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Abstract
The most common cause of liver disease worldwide is now non-alcoholic fatty liver disease (NAFLD). NAFLD refers to 
a spectrum of disease ranging from steatosis to non-alcoholic steatohepatitis, causing cirrhosis, and ultimately hepatocel-
lular carcinoma. However, the impact of NAFLD is not limited to the liver. NAFLD has extra-hepatic consequences, most 
notably, cardiovascular and renal disease. NAFLD and chronic kidney disease share pathogenic mechanisms including 
insulin resistance, lipotoxicity, inflammation and oxidative stress. Not surprisingly, there has been a recent surge in efforts 
to manage NAFLD in an integrated way that not only protects the liver but also delays comorbidities such as chronic kidney 
disease. This concept of simultaneously addressing the main disease target and comorbidities is key to improve outcomes, as 
recently demonstrated by clinical trials of SGLT2 inhibitors and GLP1 receptor agonists in diabetes. HIF activators, already 
marketed in China, also have the potential to protect both liver and kidney, as suggested by preclinical data. This review 
concisely discusses efforts at identifying common pathogenic pathways between NAFLD and chronic kidney disease with 
an emphasis on potential paradigm shifts in diagnostic workup and therapeutic management.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most com-
mon cause of chronic liver disease [1]. NAFLD is associ-
ated with metabolic syndrome and obesity, and the growing 
worldwide prevalence of obesity is driving the increased 
prevalence of NAFLD, currently estimated at 24% [2]. 
NAFLD is considered a spectrum of liver disease ranging 
from steatosis (only intrahepatic triglyceride accumulation) 
to non-alcoholic steatohepatitis (NASH) to fibrosis ulti-
mately leading to cirrhosis [3]. At the current rate of growth 
in prevalence, NAFLD will likely outpace hepatitis C as the 
leading indication for liver transplantation [1]. Importantly, 
NAFLD is linked to other metabolically-related disorders, 
such as cardiovascular diseases (CVD), diabetes mellitus 
(DM), and chronic kidney disease (CKD) [2].

The pathogenic mechanisms underlying NAFLD develop-
ment include increased free fatty acids accumulation, inflam-
matory cytokines and insulin resistance [1–3]. In addition, 
higher serum fetuin A levels and decreased serum adiponec-
tin levels are associated with NAFLD [4]. Hepatic oxida-
tive stress, lipotoxicity leading to cell death, mitochondrial 
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injury, endoplasmic reticulum (ER) stress, iron overload (not 
in all patients), chronic immune system activation, distorted 
gut microbiome (increased Proteobacteria and Bacteriodetes 
along with a decrease in Firmicutes) are all implicated in the 
development of NAFLD (Fig. 1) [5].

These pathogenic mechanisms may also play a role in 
other systemic diseases, therefore numerous recent stud-
ies evaluated the association between NAFLD and other 
systemic diseases. CKD prevalence is approximately 13% 
worldwide [1], whereas CKD prevalence in patients with 
NAFLD has been estimated at approximately 20–25% two-
fold higher than inpatients without NAFLD [6].

Due to the high morbidity and mortality of CKD 
[1, 7], early detection and treatment are key to prevent 
premature death. The association between NAFLD and 
CKD in diverse epidemiological studies (Table 1) that 

are associated with the prevalence and severity of CKD 
[8] suggests that NAFLD patients should be considered 
at high risk of CKD and screened for CKD by assess-
ing eGFR and albuminuria (Table 2). Thus, histologically 
proven cirrhosis correlated with increased risk of CKD. 
In addition, NAFLD was associated with proteinuria [8]. 
In 1525 CKD patients followed for 10 years, NAFLD was 
independently associated with a larger decline in esti-
mated glomerular filtration rate (eGFR) and with CKD 
progression [7]. In addition, NAFLD was associated with a 
higher incidence of CKD in 1760 patients with type 2 DM 
followed for 6.5 years and this was independent of other 
confounding factors such as age, gender and hypertension 
[9]. The prevalence of nephrolithiasis was also higher in 
patients with NAFLD referred to computed tomography 
(CT) due to clinically suspected renal colic [10].

