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Abstract
A novel class of oral glucose lowering drugs, sodium-glucose co-transporter type 2 inhibitors (SGLT2is), has shown addi-
tional beneficial effects on body weight, serum uric acid levels, blood pressure, and cardiac and renal function. Conflict-
ing data have been published regarding the potential risk of acute kidney injury (AKI) when using SGLT2is. Aim of this 
manuscript was to review the current literature on this issue. SGLT2is induce a mild acute decline in estimated glomerular 
filtration rate, attributed to the effect of proximal tubular natriuresis on tubuloglomerular feedback through increased macula 
densa sodium delivery, leading to afferent arteriole vasoconstriction and reduced intraglomerular pressure. This functional 
effect with a subsequent rise in serum creatinine fulfills the creatinine-based criteria for AKI, as defined in clinical practice 
and trial settings. Other proposed potential mechanisms as to how SGLT2is lead to AKI include osmotic diuresis leading 
to volume depletion, increased urinary uric acid levels, intratubular oxidative stress, local inflammation and tubular injury. 
Despite the warning published by the US Food and Drug Administration in 2016 about a potential risk of AKI and the report 
of some clinical cases of AKI after treatment with SGLT2is, large observational real-life retrospective studies, randomized 
controlled trials and propensity-matched analyses of data from clinical practice unambiguously demonstrate that SGLT2is 
are safe for the kidney and do not predispose to AKI. In conclusion, while we can probably stop worrying about AKI risk 
when using SGLT2is, the question whether these agents should be withheld in the presence of clinical situations at high risk 
for AKI remains unaddressed.
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Introduction

Diabetes mellitus (DM) is among the most common chronic 
conditions globally, affecting approximately 10% of the adult 
population with significant long-term micro- and macro-
vascular complications. Diabetic nephropathy is the most 
common cause of chronic kidney disease (CKD), a condition 
listed among the top ten causes of annual mortality [1, 2]. 
Although angiotensin converting enzyme inhibitors (ACEis) 
and angiotensin receptor blockers (ARBs) have been shown 
to be protective against the progression of diabetic kidney 
disease and albuminuria, this condition still causes signifi-
cant morbidity and mortality, thus requiring proper manage-
ment and therapeutic alternatives [3, 4]. A novel class of oral 
glucose lowering drugs, sodium-glucose co-transporter type 

2 inhibitors (SGLT2is), has shown additional multiple ben-
eficial effects [5–7]. Conflicting data have been published 
regarding the potential risk of acute kidney injury (AKI) when 
using SGLT2is [8, 9]. The US Food and Drug Administration 
(FDA) reported 101 cases of AKI in patients using SGLT2is 
[5]. Unfortunately, this report seems vague on AKI diagnostic 
tools and does not provide sufficient information, thus creating 
a debate. The aim of this review was to evaluate the associa-
tion between AKI and SGLT2i therapy and its potential patho-
physiological mechanisms.
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Literature search strategy

Literature search was performed according to the guide-
lines of the Preferred Reporting Items for Systematic 
Review and Meta-Analyses (PRISMA). It was performed 
in March 2022 on the PubMed/Medline, Web of Science, 
Scopus, Cochrane Library, and CINAHL databases by uti-
lizing the listed terms or their combinations: “acute kid-
ney injury”, “acute kidney failure”, “acute renal failure”, 
“nephrotoxicity”, “sodium-glucose co-transporter type 
2 inhibitors”, “SGLT-2”, “SGLT-2 inhibitors”, “cana-
gliflozin”, “dapagliflozin”, “empagliflozin”, “diabetes”, 
“diabetes mellitus”, “anti-diabetic drugs”, “eGFR”, and 
“estimated glomerular filtration rate”. We screened the 
abstracts and titles of the studies that were identified 
through the search platforms mentioned above. References 
of the reviews and studies were additionally screened for 

relevant publications. The selected studies were further 
investigated in full text for relevance of the specified 
criteria. After the preliminary selection, full texts of the 
selected studies were independently evaluated by two of 
the authors (SC and AY) (Fig. 1).

