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Abstract
Diabetic kidney disease (DKD) accounts for a large proportion of end-stage renal diseases that require renal replacement 
therapies including dialysis and transplantation. Therefore, it is critical to understand the occurrence and development of 
DKD. Podocytes are mainly injured during the development of DKD, ultimately leading to their extensive death and loss. 
In turn, the injury and death of glomerular podocytes are also the main culprits of DKD. This review introduces the char-
acteristics of podocytes and summarizes the modes of their death in DKD, including apoptosis, autophagy, mitotic catas-
trophe (MC), anoikis, necroptosis, and pyroptosis. Apoptosis is characterized by nuclear condensation and the formation 
of apoptotic bodies, and it exerts a different effect from autophagy in mediating DKD-induced podocyte loss. MC mediates 
a faulty mitotic process while anoikis separates podocytes from the basement membrane. Moreover, pyroptosis activates 
inflammatory factors to aggravate podocyte injuries whilst necroptosis drives signaling cascades, such as receptor-interacting 
protein kinases 1 and 3 and mixed lineage kinase domain-like, ultimately promoting the death of podocytes. In conclusion, 
a thorough knowledge of the modes of podocyte death in DKD can help us understand the development of DKD and lay the 
foundation for strategies in DKD disease therapy.
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MAD	� Mitotic arrest deficiency
MC	� Mitotic catastrophe
MCNS	� Minimal change nephrotic syndrome
MDM2	� Murine double minute 2
miRNAs	� MicroRNAs
MLKL	� Mixed lineage kinase domain-like
mTOR	� Mammalian target of rapamycin
NLRP3	� Nucleotide-oligomerization domain-like 

receptor 3
PPARγ	� Peroxisome proliferator-activated receptor 

gamma
PI3-K	� Phosphoinositide 3-kinase
RAGE	� Receptors for AGEs
RARRES1	� Retinoic acid receptor responder protein 1
RIPK1	� Receptor-interacting protein kinase 1
ROS	� Reactive oxygen species
RIOK1	� RIO kinase 1
TGF-β	� Transforming growth factor-β
VEGF	� Vascular endothelial growth factor
Wnt	� Wingless‐type
WT1	� Wilms' tumor 1 transcription factor

Abbreviations
AGEs	� Advanced glycation end products
Ang II	� Angiotensin II
AOPPs	� Advanced oxidation protein products
AMPK	� AMP -activated protein kinase
BASP1	� Brain acid-soluble protein 1
CB1R	� Cannabinoid receptor 1
Cdk5	� Cyclin-dependent kinase 5
CD2AP	� CD2-associated protein
DKD	� Diabetic kidney disease
EMT	� Epithelial-mesenchymal transformation
ERS	� Endoplasmic reticulum stress
EVs	� Extracellular vesicles
FOXO4	� Forkhead box O4
FSGS	� Focal segmental glomerulosclerosis
FSP1	� Fibroblast-specific protein 1
GBM	� Glomerular basement membrane
GSDMD	� Gasdermin D
GSK3β	� Glycogen synthase kinase-3β
HG	� High glucose
LN	� Lupus nephritis
LRP6	� Lipoprotein receptor-related protein 6



1573Journal of Nephrology (2022) 35:1571–1584	

1 3

Introduction

Diabetic kidney disease (DKD), a recognized microvascular 
complication of diabetes mellitus, is clinically characterized 
by albuminuria, elevated creatinine levels, and abnormal 
glomerular filtration rates, which eventually develops into 
end-stage renal disease after several years [1–4]. Pathologi-
cally, podocyte loss and foot process effacement, glomeru-
losclerosis, glomerular basement membrane (GBM) thick-
ening, mesangial matrix expansion, interstitial fibrosis, and 
tubular atrophy contribute to the development of DKD [4, 5] 
(Fig. 1a). Among them, podocyte loss is an important early 
pathological marker of DKD, which accelerates the develop-
ment of DKD [6, 7]. As terminally differentiated glomerular 
visceral epithelial cells, the complete structure of podocytes 
is essential for the glomerular filtration function. However, 
a variety of factors in the diabetic environment can damage 
podocytes, resulting in the disappearance of podocyte foot 
processes, phenotypic transformation, and even detachment 
or death.