Fig. 1  Multi-hit model for development of non-alcoholic fatty liver 
disease (NAFLD). NAFLD formation has a complex pathophysiol-
ogy and many components such as impaired lipid metabolism, insulin 

resistance, inflammatory cytokines, oxidative stress, increased fruc-
tose and uric acid levels, dysbiosis of microbiome and genetic factors 
may play a role on NAFLD pathophysiology
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Shared pathogenic mechanisms in NAFLD and CKD

Insulin resistance, atherogenic dyslipidemia, oxidative 
stress and pro-inflammatory mediators released from liver 
are considered key contributors in the pathogenesis of 
CKD [8, 11]. Thus, patients with NAFLD have increased 
advanced glycated end products, C-reactive protein, tumor 
necrosis factor-alpha and transforming growth factor-beta 
levels [9]. Moreover, endothelial dysfunction, decreased 
adiponectin and increased fetuin-A levels may interact 
with the renin–angiotensin–aldosterone system (RAAS) 
and contribute to CKD progression [1]. Gamma glutamyl 

transaminase (GGT) is specifically increased in NAFLD 
and is also associated with an increased risk for CKD 
[12]. Additionally, atherogenic dyslipidemia has also been 
linked to CKD through actions of oxidized low density 
lipoproteins (LDLs) on kidney cells, including mesangial 
cell proliferation and glomerular injury [8]. The shared 
pathogenic mechanisms in NAFLD and CKD and liver-
kidney crosstalk are summarized in Figs. 2 and 3. 

Another potential link consists of shared susceptibility 
gene variants between NAFLD and CKD. One example is 
PNPLA3: gene variants associated with decreased eGFR 
levels in children with NAFLD [13].

Table 2  Paradigmshifts in the integrated management of non-alcoholic fatty liver disease (NAFLD): focus onchronickidney disease (CKD)

Process 2010 2020

Assessment of NAFLD patients for CKD No assessment Yearly eGFR and albuminuria
Referral to Nephrology No referral Referral if a) eGFR < 60 ml/min/1.73 m2 or b) urinary 

albumin:creatinine excretion > 30 mg/g or c) persistent microhe-
maturia or d) eGFR loss faster than 5 ml/min/1.73 m2/year even 
if a), b) and c) are not met

Assessment of CKD patients for NAFLD No assessment Liver sonography and/or elastography at least once
Referral to Hepatology No referral Referral to Hepatology if NAFLD present
Therapy for patients with both NAFLD and CKD No specific indication Use drugs with the potential to improve both such as telmisartan, 

GLP1R mimetics and SGLT2 inhibitors

Fig. 2  Pathogenic mechanisms potentially linking non-alcoholic fatty 
liver disease (NAFLD) and chronic kidney disease (CKD). Many 
mechanisms such as increased free fatty acid accumulation, increased 
inflammatory cytokines, insulin resistance, decreased hepatic oxi-
dative stress, high uric acid and fructose levels leads to formation 
of fatty liver. Fatty liver increases the risk of development of CKD 

with activation of sympathetic nervous system, enhanced sodium 
retention, oxidative stress and inflammation by causing increased 
advanced glycated end products, CRP, tumor necrosis factor-alpha, 
transforming growth factor-beta levels, endothelial dysfunction, 
increased formation of oxidized LDL cholesterol



654 Journal of Nephrology (2021) 34:649–659

1 3

NAFLD and CKD with and without obesity

It is well known that obesity is very closely associated with 
NAFLD [14, 15]. On the other hand, CKD is associated 
with obesity [16]. In a sample of 2585 adults with a mean 
follow-up of 18.5 years, body mass index (BMI) was associ-
ated with a 23% (odds ratio (OR), 1.23; 95% CI 1.08–1.41) 
increase in developing kidney disease [17]. Similar findings 
were observed also in other large studies [18, 19]. Thus, it is 
possible that, at least in some cases, the problem is between 
obesity and the kidney rather than a direct link between the 
liver and the kidney. To say in other words, obesity may both 
cause NAFLD and CKD and there may not be a direct link 
between CKD and NAFLD. Thus it is important to under-
line evidence of kidney involvement in patients with fatty 
liver without obesity. Unfortunately, there is not satisfac-
tory data in this regard. In one study performed in children 
partly explained this issue. Pacifido et al. showed that chil-
dren with NAFLD had lower eGFR and higher albuminuria. 
More importantly, multivariate logistic regression analysis 
revealed that NAFLD was associated with decreased eGFR 
and/or microalbuminuria [OR, 2.54 (95% CI 1.16–5.57); 
p < 0.05] independently of anthropometric variables [20].