Review of the literature

Table 1 shows the 22 studies in which the risk of AKI when 
using SGLT2is was analyzed: 10 were retrospective cohort 
studies [6–15]: among them, SGLT2i users were compared 
with non-SGLT2i users [12, 13, 15], with dipeptidyl-pepti-
dase-4 inhibitor (DPP-4i) users [6–8, 10, 11, 14], oral glu-
cose lowering drug users [9] and GLP-1 receptor agonist 
(GLP-1RA) users [8]. Follow-up periods for renal adverse 
effects or AKI incidence varied from 6 [8, 14] to 33 months 
[9] with a median of 19 months [11, 13]. Most of the cohort 

Fig. 1   Flow diagram of the 
study selection process Records identified from 

databases (n = 2669): 
   Medline (n = 835) 
   WoS (n = 652) 
   Cochrane (n = 768) 
   Scopus (n = 312) 
   CINAHL (n = 102) 

Records removed before 
screening: 

Duplicate records (n = 1429) 
Records removed for other 
reasons (n = 740) 

Records screened 
(n = 500) 

Records excluded (n = 454): 
Not investigating the topic of 
interest (n = 450) 
Not available in English (n = 4)

Reports sought for retrieval 
(n = 46) 

Reports not retrieved 
(n = 0) 

Reports assessed for eligibility 
(n = 46) 

Reports excluded: 
Not suitable type of study 
(case reports, case series, 
reviews and systematic 
reviews) (n = 24) 

Studies included in the review 
(n = 22): 
Retrospective cohorts (n=10) 
Randomized controlled trials (n = 
7) 
Meta-analyses (n = 3) 
Database analyses (n = 2) 
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Table 1   Studies analyzing the acute kidney injury risk when using a sodium-glucose co-transporter type 2 inhibitor

SGLT2is, sodium-glucose co-transporter type 2 inhibitors, AKI, acute kidney injury, DPP-4is dipeptidyl-peptidase-4 inhibitors, GLP-1RA GLP-1 
receptor agonists, HR hazard ratio, RAASis renin angiotensin aldosterone inhibitors, ACEis angiotensin converting enzyme inhibitors, ARBs 
angiotensin receptor blockers, eGFR estimated glomerular filtration rate

References Design SGLT2i users (N) Results Follow-up

Nadkarni et al. [15] 1:1 propensity matched retrospective 
cohort study (SGLT2is vs. non-
SGLT2is)

1584 No increased AKI risk 15 months

Neal et al. [21] Randomized single-blind placebo-con-
trolled trial (SGLT2is vs. placebo)

5795 No increased AKI risk 44.5 months

Cahn et al. [14] Retrospective cohort study (SGLT2is vs. 
DPP-4is)

6418 No increased AKI risk 6 months

Donnan et al. [23] Meta-analysis (SGLT2is vs. placebo) 6864 No increased AKI risk –
Gilbert and Thorpe [25] Meta-analysis of cardiovascular outcome 

trial
17,599 Decreased AKI risk 52 months

Menne et al. [24] Meta-analysis 68,159 Decreased AKI risk (36%) –
Lin et al. [13] Retrospective cohort study (SGLT2is vs. 

non-SGLT2is)
7624 Lower incidence of eGFR decrease and 

no increase in AKI risk
18 months

McMurray et al. [22] Phase 3 placebo-controlled trial 
(SGLT2is vs. placebo)

2373 Significantly fewer serious renal adverse 
events compared to placebo

24 months

Miyoshi et al. [12] Retrospective longitudinal cohort study 
(SGLT2is vs. non-SGLT2is)

1337 Lower incidence of eGFR decrease 24 months

Perkovic et al. [20] Double-blind, randomized placebo-con-
trolled trial (SGLT2is vs. placebo)

2202 No increased AKI risk 31.5 months

Heerspink et al. [17] Randomized double-blind placebo-
controlled multicenter clinical trial 
(SGLT2is vs. placebo)

2152 Decreased risk of ESRD
HR 0.64 (0.5–0.82)

29 months

Cahn et al. [16] Dapagliflozin Effect on Cardiovascular 
Events (DECLARE)–TIMI rand-
omized double-blind placebo-con-
trolled trial (SGLT2is vs. placebo)

8582 Decreased AKI risk 50 months

Katsuhara et al. [26] Analysis of Japanese Adverse Drug 
Event Report database (JADER) 
(SGLT2is vs. non-SGLT2is)