A discussion on the nature of podocyte loss events is 
required. Altintas and Reiser summarized the main modes 
of podocyte death in kidney diseases, including apopto-
sis, autophagy, mitotic catastrophe (MC), necroptosis, 
and anoikis [8]. Numerous studies have focused on the 
mechanism of podocyte apoptosis in DKD, indicating that 
it is the most common mode of podocyte death. Although 
autophagy is considered to be a protective mechanism in 
contrast to apoptosis, it also contributes to podocyte loss in 
some aspects. Interestingly, MC is defined as a failed process 
of multiplication and division that could result in podocyte 
injury. Additionally, anoikis implies that podocytes com-
pletely separate from the GBM. Besides, necroptosis and 
pyroptosis lead to lytic death of podocytes in DKD.

During the development of DKD, a variety of death 
events occur in podocytes that have lost their normal struc-
ture and function (Fig. 2). The loss of podocytes makes glo-
meruli lose their normal filtration function and promotes 
disease progression. A thorough discussion on the unique-
ness and correlation among various podocyte death modes 

Fig. 1   Representative photomicrographs of podocytes in patients with 
DKD generated by transmission electron microscopy. Scale bars indi-
cate 5 μm. a The foot process of podocytes fused, and the basement 
membrane to which the podocytes adhered was significantly thick-
ened. b An autophagosome formed in the cytoplasm of a podocyte. c 

Abnormal mitotic podocytes with binuclear features. (d) A podocyte 
completely detached from the basement membrane. BMT, basement 
membrane thickening; FPF, foot process fusion; AU, autophagosome; 
MC, mitotic catastrophe; AK, anoikis
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will lead to an understanding of podocyte death pathways 
that can be manipulated to achieve the prevention and treat-
ment of DKD.

Characteristics of podocytes

Structure and function of podocytes

Podocytes, endothelial cells, and GBM together constitute 
the glomerular filtration barrier. Podocytes are characteris-
tic, terminally differentiated visceral epithelial cells in the 

kidney, which are composed of cell bodies, primary pro-
cesses, and branched foot processes [9]. Podocytes adhere 
to GBM through α3β1 integrin [10]. Constitutively, inter-
secting foot processes always wrap capillaries [3]. And the 
space between adjacent foot processes is occupied by fil-
tration slit, which plays an important role in establishing 
selective permeability of the glomerular filtration barrier 
and preserving macromolecules in the plasma [5, 11]. As 
highly differentiated cells, podocytes have a limited ability 
to proliferate. Thus, if the quantity of podocytes lessens in 
the glomeruli, the remaining podocytes will not be adequate 
to cover the surface of GBM unless they assume a more 

Fig. 2   Modes of podocyte death in DKD. The process of apopto-
sis includes nuclear condensation, DNA fragmentation, the forma-
tion of apoptotic bodies, and finally phagocytosis by macrophages. 
Autophagy includes the formation of autophagosomes, fusion of 
autophagosomes and lysosomes, and degradation of autophagosomes. 
Meanwhile, mitotic catastrophe is characterized by the entry of podo-
cytes into the cell cycle, chromosome replication, and the formation 
of large cells with multiple micronuclei and chromatin condensation. 

Besides, anoikis implies that the podocyte is completely detached 
from the GBM. In addition, the process of necroptosis includes cell 
swelling, membrane permeabilization, membrane breakdown and the 
release of cell contents. In the process of pyroptosis, inflammasomes 
activate caspase family proteins, and gasdermin proteins translocate 
to the membrane to form pores; then, cell swelling and cytoplasmic 
outflow occur, resulting in cell membrane rupture. DKD, diabetic kid-
ney disease; GBM, glomerular basement membrane
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vulnerable hypertrophic form [12]. The detachment or death 
of podocytes from GBM and the disappearance of foot pro-
cesses result in damage to the integrity of the filtration mem-
brane and eventually lead to albuminuria [9, 13]. Therefore, 
podocytes are essential for maintaining the normal structure 
and function of the kidney.

Results and dangers of podocyte death in DKD 
development

Podocytes have a limited ability to repair and regenerate in 
the chemical and hemodynamic environment of diabetes, 
including in the presence of high glucose (HG), growth fac-
tors, fatty acids, angiotensin II (Ang II), transforming growth 
factor-β (TGF-β), hormones, and mechanical stretch [14–16]. 
When exposed to hyperfiltration and hyperperfusion, podo-
cytes can undergo specific cellular responses, including sig-
nal transduction system activation, increase in the synthesis 
of cytokines, and extracellular matrix accumulation [17]. 
Besides, Wolf et al. [16] found that the local increase of Ang 
II concentration in DKD led to a series of podocyte injury 
events, which suppressed the expression of nephrin and acti-
vated TGF-β and vascular endothelial growth factor (VEGF) 
systems. Because nephrin is an important component of the 
slit diaphragm, its loss in podocytes leads to the broadening 
and effacement of the foot process [18]. The activation of 
TGF-β can lead to mesangial matrix deposition and GBM 
thickening. Additionally, overexpressed VEGF in podocytes 
could increase glomerular hemodynamic pressure, alter the 
composition of GBM, and inhibit the expression of nephrin 
[16]. Collectively, these events lead to the death and loss of 
podocytes and exacerbate albuminuria.