Besides, new data showed that there are cases of NAFLD 
among lean people. Seto et al. suggested that approximately 
20% of the Asian population, lean NAFLD is closely linked 

with insulin resistance, diabetes, and other metabolic com-
plications which are risk factors also for CKD [21]. Thus, we 
suggest that NAFLD is independently associated with CKD 
however more studies are needed in this issue.

Insulin resistance

Insulin resistance has been considered as a major patho-
logical factor for development of both NAFLD and CKD, 
as well as a complication of NAFLD due to elevated liver 
free fatty acid uptake. Insulin resistance can accelerate CKD 
progression by modulating renal hemodynamics following 
the activation of the sympathetic nervous system, sodium 
retention and inactivation of the natriuretic peptide system 
[22]. Insulin resistance is also associated with CVD via 
increased oxidative stress, inflammation and endothelial 
dysfunction [22].

Fructose metabolism and uric acid

Several recent studies demonstrated that high fructose intake 
from sweetened beverages is associated with a high risk of 
NAFLD and progressive CKD [23–26]. Liver fructokinase 
phosphorylates fructose to fructose-1-phosphate, ultimately 
resulting in increased accumulation of uric acid. Uric acid 
may contribute to the development and progression of 

Fig. 3  Potential therapeutic targets in the treatment of non-alcoholic 
fatty liver disease (NAFLD) and chronic kidney disease (CKD). 
Lifestyle modifications such as weight loss, increased physical activ-
ity, decreased salt intake and fructose intake, glucagon like peptide 

receptor activators and rennin angiotensin-aldosterone system block-
ers play a potential role for therapeutic intervention of fatty liver by 
anti-fibrotic, anti-oxidative and anti-inflammatory pathways
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NAFLD, CKD and CVD via hepatocyte adenosine triphos-
phate (ATP) depletion, mitochondrial reactive oxygen spe-
cies (ROS) generation, enhanced hepatic and renal lipogen-
esis, reduced nitric oxide (NO) bioavailability, endothelial 
dysfunction and proinflammatory cytokine secretion [24, 
25]. Uric acid also activates aldose reductase and the polyol 
pathway for endogenous fructose and fat production causing 
fatty liver [27]. In longitudinal studies, higher uric acid lev-
els were a risk factor for developing insulin resistance [28], 
dyslipidemia [29] and fatty liver [30, 31]. Hyperuricemia is 
also a known risk factor for developing CKD [32, 33]. This 
supports a role for hyperuricemia causes in both CKD and 
NAFLD.

Fetuin‑A and adiponectin

Increased fetuin-A levels and decreased adiponectin levels 
are associated with NAFLD and CKD. Fetuin-A is a 64-kDa 
liver-secreted serum glycoprotein that promotes insulin 
resistance by disrupting insulin signaling through 5-AMP 
activated protein kinase (AMPK) inhibition after binding to 
insulin receptor tyrosine kinase in hepatocytes and skeletal 
muscle [34]. Additionally, downregulates adiponectin in adi-
pose tissue through the Wnt-PPAR γ pathway and indeed, 
Fetuin-A levels are inversely correlated with adiponectin 
levels [35]. Adipose tissue-secreted Adiponectin improves 
insulin resistance, thus opposing fetuin-A actions. In this 
regard, adiponectin levels are inversely correlated with pro-
teinuria [4].

Oxidative Stress

Oxidative stress is another key promoter of NAFLD and 
CKD. Nuclear erythroid related factor-2 (Nrf2) is a tran-
scription factor that behaves as a master activator of the 
transcription of many anti-oxidant enzymes and has anti-
inflammatory properties [24, 25]. In this regard, the loss 
of Nrf2 markedly exacerbates nonalcoholic steatohepatitis 
[36]. By contrast, the Nrf2 activator bardoxolone protected 
experimental animals from hepatic steatosis and is under-
going clinical trials for CKD, since it increases eGFR [37].
The decrease of both oxidative stress and inflammation may 
protect from both NAFLD and CKD [25].