4322 No increased AKI risk; increased risk 
of ketoacidosis and urogenital tract 
infections

–

Cannon et al. [18] Multicenter double-blind randomized 
placebo-controlled event-driven non-
inferiority trial (SGLT2is vs. placebo)

5499 No increased AKI risk 42 months

Bakris et al. [19] Randomized double-blind placebo-con-
trolled multicenter international trial 
(SGLT2is vs. placebo)

84 No increased AKI risk and even slowed 
progression of kidney failure

30.5 months

Pasternak et al. [11] 1:1 propensity matched retrospective 
cohort study (SGLT2is vs. DPP-4is)

29,887 Reduced risk of serious renal events 20 months

Iskander et al. [10] Retrospective cohort study (SGLT2is vs. 
DPP-4is)

19,611 Decreased AKI risk 26 months

Rampersad et al. [9] 1:1 propensity matched retrospective 
cohort study (SGLT2is vs. oral glucose 
lowering drugs)

4778 No increased AKI risk 33 months

Alkabbani et al. [6] Population‐based retrospective cohort 
study (SGLT2is vs. DPP-4is)

9608 (7712 + 1896) No increased AKI risk 15 months

Katsuhara et al. [27] Analysis of United States Food and 
Drug Administration’s Adverse Event 
Reporting System records (SGLT2is 
vs. non-SGLT2is)

29,204 Increased AKI risk in monotherapy; 
AKI incidence reduced with the con-
commitant use of ACEis or ARBs

–

Lee et al. [7] Propensity score-matched retrospective 
cohort (SGLT2-is vs. DPP-4is)

3521 Decreased AKI risk (P < 0.001) and 
slowed eGFR decline compared to 
DPP-4is

24 months

Zhuo et al. [8] 1:1 matched population based retrospec-
tive cohort study (SGLT2is vs. DPP-
4is or GLP-1RA)

68,130 Decreased AKI risk compared to the 
DPP-4i group (HR 0.71, 0.65–0.76) or 
GLP-1RA (HR 0.81, 0.75–0.87)

6 months
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studies indicated no relationship between SGLT2i use and 
AKI incidence [6, 9, 13–15]. Lin et al. [13] also showed 
a statistically significant lower incidence of estimated glo-
merular filtration rate (eGFR) decline as reported in two 
other cohorts [7, 12]. Results from several studies showed 
a decline in adverse renal events [11] and risk for AKI with 
respect to their comparators [7, 8, 10]; interestingly Zhuo 
et al. [8] showed a decreased risk of AKI in SGLT2i users 
when compared to both DPP-4i and GLP-1RA users.

Seven randomized controlled trials (RCTs) are also 
included in Table 1: 5 were double-blinded randomized 
placebo-controlled trials [16–20], 1 was a single-blinded 
randomized placebo-controlled trial [21], 1 was a phase 3 
placebo-controlled trial [22]. Follow-up period ranged from 
24 [22] to 50 months [16], with a median of 31.5 months 
[20]. Four studies showed no link between SGLT2i use and 
AKI incidence compared to placebo [18–21], whereas, inter-
estingly, Cahn et al. showed a decrease in AKI with the use 
of SGLT2is compared to placebo [16]. Additionally, studies 
reported fewer serious renal adverse events [22], decreased 
risk of end-stage kidney disease (ESKD) [17] and statisti-
cally significant slower progression of kidney failure [19].

Three meta-analyses [23–25] and 2 database analyses [26, 
27] are also included in Table 1: SGLT2is were compared 
with placebo [23], non-SGLT2is [26, 27] or not defined [24, 
25]. Results showed no association of AKI with SGLT2i use 
[23, 26], decrease in AKI incidence [24, 25], increasing AKI 
incidence [27]. These different data make it harder to inter-
pret results and to provide precise management plans. Inter-
estingly, Katsuhara et al. pointed out that AKI incidence was 
reduced with the concomitant use of ACEis or ARBs [27].