In the early stage of DKD, podocytes are present in a 
hypertrophy phenotype without change in the total num-
ber. Minakawa et al. [19] found that with the development 
of DKD, the number of podocytes decreased and the glo-
merular volume gradually increased, causing albuminuria 
and progressive glomerulosclerosis. Albuminuria itself 
exacerbates the development and progression of DKD. It 
is reported that podocytes have the ability to endocytose 
albumin [20], however, this process might be a potentially 
important molecular mechanism of podocyte injury during 
glomerular diseases [21]. Nephrin can be internalized by 
podocytes through clathrin-dependent pathways and raft-
mediated endocytosis [22]. In DKD, both protein kinase 
C-alpha and regulator of ubiquitous kinase can mediate the 
endocytosis of nephrin by podocytes, further reducing the 
level of nephrin [23, 24]. In addition, excessive endocyto-
sis of podocytes to plasma proteins triggers an inflamma-
tory response that ultimately leads to the deterioration of 
podocyte function and induces cell death [25]. Loss and 
death of podocytes further increase the permeability of the 
glomerular filtration barrier to plasma proteins, thereby 

aggravating proteinuria and causing a vicious cycle [26]. 
Therefore, glomerular podocyte injury and death are 
important for the occurrence and early development of 
DKD.

Modes of podocyte death in DKD

Apoptosis of podocytes in DKD

Apoptosis is a highly regulated process of programmed cell 
death without an inflammatory response, which acts primar-
ily through the action of the serine protease caspases and has 
also been conceptualized as a self-directed cell “suicide” 
[27–29]. In apoptosis, cells undergo lethal changes, such as 
blebbing of the cell membrane, rupture of mitochondria, and 
DNA fragmentation [30], followed by the formation of apop-
totic bodies and their phagocytosis by macrophages [28]. As 
the most common mode of death, podocyte apoptosis and its 
underlying mechanisms have been widely reported in DKD.

Podocyte apoptosis induced by advanced glycation end 
products (AGEs)

AGEs and the corresponding receptor for AGEs (RAGE) 
display enhanced expressions in the kidney of diabetic db/
db mice. RAGE is generally limited to glomerular podocytes 
[31]. Chuang et al. [32] confirmed that AGEs promoted 
podocyte apoptosis in DKD by combining with RAGE, 
thereby activating the forkhead box O4 (FOXO4) transcrip-
tion factor and increasing the expression of the pro-apoptotic 
gene Bcl2l11. Using a DKD mouse model, Jing et al. [33] 
found that AGE-induced podocyte apoptosis was associated 
with the activation of the CXCL9-mediated JAK2/STAT3 
signaling pathway. Besides, Tae et al. [34] suggested that 
diabetic conditions could down-regulate CD2-associated 
protein (CD2AP) expression by activating the phospho-
inositide 3-kinase (PI3-K)/Akt signaling pathway, leading 
to AGE-induced podocyte injury. Thus, AGEs bind to their 
receptors to activate diverse signaling pathways, ultimately 
causing podocyte apoptosis.

HG‑induced reactive oxygen species (ROS) production 
initiates podocyte apoptosis

Extracellular HG can rapidly stimulate the generation of 
intracellular ROS through NADPH oxidase and mitochon-
drial pathways, which ultimately results in the apoptosis 
of podocytes [35]. Moreover, the inactivation of AMP-
activated protein kinase (AMPK)/tuberin protein in dia-
betes mice activated the mammalian target of rapamycin 
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(mTOR) signaling pathway, which enhanced oxidative 
stress by upregulating the expressions of Nox4 and Nox1 
and the activity of NADPH oxidase, subsequently lead-
ing to HG-induced podocyte apoptosis [36]. In addition, 
Chen et al. [37] have shown that FOXO3a played a vital 
role in mediating advanced oxidation protein product 
(AOPP)-induced podocyte apoptosis under oxidative stress 
in DKD. The accumulation and activation of FOXO3a in 
DKD accelerated podocyte injury induced by oxidative 
stress. Oxidative stress is known to be a very important 
part of diabetes. HG causes oxidative stress, which directly 
damages podocytes and contributes to their apoptosis.