The FGF‑Klotho axis

α Klotho and β Klotho are essential components of endo-
crine fibroblast growth factor (FGF) receptor complexes, 
and are required for binding of FGF23 and FGF19, FGF21, 
respectively, to their cognate FGF receptors (FGFRs) [38]. 
The kidney is the key source of αKlotho, a protein with anti-
aging properties and kidney injury or systemic inflammation 
decrease αKlotho [39–41]. While there is little information 

on α Klotho levels in NAFLD, αklotho reduced liver lipid 
accumulation in obese mice, suggesting a liver-kidney cross-
talk as discussed below [42]. By contrast, FGF19 is a satiety 
hormone released by the gut upon food ingestion of food 
that binds the β Klotho-FGFR4 complex in hepatocytes to 
promote metabolic responses to feeding. By contrast, fasting 
leads to liver secretion of the starvation hormone FGF21, 
which induces metabolic responses to fasting and stress 
responses [38]. FGF19 plays a key role in NAFLD patho-
genesis and βKlotho genetic variants have been linked to 
NAFLD [43].

Liver‑kidney crosstalk

Organ cross talk is a newly generated concept to describe 
and explain signals passing from organ to organ providing 
interactions between systems. A dysregulated cross-talk 
results in loss of homeostatic balance, potentially triggering 
organ damage. The liver and kidney have crosstalk mech-
anisms that are newly being understood. For example, in 
hepatorenal syndrome, patients with liver disease develop 
kidney failure in the absence of any histological abnormal-
ity cause [44]. In liver disease, activation of the RAAS and 
sympathetic nervous systems as compensatory mechanisms 
against splanchnic vasodilatation may lead to renal vasocon-
striction, hypoperfusion and acute kidney injury. Moreover, 
increased secretion of endogenous vasopressin and the sys-
temic inflammatory response due to translocation of intes-
tinal bacteria are other important mechanisms promoting 
renal vasoconstriction and decreasing GFR [44].

Conversely, acute kidney injury can contribute to liver 
injury by promoting systemic inflammation and oxidative 
stress. Ischemia-induced damage due to decreased blood 
flow causes increased serum levels of alanine transaminase 
(ALT), aspartate transaminase (AST), lactate dehydrogenase 
(LDH), IL-6, IL-10 and TNF-a. Cytokine outflow results 
in increased vascular permeability causing neutrophil and 
lymphocyte migration and increased reactive oxygen spe-
cies [44]. Further elucidation of the homeostatic hepatore-
nal crosstalk mechanisms is needed so that therapies can be 
targeted to this cross-talk.

Therapeutic Interventions for NAFLD Complications

Although the link between NAFLD and CKD seems evident 
from the above discussion, currently, CKD patients are not 
screened for NAFLD [7] (Table 2). But as discussed above, 
a diagnosis of co-existing NAFLD may influence CKD treat-
ment and outcomes (Fig. 3).

The obvious first treatment would include lifestyle mod-
ification including weight loss, increased physical activity 
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and smoking cessation [7, 8]. From a pharmacological 
point of view, some drugs have the potential to improve 
both NAFLD and CKD and should be first choice thera-
pies for patients with both conditions. Thus, recent studies 
have tested new therapeutic modalities to delay NAFLD 
progression. The FANTASY open label study demon-
strated that the angiotensin receptor blocker telmisartan, 
as opposed to losartan, may significantly decrease serum 
free fatty acids and improve fatty liver although there was 
no significant decrease in liver enzymes [45].

Specific therapies tested for NAFLD and CKD are 
incretin-based therapies such as glucagon like peptide 
receptor activators (GLP-1-RA) and dipeptidyl peptidase 
4 (DPP-4) inhibitors which increase insulin secretion [46]. 
In a meta-analysis from the Liraglutide Effect and Action 
in Diabetes (LEAD) program, the GLP-1-RA liraglutide 
improved hepatic steatosis [47] and liver enzymes in 
patients with type 2 DM [48]. Besides glycemic control, 
GLP-1-RA may have a nephroprotective effect by inducing 
natriuresis with decreased angiotensin II activation and 
proximal tubular Na–H exchanger 3 inhibition, as shown 
in clinical trials [46, 49]. In this regard, GLP-1-RA have 
anti-fibrotic, anti-oxidative and anti-inflammatory actions 
in the kidneys [46]. By contrast, DPP-4 inhibitors have 
not provided consistent kidney protection in clinical trials.