AKI risk factors in SGLT2i use are summarized in 
Table 2: while no additional AKI risk due to the concomitant 
use of ARBs or ACEis with SGLT2is was reported by Ramp-
ersad et al. [9], Pasternak et al. [11] and Katsuhara et al. [27] 
reported a reduction in the risk of AKI by the concomitant 
use of ARBs or ACEis with SGLT2is. AKI risk with SGLT2i 
monotherapy was found to be 0.97, whereas it was 1.19 with 
the concomitant use of ACEis or ARBs [10]. Similarly, Lee 
et al. reported a statistically significant increase in the risk of 
AKI with the concomitant use of ACEis (1.5 vs. 2.2) [7].The 
concomitant use of non-steroidal anti-inflammatory drugs 
(NSAIDs) and SGLT2is was reported to not increase AKI 
risk by Pasternak et al. [11]. Contrarily, concerns regarding 
the concomitant use of NSAIDs and SGLT2is were reported 
by Heyman et al.: their study suggested that the possible 
explanation for this effect could be that SGLT2is could lead 
to dehydration caused by osmotic diuresis and natriuresis, 
especially in patients treated with diuretics. It was also pro-
posed that SGLT2is could cause an intensification of renal 
parenchymal hypoxia and hypoxic kidney injury. Therefore, 
these authors proposed avoiding the concomitant adminis-
tration of NSAIDs that could lead to iatrogenic hypoxic 

medullary injury [28]. Furthermore, no AKI risk due to the 
concomitant use of SGLT2is and diuretics was found in the 
study by Pasternak et al. [11] or in the study by Rampersad 
et al. [9]. On the contrary, Iskander et al. found that the AKI 
risk was 0.85 without any diuretic use and 2.01 with the 
concomitant use of a diuretic [10]. Similarly, the AKI risk 
was 1.4 without any diuretic use and 6.6 with the concomi-
tant diuretic use in the study by Lee et al. [7]. Miyoshi et al. 
reported that the initial decrease in eGFR was statistically 
significantly smaller in patients who discontinued diuretics 
compared with those who continued them (P = 0.004) [12].

AKI risk was shown to be higher with increasing 
age: incidence rates of 4.2, 5.4, and 9.3 cases per 1000 
person-years were reported in age groups < 65, 65 to 75, 
and > 75 years, respectively (P < 0.0001) [16]. Perkovic 
et al. reported that SGLT2is were protective at the baseline 
urinary albumin-to-creatinine ratio (UACR) > 1000 mg/g; 
SGLT2is had no beneficial effects when the baseline UACR 
was ≤ 1000 mg/g [20]. AKI risk in patients aged < 80 years 
was 1.04% and 1.84% in patients aged ≥ 80 years in the study 
by Iskander et al. [10]. McMurray et al. similarly reported a 
slight increase in the AKI risk when comparing < 65 years 
with ≥ 65 years of age: 15.7 vs. 16.7 [29]. The studies by 
Heerspink et al. [17] and Pasternak et al. [11] found that 
SGLT2i were protective in all age groups. Lastly, Lee et al. 
showed a gender difference, i.e., AKI risk rate lower in 
female than in male patients (2.18 vs. 3.56%) [7].

Temporarily withholding SGLT2is along with diuretics, 
metformin, NSAIDs, and renin–angiotensin–aldosterone 
system (RAAS) blocking agents under conditions of inter-
current illness, or procedures involving contrast materials is 
a reasonable approach given the minimal clinical downside 
to discontinuing these agents for a few days until the patient 
is back to his/her baseline state [30]. Figure 2 summarizes 
the AKI risk factors when using SGLT2is, the pathophysi-
ological mechanisms through which AKI could occur and 
the measures that should be taken to prevent AKI occur-
rence. Prevention methods shown in Fig. 2 are based on the 
recommendations of the best clinical practice; it must be 
acknowledged that clinical studies demonstrating the effec-
tiveness of such actions are lacking.

Do SGLT2is predispose to AKI?