Endoplasmic reticulum stress (ERS) is associated 
with podocyte apoptosis induced by HG

The process of unfolded or misfolded protein accumula-
tion in the endoplasmic reticulum that triggers the signal-
ing pathway dominated by an unfolded protein response 
is termed ERS. ERS induced by HG partially contributes 
to apoptosis in differentiated podocytes through various 
mechanisms [38, 39]. Yue et al. [40] reported that ERS 

mediated the upregulation of cyclin-dependent kinase 5 
(Cdk5) in podocytes induced by HG, while the increase 
in Cdk5 promoted the phosphorylation of MEKK1 at 
Ser280 in podocytes, which indicated that Cdk5/MEKK1/
JNK signaling axis was related to ERS-induced podocyte 
apoptosis. Besides, HG can also motivate Akt and NF-κB 
by activating cannabinoid receptor 1 (CB1R)-induced B1R 
and B2R [41]. This leads to stimulation of pro-apoptotic 
molecules by ERS, which ultimately triggers podocyte 
apoptosis [41]. Thus, CB1R/B1R, B2R/Akt, NF-κB signal-
ing axis can promote ERS-mediated DKD podocyte apop-
tosis. In conclusion, podocyte apoptosis induced by ERS is 
an essential factor in the pathogenesis of DKD.

MicroRNAs (miRNAs) and podocyte apoptosis

Numerous studies have reported abundant expressions 
of miRNAs in DKD, indicating their significant roles in 
the pathogenesis of DKD. In the kidney tissue of patients 
with DKD, overexpression of miR-770-5p triggers podo-
cyte apoptosis by targeting tissue inhibitors of metal-
loproteinase 3 and E2F transcription factor 3 [42, 43]. 

Fig. 3   Podocyte apoptosis signaling pathway network in DKD. In 
DKD, HG can induce functional events such as AGEs, ROS and ERS 
in podocytes while classical signaling pathways such as p53, mTOR 
and Notch are also activated, which jointly lead to podocyte apopto-
sis. Besides, the expression of a large number of miRNAs increases 

that participates in podocyte apoptosis. AGEs, advanced glycation 
end products; ROS, reactive oxygen species; ERS, endoplasmic 
reticulum stress; mTOR, mammalian target of rapamycin; miRNAs, 
microRNAs
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Meanwhile, HG stimulates the expression of miR-27a, 
which induces podocyte injury and apoptosis by activating 
β-catenin signaling through negative targeting of peroxi-
some proliferator-activated receptor gamma (PPARγ) [44]. 
Alternatively, miR-27a could also target FOXO1, subse-
quently triggering the ERS signaling pathway in podocytes 
and inducing DKD podocyte injury [45]. Other miRNAs 
including miRNA-337, miR-503, miR-218, miR195, and 
miR-134-5p could exert analogous effects in DKD podo-
cyte apoptosis [30, 46–49]. These studies have shown 
that miRNAs play an important role in DKD podocyte 
apoptosis.

Apoptosis of DKD podocytes mediated by p53 pathway

Tumor suppressor p53-mediated podocyte apoptosis is a 
complex process involving many different genes. HG upreg-
ulates the Notch pathway of podocytes, which can mediate 
podocyte apoptosis through Bcl-2 and p53 pathways [50]. 
Furthermore, Benoit et al. [51] reported that under diabetic 
conditions, the downregulation of low-density lipoprotein 
receptor-related protein 6 (LRP6) would lead to the inactiva-
tion of the Wingless‐type (Wnt) pathway, thereby enhanc-
ing the interaction between glycogen synthase kinase-3β 
(GSK3β) and p53, and ultimately contributing to podocyte 
apoptosis. Interestingly, the expression of retinoic acid 
receptor responder protein 1 (RARRES1) was also positively 
correlated with the decline of renal function in DKD when 
overexpressed RARRES1 was endocytosed and interacted 
with RIO kinase 1(RIOK1), finally leading to p53 activa-
tion and podocyte apoptosis [52]. In addition, Zhang et al. 
[53] also reported that the expression of brain acid-soluble 
protein 1 (BASP1) was enhanced in patients with DKD and 
diabetic db/db mice, which promoted podocyte apoptosis 
by activating p53 apoptosis pathway via Wilms' tumor 1 
transcription factor (WT1). In conclusion, if podocytes 
damaged in the diabetic environment cannot be repaired, 
the gene network involved in regulating p53 is activated, 
causing apoptosis of podocytes.