Other key drugs are sodium-glucose cotransporter-2 
(SGLT2) inhibitors. Together with GLP-1-RA, they are 
first choice antidiabetic drugs for the CKD patient [49]. 
In addition to kidney protection in dependently of glyce-
mic control [46], most recently demonstrated in diabetic 
patients with overt diabetic kidney disease [50], SGLT2 
inhibitors may reduce NAFLD progression via their anti-
inflammatory, anti-fibrotic and anti-oxidative activities 
[46]. SGLT2 inhibitors reduce afferent arteriolar vaso-
constriction (tubuloglomerular feedback) and may provide 
nephroprotection by reducing glomerular hyperfiltration, 
preventing glucose overload-induced oxidative stress and 
inflammation in proximal tubular cells and other mecha-
nisms [49, 51].

Peroxisome proliferator activated receptor (PPAR) 
gamma agonists, hypoxia inducible factor (HIF) activa-
tion, mTOR complex1 inhibitors and galectin-3 inhibitors 
are other potential targets in kidney and liver disease [46]. 
However, the thiazolidinedione PPAR gamma agonists 
have been withdrawn from many markers due to cardio-
vascular safety concerns. By contrast, HIF activators are 
already in the market for uremic anemia in Chine, follow-
ing phase 3 clinical trials and were recently reported to 
have a nephroprotective effect in clinical trials [52, 53]. 
Interestingly, in experimental animals, the HIF activator 
FG-4497 prevented liver steatosis [47], while JTZ-951 
protected from the kidney and liver effects of a high fat 
diet [54].

Conclusion and future perspective

NAFLD is a major global health problem and its prevalence 
and impact, like that of CKD, has been growing depend-
ing on the increasing prevalence of obesity. NAFLD should 
be considered a multisystem disease with potential conse-
quences for cardiac and renal health. Thus, NAFLD is asso-
ciated with increased morbidity from CVD and CKD, and 
only the detailed characterization of common pathogenic 
mechanisms will allow the design of drugs that provide 
a holistic approach to the health problem. Many different 
pathogenic mechanisms may contribute to CKD progression 
as a complication of NAFLD. These include, but are not 
limited to insulin resistance, lipotoxicity, oxidative stress 
and inflammatory cytokines.

Besides, NAFLD is not homogenous disease and genetic 
factors especially in some specific patients population such 
as in hepatitis C patients are important. Hyperhomocyst-
einemia and the MTHFR C677T polymorphism promote 
steatosis and fibrosis in chronic hepatitis C patients there-
fore must be taken into consideration while taking measures 
regarding lifestyle and pharmacologic interventions [55–57]. 
We are also aware that above discussed mechanisms both for 
NAFLD and CKD exists it is not clear directly that if they 
are co-incidentally present or a real cause and effect rela-
tionship exists. Indeed, observational design of most studies 
do not enable us to establish a cause and effect relation-
ship and it is currently not exactly known whether NAFLD 
carry a higher risk of incident CKD. There is also another 
concern that most of the studies used ultrasonography to 
detect NAFLD, which is the recommended first-line imag-
ing. However liver biopsy is the gold standard method for 
diagnosing NAFLD as well [58]. The things become even 
more complicated given the fact that not all patients with 
NAFLD suffer from kidney damage. Thus genetic, environ-
mental and other unknown factors probably might play a 
role for the development of CKD in NAFLD which further 
studies will show.

Future studies should address the relative contribution of 
these pathogenic mechanisms and the optimal, integrated 
way to tackle them. Lifestyle interventions such as weight 
loss and smoking cessation may be beneficial. From a phar-
macological point of view, GLP-1-RA and SGLT2 inhibitors 
reduce the progression of both NAFLD and CKD and HIF 
activators will become available in the near future. However, 
only randomized clinical trials will identify the most effec-
tive and safe treatment modality. Additionally, an adequate 
diagnostic work-up, as suggested in Table 2, is required to 
identify the patients that may benefit from these novel inte-
grated therapeutic approaches.
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