In healthy individuals the glucose filtered from the glomer-
uli is reabsorbed by SGLT2 located at the S1 segment of 
the proximal tubules (80–90%) and by SGLT1 located at 
the S2–S3 segment of the proximal tubules (the remaining 
10–20% of the filtered glucose) [30] (Fig. 3). In contrast to 
the wider distribution of SGLT1 in the human body, SGLT2 
is found in the cerebellum and α-cells of pancreatic Langer-
hans islets as well as in the proximal kidney tubules [31].
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SGLT2is have been shown to reduce the progression of 
kidney failure by lowering glycated hemoglobin, blood pres-
sure, body weight, and albuminuria [21, 32, 33]. The large 
urinary loss of glucose and sodium caused by SGLT2 trans-
porter blockage raises the risk of hyperosmolarity and dehy-
dration. Urine glucose may also be reabsorbed in exchange 
for uric acid by the glucose transporter GLUT9b, which is 
found in the apical membrane of proximal tubular cells. This 
exchange causes a 5–10% drop in serum uric acid levels, 

as well as increased uricosuria. A decrease in serum uric 
acid levels results in a decrease in systemic and glomerular 
hypertension in experimental animals, suggesting a relation-
ship between uricosuria and the blood pressure lowering 
actions of SGLT2is [34]. On the other hand, an increase 
in urinary uric acid levels may be a risk factor for AKI via 
crystal-dependent and crystal-independent pathways. While 
uricosuria is a well-known cause of acute tumor lysis syn-
drome, evidence suggests that it may also play a role in other 

Fig. 2   Risk factors for acute 
kidney injury (AKI) related 
to SGLT2is and associated 
conditions/medications. RAAS 
renin–angiotensin–aldosterone 
system, ACEis angiotensin 
converting enzyme inhibitors, 
ARBs angiotensin II receptor 
blockers, NSAIDs non-steroidal 
anti-inflammatory drugs, SBP 
systolic blood pressure. (Same 
numbered points in different 
columns indicate the same 
entity)

Fig. 3   Blockage of diabetes 
mellitus-induced hyperfiltration 
by SGLT2is. The decreased 
sodium (Na) and glucose (G) 
absorption through SGLT2is 
increases the amount of Na and 
chloride (Cl) delivered to mac-
ula densa. Via tubuloglomerular 
feedback, afferent arterioles are 
constricted and glomerular fil-
tration rate (GFR) is decreased. 
SGLT2is also block sodium-
hydrogen transporter (NHE3) 
and Na reabsorption
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types of AKI, such as that caused by radiocontrast agents, 
rhabdomyolysis, heat stress, and, most importantly, dehydra-
tion, which is recognized as a possible cause of AKI when 
using SGLT2is [35]. As a result, transport of high amounts 
of glucose through the tubule may activate the osmolarity-
sensitive gene encoding aldose reductase. Aldose reductase 
induction results in the production of sorbitol and fructose. 
Fructose is metabolized by fructokinase, which is abun-
dant in the S3 segment, resulting in the production of uric 
acid, oxidative stress, release of chemokines, local tubular 
injury and inflammation. Furthermore, experimental models 
showed that this route can produce endogenous fructose in 
the renal cortex in type 1 DM, heat stress, or dehydration, 
and that it may partially cause renal damage in these condi-
tions [34, 36] (Fig. 1).

Additionally, other intracellular organic osmolytes, such 
as myo-inositol and taurine are depleted at the same time in 
which sorbitol and fructose accumulate within the tubular 
cells. As a result, it could be speculated that SGLT2is may 
lead to tubular damage. Szelat et al. emphasized that using 
SGLT2i and RAAS blockers together results in a greater 
drop in trans-glomerular pressure, and that taking drugs like 
NSAIDs or radiocontrast agents together with SGLT2is can 
cause renal medullary hypoxic damage, which may lead to 
AKI [37].

SGLT2 reabsorbs glucose and sodium, which results in a 
reduced concentration of sodium and chloride in the tubu-
lar fluid reaching the macula densa, specialized epithelial 
cells located at the end of the thick ascending limb of Henle 
(Fig. 3). This leads to an increase in eGFR via tubuloglo-
merular feedback mechanisms involving the dilatation of 
afferent arterioles [38, 39]. On the contrary, SGLT2is induce 
a mild acute decline in eGFR, attributed to the effect of 
proximal tubular natriuresis on tubuloglomerular feedback 
through increased macula densa sodium delivery, leading to 
afferent arteriole vasoconstriction and reduced intraglomeru-
lar pressure [38, 39] (Fig. 3). Additionally, SGLT2is have 
also been linked to the inhibition of sodium reabsorption 
at the level of the proximal tubules via sodium-hydrogen 
transporter referred to as NHE3 (Fig. 3) [40]. Moreover, 
the higher amounts of electrolytes and glucose reaching the 
distal tubules lead to an increase in fluid volume of the dis-
tal tubule and thus to an increase in hydrostatic pressure of 
Bowman’s capsule that is a negative regulator of net filtra-
tion pressure at the glomerular level [41] (Fig. 3).