Apoptosis accounts for more than half of DKD podocyte 
death. Harmful irritants, such as AGEs, ROS, and miR-
NAs, accumulated in the diabetic environment can damage 
podocytes and induce podocyte apoptosis. Moreover, in 
podocytes exposed to the diabetic environment with hyper-
filtration and hyperperfusion, p53, mTOR, Notch, and other 
classical signaling pathways are activated, which together 
lead to podocyte apoptosis (Fig. 3). Although apoptosis can 
remove diseased cells, excessive apoptosis not only fails to 
maintain cellular function, but also accelerates disease pro-
gression. Therefore, the massive apoptosis of podocytes in 
DKD causes excessive loss of podocytes and the normal 
structure and function of glomerular cannot be maintained.

Autophagy of podocytes in DKD

The role of autophagy in podocyte injury in DKD

Autophagy, also known as cell self-digestion, is a conserva-
tive catabolic process that can degrade abnormal proteins, 
organelles, and macromolecules, and recover decomposition 
products to maintain cell homeostasis and survival [54–56]. 
Hence, abnormal autophagy can result in cell death. The 
process of autophagy involves autophagy induction, fusion 
of autophagic vacuoles with lysosomes, lysosomal degrada-
tion of autophagic vacuoles, etc. If any node is destroyed or 
blocked, autophagy will be devitalized [57]. Several types of 
autophagy exist, such as microautophagy, macroautophagy, 
and chaperone-mediated autophagy [55, 58].

Podocyte homeostasis is maintained by an adequate level 
of basal autophagy [58], which can protect podocytes from 
HG-induced damage by preventing insulin resistance [59]. 
However, the blockade of autophagy induction in DKD can 
cause the inhibition of lysosome degradation of autophago-
somes, accumulation of damaged lysosomes, formation of 
large mitochondria in podocytes, and death of podocytes 
[56, 60] (Fig. 1b). Under HG exposure, the autophagy activ-
ity of podocytes was decreased and Sequestosome 1 expres-
sion was increased, suggesting a new mechanism of HG-
induced podocyte injury [61].

Signaling pathway that mediates podocyte autophagy 
in DKD

Markus et al. [62] have demonstrated that the mTOR sig-
nal is significant for podocyte homeostasis and survival. 
However, excessive activation of mTOR eventually leads 
to abnormal kidney function, such as the development of 
DKD under the HG state. When podocytes are exposed 
to HG, the mTORC1 pathway is activated with a subdued 
level of protective autophagy [63]. Ji et al. [64] constructed 
the DKD rat model and proved that the expression of con-
nexin 43 was upregulated after HG stimulation, which could 
lead to podocyte injury by activating the mTOR signaling 
pathway. Significantly, rapamycin can heighten the level of 
autophagy by inhibiting the mTOR pathway, thus reducing 
DKD induced podocyte injury [65].

AGEs not only induce apoptosis but are also closely asso-
ciated with podocyte autophagy. The expression of AGEs 
is elevated in diabetic conditions, which inhibits the forma-
tion and turnover of podocyte autophagosomes by activating 
mTOR and inhibiting the nuclear translocation of the pro-
autophagic transcription factor EB [66]. In addition, lysoso-
mal membrane permeabilization induced by AGEs mediates 
lysosomal dysfunction, leading to insufficient autophagy and 
pathological changes in podocytes of patients with DKD 
[67].
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Other defective autophagy pathways are also essential. 
For example, the increase of plasma apelin concentration in 
patients with diabetes, has been shown to promote the devel-
opment of DKD by inhibiting podocyte autophagy [68]. In 
addition, β-arrestin-1 and β-arrestin-2 are upregulated in the 
kidneys of diabetic db/db mice and patients with diabetes, and 
inhibit podocyte autophagy through the negative regulation 
of ATG12-ATG5 conjugation, resulting in podocyte injury 
[69]. Podocyte nucleotide-oligomerization domain-like recep-
tor 3 (NLRP3) inflammasome can also negatively regulate the 
autophagy process of podocytes in DKD mice [70].

Autophagy exists as a protective mechanism in DKD. In 
the diabetic environment, a variety of signaling molecules 
mediate the inhibition of podocyte autophagy. Interestingly, 
the same signaling pathways that play a role in apoptosis 
also contribute to autophagy defects. As a defense and stress 
regulation mechanism, autophagy is impaired in the diabetic 
environment, which ultimately prevents the survival of 
podocytes. Therefore, autophagy defects in DKD facilitate 
podocyte death and renal insufficiency.

