crops

such as maize, wheat and sugarcane (Hao and Chen

2017; Aquino et al. 2019).

This study also highlights IPACC07 and IPACC08,

identified as Herbaspirilum seropedicae, in contribut-

ing with N to plants. H. seropedicae is a N-fixing

bacterium associated to maize, sugarcane and sor-

ghum (Monteiro et al. 2008). Previous studies have

reported increases on the growth and N fixation in

maize and sorghum after inoculation of H. seropedi-

cae (Ribaudo et al. 2006), Paenibacillus sp. (Aquino
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et al. 2019) and Burkholderia sp. (Schlemper et al.

2018). Since plant development is influenced by N

availability, these bacteria presented high efficiency in

fixing N and, thus, provided adequate N levels when

this nutrient is absent or poorly available (Carvalho

et al. 2014). On the other hand, maize inoculated with

IPACC10, IPACC26 and IPACC29 decrease their free

ammonium content (* 70%) when compared to

uninoculated plants. It also occurred to N-fertilized

maize which presented a decrease in free ammonium

content. These isolates were identified as Burkholde-

ria sp. (IPACC10) and B. subtilis (IPACC26 and

IPACC29). Ammonium or nitrate are the major

inorganic N forms metabolized in plant cells (Nacry

et al. 2013) and the inoculation with these bacteria

increased the growth and N fixation in maize and

sorghum, while presented the ability to convert nitrate

or ammonium in other metabolites necessary to plant

development (Lee et al. 2020). Considering that these

isolates presented the ability to fix N, adequate levels

of ammonia in these plants can reflect the higher

N-fixation rate, greater activity of ammonium assim-

ilation pathway, and other metabolic reactions involv-

ing ammonium that have been stimulated with

symbiosis (Carvalho et al. 2014). These results are

corroborated by increased leaf area, biomass, chloro-

phyll, and concentration of amino acids and proteins,

and greater nitrogen use efficiency. Therefore, these

results indicate that there was a greater flow of C and N

in these plants, i.e., free ammonia was efficiently

incorporated into organic molecules or structures.

Interestingly, N-fertilized plants inoculated with

PGPB showed lower concentration of free ammonia,

while increased their content of nitrate. It suggests

higher availability of nitrate in rhizosphere, and an

unbalance between uptake and reduction of this

compound (Liu et al. 2014; Bloom 2015). PGPB can

induce an increase in lateral root development and

therefore improve the nitrate uptake and plant’s N

status. In fact, inoculated plants exhibited a larger root

system. Previously, Azospirillum brasilense increased

the concentration of nitrate in plants grown with N

(Calzavara et al. 2019). The results have shown that

PGPB increased plant biomass, chlorophyll and total

N, and it suggests positive influence on photosynthesis

and N uptake by roots. In addition, the reduction in

nitrate assimilation is associated to the translocation

and accumulation of this compound in vacuoles. This

plant strategy is important to maintain a favorable

water status in its tissues (Wang et al. 2014).

Finally, this study has shown that these selected

PGPB present potential in promoting maize and

sorghum growth with the possibility to reduce the

dependence on N-fertilizers used in both crops. It is

particularly interesting since these crops are important

to smallholders that, usually, do not use chemical

fertilizers. These results reinforce the positive benefit

to maize and sorghum by inoculation with these

potential PGPB. As a technology with low economic

cost, easy application, environmentally friendly, and

potentially responsive by maize and sorghum, the

further recommendation of these PGPB could be a

strategy to be used for farmers.

5 Conclusion

In this study, PGPB positively influenced the plant

growth and Nmetabolism in maize and sorghum, even

when plants were grown with N. This indicates that

these PGPB can provide N to maize and sorghum and

stimulate the plant growth. Positively, IPACC07,

IPACC08, IPACC10, IPACC38 and IPACC55 pre-

sented potential to be indicated as PGPB in maize and

sorghum. This study suggests that these PGPB may be

useful to improve N nutrition, biomass and yield in

maize and sorghum, and further studies should be done

under field conditions. In addition, further studies

could explore the possible use of these PGPB in

combination to find some additive or synergistic

responses.
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