Lastly, the shift of energy expenditure across the nephron 
from the S1 segment to the S3 segment of the proximal 
tubule, where SGLT1 is located, and to the medullary thick 
ascending limb leads to a decline in partial oxygen pressure 
in those regions and an enhancement of hypoxia-inducible 
factor signaling [42, 43]. Enhanced hypoxia-inducible factor 
signaling results in the upregulation of erythropoietin (EPO) 
and hemoxygenase-1 [44, 45].

Do SGLT2is protect from AKI?

Cassis et al. provided experimental evidence of the reno-
protective effects of the SGLT2i dapagliflozin, which 
reduced podocyte damage, glomerular lesions and pro-
teinuria in mice with non-diabetic kidney disease [46]. In 
accordance with this study, SGLT2 levels were found to 
be increased by albumin load both in in vivo and in vitro 
models in an NF-kB–dependent manner; SGLT2is lim-
ited cytoskeletal remodeling mediated by albumin load 
in a cultured podocyte environment leading to preserva-
tion of the tubuloglomerular integrity [46, 47]. SGLT2is 
also interfere in a reno-protective way with non-glycemic 
pathways [32, 48]. Furthermore, in experimental DM mod-
els SGLT2is reduced albuminuria, mesangial expansion, 
matrix accumulation and interstitial fibrosis via the com-
bined effects on glomerular hemodynamics and inhibition 
of renal inflammation and oxidative stress [49–52].

Another in vitro basic science study showed that the 
SGLT2i empagliflozin was able to reduce the levels of 
inflammatory and fibrotic markers [53]. Reduced meta-
bolic requirements of blocked co-transporters also reduces 
the risk of ischemic-reperfusion damage or renal tubular 
hypoxia [54]. A reduction in AKI risk might theoreti-
cally lead to improvements in CKD progression, offer-
ing a mechanistic explanation for the favorable effect of 
SGLT2i on eGFR slopes in people with heart failure but 
no albuminuria [55–58].

Peritubular cells can produce more EPO in response to 
lower oxygen tension in the medulla, which could explain 
why hematocrit levels are higher in these individuals [59]. 
Because of its immunomodulatory activities, restoring 
EPO levels may eventually contribute to renal tissue pro-
tection [60].

Hyperglycemia causes an increase in glucose filtra-
tion, which leads to an increase in glucose reabsorption 
in the proximal tubule. This, in turn, increases oxygen 
consumption and depletes oxygen delivery to the tubu-
lar distal areas, particularly the renal medulla [38, 61]. 
SGLT2is may enhance oxygen availability, minimize reac-
tive oxygen species, and improve medulla viability by low-
ering glucose reabsorption. This is difficult to reconcile 
with findings that SGLT2is boost EPO synthesis, which 
is often associated with renal hypoxia [62]. However, it 
does help to account for a rise in hematocrit, which would 
help oxygen supply. To explain this dilemma, it has been 
proposed that SGLT2is alter the production or signaling 
of the hypoxia-inducible factor, reduce hypoxia-inducible 
factor-1 activity and/or promote hypoxia-inducible fac-
tor-2 activity in the kidney, favoring a decrease in pro-
inflammatory and fibrotic factors while also increasing 
EPO levels [63, 64].



39Journal of Nephrology (2023) 36:31–43	

1 3

Lastly, various alternative pathways for SGLT2i renal 
protection have been suggested. The capacity to reduce 
blood pressure without increasing heart rate results in a 
decrease in sympathetic activity [65]. SGLT2is also reduce 
venous congestion and backpressure against renal venous 
drainage by reducing heart failure [66].