Podocyte MC in DKD

MC is defined as a type of cell death characterized by abnor-
mal mitosis that commonly manifests in the form of large 
cells with multiple micronuclei and chromatin condensation 
[71]. The morphological characteristics of MC include binu-
clei, multiple nuclei (aneuploidy), micronuclei (round DNA 
aggregates close to the nucleus), irregularly shaped nuclei, 
and abnormal mitotic spindles [72–75]. Multiple molecules 
were involved in the control of MC, particularly, cell-cycle 
specific kinases (such as cyclin B1-dependent kinases Cdk1 
and Aurora kinases), cell-cycle checkpoint proteins, sur-
vivin, p53, caspases, and the Bcl-2 family [72].

MC causes podocyte loss and death

Mature podocytes are considered resting cells in the G0 stage 
that lack the ability to proliferate [76, 77]. However, podocytes 
can reenter the cell cycle, although they cannot divide during 
kidney injury [78]. Owing to the absence of Aurora kinase B 
expression, mature podocytes cannot form effective mitotic 
spindles [79, 80]. In addition, cytokinesis requires the complete 
recombination of actin cytoskeleton, which is incompatible 
with maintaining the structure of the foot process and the slit 
diaphragm [81]. Because differentiated podocytes have inher-
ent obstacles to mitosis, their proliferative response does not 
promote recovery from injury, but rather accelerates glomerulo-
sclerosis and podocyte loss [76]. Academic studies by Masanori 
et al. [82] found that the exfoliated podocytes in the urine of 
patients with diabetes showed the morphological characteristics 
of MC, indicating that MC may be a major reason for the loss of 
podocytes in DKD. Multinucleation of podocytes is recognized 

as a feature of abnormal mitosis [71, 83] while binuclear, asym-
metric nuclear, and multinuclear podocytes serve as markers 
of the cell cycle to raise podocyte sensitivity to cell death [78]. 
Tang et al. [84] discovered abnormal mitotic podocytes with 
binuclear characteristics, dot-like nuclear chromatin condensa-
tion and foot excess effacement in patients with DKD, which 
is the direct evidence of the occurrence of MC in podocytes 
(Fig. 1c). In addition, in vitro experiments also showed that 
HG-treated podocytes manifested multipolar mitotic spindles 
with irregularly distributed chromosomes, which are different 
from the formation of bipolar microtubule mitotic spindles in 
normal mitotic cells [84].

Molecular mechanism of podocyte MC in DKD

Many studies have reported various molecular mechanisms 
underlying podocyte MC in DKD. Su et al. [85] found that 
the overexpression of mitotic arrest deficiency (MAD)2B 
in patients with DKD and diabetic db/db mice inhibited the 
degradation of cyclin B1 and Skp2 driven by cadherin1-
anaphase-promoting complex/cyclosome through the sup-
pression of the expression of cadherin1, thereby causing 
the abnormal entry of podocytes into the cell cycle and 
aggravating podocyte injury. Meanwhile, HG exposure can 
enhance the expressions of Ki67, cyclinB1 and Aurora in 
podocytes, upregulate the level of murine double minute 
2 (MDM2), and force podocytes to enter the S phase and 
bypass the G2/M checkpoint, thereby aggravating podocyte 
loss through MC [84]. MDM2 participates in HG-induced 
podocyte MC by activating Notch1 signal transduction in a 
p53-independent manner [84]. Interestingly, the activation of 
Notch signal can force podocytes to pass through the G2/M 
checkpoint, which induces MC and leads to podocyte loss 
[79]. It can be concluded that MAD2B, MDM2, and Notch 
are momentous molecular markers of podocyte MC in DKD.

During the development of DKD, podocytes stimulated 
by a harmful environment tend to renew themselves. How-
ever, podocytes do not have the ability to proliferate indefi-
nitely like tumor cells. In fact, in vivo podocytes are qui-
escent cells that lack the ability to renew during adult life. 
Therefore, the increased expression of podocyte prolifera-
tion markers, the presence of multinuclear podocytes or even 
DNA replication observed in DKD do not provide evidence 
of local podocyte regeneration, however, these events may 
represent a paradoxical cell-cycle process that ultimately 
exacerbates podocyte loss, which is in fact MC.

Podocyte anoikis

Podocyte anoikis in DKD

Anoikis is defined as a cell deficiency caused by the loss 
of attachment or inappropriate adhesion to the extracellular 
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matrix [86]. Podocyte anoikis implies that the foot process 
of the podocyte disappears completely along the basement 
membrane of the surrounding capillaries [87] (Fig. 1d). Foot 
processes connect podocytes to GBM through integrins and 
dystroglycans [88]. In patients with DKD and streptozo-
tocin-induced diabetic rats, the expression of α3β1 integrin 
lessened and resulted in the focal detachment of podocytes 
from GBM [89, 90], which indicated that HG stimulation 
inhibited the expression of integrin in podocytes. However, 
some studies have also suggested that early podocyte detach-
ment in DKD is mediated by the upregulation of α3β1 inte-
grin [91].

Podocyte anoikis with epithelial‑mesenchymal transition 
(EMT)

In DKD, podocytes can undergo the process of transforma-
tion from mature cells to mesenchymal cells. EMT is widely 
involved in the early stage of podocyte loss in diabetes by 
causing podocyte detachment or death [63, 92]. Podocytes 
undergoing EMT abandon their complex morphological 
structure and highly specialized functions, which impairs 
the integrity of the glomerular filtration barrier [15]. Inter-
estingly, podocytes can be detected in the urine of patients 
with DKD [92], and they can be cultured and proliferated 
in vitro [93]. This suggests that although anoikis is a mode 
of death, detached podocytes do not die immediately unless 
they no longer get a normal living environment.

Yamaguchi et al. [94] indicated that podocytes in nor-
mal glomeruli rarely expressed fibroblast-specific protein 
1 (FSP1). However, the upregulation of FSP1 expression 
was observed in podocytes of patients with diabetes, which 
may induce podocyte anoikis via EMT and is associated 
with more severe clinical and pathological manifestations 
of DKD. As a key event in DKD induction, overactivation 
of mTORC1 stimulates ERS and EMT-like phenotypes in 
podocytes, ultimately leading to podocyte anoikis [95]. 
Therefore, podocyte anoikis in DKD is closely connected 
with the level of α3β1 integrin and partly mediated by EMT. 
Podocytes detached from the GBM did not die immediately 
and were viable if given normal culture conditions.

Podocyte necroptosis

Necroptosis is a type of programmed cell death that occurs 
in the morphology of necrosis including swelling of orga-
nelles and plasma membrane rupture, which is different 
from that of apoptosis [96, 97]. Necroptosis can activate 
inflammatory responses by releasing cell contents from 
the ruptured plasma membrane [97, 98], which is driven 
by signaling cascades such as receptor-interacting protein 
kinase 1 (RIPK1), receptor-interacting protein kinase 3 

(RIPK3), and mixed lineage kinase domain-like (MLKL) 
[99]. These signal molecules are not only the core regulatory 
factors of necroptosis, but also special markers that can be 
detected [100]. Necroptosis is an important model of cell 
death under numerous pathological conditions and shares 
multiple upstream signaling pathways with apoptosis [96].

Mechanisms underlying HG induced podocyte necroptosis

Studies have shown that necroptosis plays an important part 
in podocyte injury [101]. Xu et al. [96] found that UCHL1, a 
member of the group of deubiquitinating enzymes, was over-
expressed in the podocytes of patients with DKD, which was 
consistent with the argument supporting podocyte necrop-
tosis. Under the condition of DKD, HG stimulation induced 
podocyte necroptosis by activating RIPK1 and RIPK3 path-
ways, that were accompanied by the increased expression of 
UCHL1. Incremental UCHL1 further enhanced the activa-
tion of the RIPK3/MLKL pathway and promoted podocyte 
necroptosis. As a result, UCHL1 facilitates HG-induced 
podocyte necroptosis by regulating the ubiquitination status 
of the RIPK1/RIPK3 pathway [96].

As a new mode of podocyte death, necroptosis will be a 
preventative and therapeutic target for DKD. However, at 
present, only some studies focus on podocyte necroptosis in 
DKD. Thus, more efforts are required to explore the nature 
of necroptosis in DKD through fundamental and clinical 
studies.

Podocyte pyroptosis

Characteristics of podocyte pyroptosis

Pyroptosis is a form of lytic regulated cell death [102]. It is 
characterized as a proinflammatory response, which depends 
on the activation of caspase-1 and caspase-4/-5/-11 medi-
ated by inflammasomes and the upregulation of gasdermin 
D (GSDMD) expression [97, 103].