Dekkers et al. showed that dapagliflozin reduced albu-
minuria by 43.9% and eGFR by 5.1% compared to placebo. 
Dapagliflozin had no effect on glomerular charge or size 
selectivity index and reduced urinary excretion of IgG, 
IgG4, IL-6 and KIM-1; no changes in NGAL, LFABP, or 
MCP-1 were observed. Changes in albuminuria were shown 
to be linked to changes in eGFR and KIM-1. Finally, the 
albuminuria-lowering impact of dapagliflozin therapy for 
6 weeks could be due to a reduction in intraglomerular pres-
sure or tubular cell damage [67, 68].

It may be speculated that AKI can occur in the early 
phases, but due to inadequate measurements within 
1–2 weeks of SGLT2i use, it might not be detected by clini-
cians. If not progressive, a slight initial reduction in GFR 
due to hemodynamic effects should be expected and toler-
ated [69]. Herrington et al. showed a small reversible reduc-
tion in eGFR in the first 4 weeks compared to placebo, fol-
lowed by a significant reduction in the rate of chronic eGFR 
fall over time [70].

Five large scale RCTs have investigated the effects of 
SGLT2is on renal outcomes: the EMPA-REG outcome 
trial, the CANVAS program, CREDENCE, DAPA-CKD and 
EMPA-Kidney [17, 20, 21, 33, 70]. The EMPA-REG out-
come trial investigated primarily the cardiovascular effects 
and secondarily renal outcomes of empagliflozin therapy for 
192 weeks in 6185 participants with type-2 DM and high 
cardiovascular disease risk and eGFR > 30 mL/min/1.73 m2. 
This trial reported an initial decline in eGFR in the empagli-
flozin group compared to the placebo group at 4-week fol-
low-up (weekly decline of 0.62 ± 0.04 and 0.82 ± 0.04 mL/
min/1.73 m2 with 10 mg/day and 25 mg/day of empagliflo-
zin, respectively); an increase of 0.01 ± 0.04 mL/min/1.73 
m2 was observed in the placebo group. The risk for incident 
or worsening nephropathy (12.7% vs. 18.8%), progression 
of macroalbuminuria (11.2% vs. 16.2%), doubling of serum 
creatinine (1.5% vs. 2.6%), and need for renal replace-
ment therapy (0.3% vs. 0.6%) were lower in a statistically 

significant way in the empagliflozin group. No statistically 
significant change was observed in incident albuminuria 
(51.5% vs. 51.2%) [33, 71]. The CANVAS program included 
two RCTs with a total of 10,142 participants with a mean 
follow-up period of 188.2 weeks and investigated primarily 
the cardiovascular outcomes of canagliflozin therapy. The 
latter reduced the risk for albuminuria progression (89.4 vs. 
128.7 participants with an event/1000 patient-years), the 
need for renal replacement therapy, death due to renal causes 
and eGFR decline in a statistically significant way compared 
to placebo [21]. Few other small scale studies investigated 
the renal outcomes associated with SGLT2is and reported 
contradictory findings. The limitation of such studies are the 
low number of participants and the short follow-up periods 
[72–78].

Therefore, the latest research has shown beneficial renal 
protective effects of SGLT2is, while the initial concerns 
raised by the US FDA Adverse Event Reporting System 
(FAERS) in 2016 with the announcement of 101 cases of 
SGLT2i-associated AKI in the first month following the ini-
tiation of therapy are mostly overcome by the growing lit-
erature [79]. Initial decline in eGFR and elevation in serum 
creatinine in diabetic patients are not caused by tubular or 
glomerular injury, and thus, do not impose additional risks 
for AKI. Figure 4 summarizes the mentioned pathophysi-
ological mechanisms through which SGLT2is protect kid-
ney function, as shown by the latest clinical and pre-clinical 
studies.

Conclusions

We can probably stop worrying about AKI risk when using 
SGLT2is. Despite the warning published by the US FDA 
in 2016 about a potential AKI risk and the report of some 
clinical cases of AKI when prescribing SGLT2is, large 
observational real-life retrospective studies, RCTs and 
propensity-matched analyses of data from clinical practice 
unambiguously demonstrate that SGLT2is are safe for the 
kidney and do not predispose to AKI. However, the question 
whether these agents should be withheld in the presence of 
high-risk clinical situations remains unaddressed.
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