Podocyte pyroptosis in DKD

Pyroptosis mediated by caspase-11/4 and GSDMD was 
activated in DKD and participated in podocyte loss. In the 
HG status, the expression of caspase-4, caspase-11, and the 
cleavage of GSDMD-N in podocytes increased significantly, 
accompanied by a decrease in the expressions of nephrin 
and podocin in podocytes [102]. Meanwhile, knockout 
of caspase-11 or GSDMD can inhibit the augmentation 
of inflammatory cytokines, indicating that the activation 
of pyroptosis is at least partly connected with the inflam-
matory response in DKD [102]. Thus, the suppression of 
podocyte pyroptosis may occlude the development of DKD 
by preventing the activation of local inflammation. In turn, 
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inhibition of inflammatory factors can also reduce podocyte 
pyroptosis and ameliorate DKD [104]. Furthermore, a study 
by Ding et al. [105] found that miR-215p in macrophage-
derived extracellular vesicles (EVs) mediated DKD podo-
cyte pyroptosis by targeting A20. As reported, miR-215p 
was significantly elevated in the macrophage-derived EVs 
treated with HG. In addition, elevated miR-215p increased 
the inflammasomes NLRP3, caspases-1, and IL-1β related 
to pyroptosis by inhibiting A20, and thus, enhancing the 
production of ROS, ultimately resulting in podocyte pyrop-
tosis [105]. The pyroptosis of podocytes in DKD is closely 
related to inflammatory factors. Thorough investigations on 
podocyte pyroptosis in DKD are few at present, and further 
research in this area is needed.

Modes of podocyte death in other 
podocyte‑related diseases

Various modes of podocyte death are not unique to DKD; in 
fact, they also occur in other podocyte-related diseases. For 
example, RARRES1 gene, which induces podocyte apopto-
sis in DKD, has been proved to induce podocyte apoptosis 
and disease progression in focal segmental glomeruloscle-
rosis (FSGS) as well [52]. In addition, adriamycin can pro-
mote podocytes to reenter the cell cycle in vivo and in vitro 
[106], while MDM2 drives the process of podocyte MC in 
FSGS [73]. Besides, autophagy is activated in lupus nephri-
tis (LN), especially in podocytes. The increased level of 
autophagy has a protective effect on podocyte injury induced 
by antibody and interferon-α [107], which is similar to the 
protective effect of autophagy found in DKD. However, 
autophagy is not beneficial in all podocyte-related diseases. 
For instance, in patients with minimal change nephrotic syn-
drome (MCNS), podocyte autophagy is significantly associ-
ated with the effacement of the foot process and the occur-
rence of albuminuria [108]. Although the number of reports 
on podocyte necroptosis is insufficient, RIPK3 activation-
mediated podocyte necroptosis has been found in LN and 
Fabry nephropathy [109, 110]. Interestingly, anoikis is a spe-
cial form of progression in Alport syndrome because of the 
progressive detachment and death of glomerular podocytes 
in such patients [111]. In podocyte-related diseases, podo-
cyte death is inevitable. Death mechanisms can be common 
in different podocyte diseases, such as RARRES1 in DKD 
and FSGS. Meanwhile, the same mode of death may play 
different roles in different podocyte-related diseases, such 
as autophagy in LN and MCNS. Moreover, kidney diseases 
such as DKD, LN, and FSGS obviously involve more than 
one mode of podocyte death, which shows that understand-
ing the mode of podocyte death is conducive to the explora-
tion and treatment of the diseases.

Conclusions

The occurrence and development of DKD, a main micro-
vascular complication of diabetes, is closely associated 
with the injury of podocytes. Owing to the limited repair 
and proliferation capacity of mature podocytes, numerous 
harmful factors in the diabetic environment can lead to their 
loss and death. Podocyte loss is present in various modes 
in DKD, which in turn aggravates disease progression. 
Apoptosis mainly accounts for podocyte death in DKD via 
oxidative stress, ERS, AGEs, miRNAs, and other classic 
signaling pathways. Although autophagy plays an opposite 
role in regulating podocyte injury in DKD, it shares multiple 
signaling pathways with apoptosis-mediated podocyte loss. 
In DKD, MC encourages podocytes that lack the ability to 
proliferate to reenter the cell cycle, leading to wrong mito-
sis and podocyte death by various mechanisms. Moreover, 
anoikis emphasizes that podocytes detach from the GBM. 
In addition, necroptosis is driven by signaling cascades such 
as RIPK1, RIPK3, and MLKL while pyroptosis is closely 
relevant to the activation of inflammasomes. However, these 
death modes are present not only in DKD, but also in other 
podocyte-related diseases. Podocyte loss in DKD may pre-
sent in one or several modes simultaneously, and we can-
not always make accurate judgment on the foremost death 
mode. This review has its limitations, as most scholars have 
focused on the discussion of apoptosis, while few studies 
related to necroptosis and pyroptosis of podocytes in DKD 
have been reported. These novel modes of cell death, MC, 
necroptosis and pyroptosis, are expected to be the focus of 
future research. It is important to investigate the mecha-
nism of podocyte death and identify the underlying sign-
aling pathways. By comprehending the death mechanisms 
that mediate the loss of podocytes, it will be easier for us to 
identify novel targets for DKD treatment and the subsequent 
exploitation of new drugs.
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