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Abstract
There has been considerable progress over the last decade in the standardization of the acute kidney injury (AKI) definition 
with the publication of the RIFLE, AKIN, KDIGO and ERBP classification criteria. However, these classification criteria still 
rely on imperfect parameters such as serum creatinine and urinary output. The use of timed urine collections, kinetic eGFR 
(estimated glomerular filtration rate), real time measurement of GFR and direct measures of tubular damage can theoretically 
aid in a more timely diagnosis of AKI and improve patients’ outcome. There has been an extensive search for new biomark-
ers indicative of structural tubular damage but it remains controversial whether these new markers should be included in the 
current classification criteria. The use of these markers has also led to the creation of a new concept called subclinical AKI, 
a condition where there is an increase in biomarkers but without clinical AKI, defined as an increase in serum creatinine 
and/or a decrease in urinary output. In this review we provide a framework on how to critical appraise biomarker research 
and on how to position the concept of subclinical AKI. The evaluation of biomarker performance and the usefulness of the 
concept ‘subclinical AKI’ requires careful consideration of the context these biomarkers are used in (clinical versus research 
setting) and the goal we want to achieve (risk assessment versus prediction versus early diagnosis versus prognostication). It 
remains currently unknown whether an increase in biomarkers levels without functional repercussion is clinically relevant 
and whether including biomarkers in classification criteria will improve patients’ outcome.
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Introduction

The development of consensus definitions by Acute Dialysis 
Quality Initiative (ADQI) in 2004 (RIFLE criteria) [1] The 
Acute Kidney Injury Network (AKIN) in 2007 (AKIN crite-
ria) [2], KDIGO [3] and ERBP [4] was a major step forward 
in homogenizing the definition of acute kidney injury (AKI). 
A standardized definition is critical for comparing epidemio-
logical studies and enrolling patients in clinical trials. The 
consensus criteria classify patients according to changes in 
serum creatinine (sCr) and urine output (UO) by acknowl-
edging the equal importance of both small sCr increases 
and small decreases in UO within a certain time frame. 
However, using these criteria for AKI diagnosis is still sub-
jected to limitations according to some authors [5], since 
changes in sCr and UO merely reflect functional changes and 

do not incorporate parameters that directly indicate tubu-
lar damage. Addition of postoperative UO measurements, 
also when collected during routine care on surgical hospi-
tal wards, substantially increases the apparent incidence of 
AKI and significantly changes the prognostic implications 
of AKI identification and staging, and this both on ICU as 
on hospital wards [6, 7]. sCr values are influenced by many 
non-renal determinants and both the generation rate and the 
distribution volume of creatinine are not stable in critically 
ill patients. An acute change in GFR after a renal insult does 
not result in an abrupt increase in sCr due to the time needed 
for creatinine to accumulate in the body [8] and it usually 
takes 24–36 h after a renal insult to reach a new steady state 
[9]. The delayed increase in sCr after a decline in GFR is 
seen especially in patients who simultaneously become fluid 
overloaded. Likewise, sCr does not immediately decrease 
when GFR improves [10]. Serial measurements of creatinine 
clearance provided more timely and accurate information 
on renal function compared to serial sCr measurements in 
critically ill patients [11].
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The recognition of the limitations of sCr and UO has 
prompted research on new biomarkers possibly reflecting 
tubular structural damage. Based on these results members 
of the ADQI group proposed a reformulation of the diag-
nostic approach to AKI where not only markers of kidney 
function (e.g. changes in sCr and UO), but also markers 
of kidney damage should be incorporated. A subgroup of 
AKI patients was described who did not fulfil the classi-
cally used functional criteria for AKI diagnosis but showed 
elevated levels of new biomarkers presumably reflecting 
tubular injury, suggesting that these patients suffered from 
“subclinical AKI” [12].

This review explores in more detail the concept of sub-
clinical AKI. To clarify reasoning, we will provide a think-
ing framework, as the role and value of all these concepts 
substantially depends on the setting and intention for which 
they are being used. Therefore, we tabulated several points 
of reflection to be taken into account regarding setting and 
aims in which this concept could be used (Table 1).

Original definition of subclinical AKI

The initial paradigm identifies four clinically relevant groups 
based on the absence of signs of functional changes or dam-
age (A), presence of signs of damage but without loss of 
function (B), presence of functional changes but without 
signs of damage (C) and signs of both damage and loss of 
function (D) [12–14] (Fig. 1).

According to the paradigm, renal damage is based on an 
increased urinary excretion of “injury” biomarkers while 

loss of function is based on an increase in sCr and/or a 
decrease in urinary output. Haase et al. [13] demonstrated 
that patients who were NGAL positive/sCr negative (group 
B) had similar lengths of ICU and hospital stay compared 
with those who were NGAL negative/sCr positive (group 
C), and these were significantly longer than those who were 
NGAL negative/sCr negative (group A). In addition, they 

Table 1   A thinking framework 
for AKI Functional versus structural damage

 Functional Creatinine, cystatin C
Urinary output
Timed urine collection clearances

 Structural Urinary biomarker
Renal biopsy: pathology, cytol-

ogy, molecular biology
Diagnostic versus predictive versus prognostic
 Diagnostic Case identification

Management
 Predictive Early diagnosis

Risk assessment
 Prognostic Risk stratification

Trial enrichment
Follow-up and management

Clinical versus research
 Clinical Diagnosis

Management/treatment
Prognostication

 Research Epidemiology
Drug development
Trial enrichment/stratification

Fig. 1   Entities of acute kidney injury (AKI) syndrome by damage 
and dysfunction (or both). a No AKI. b AKI with tubular damage 
(biomarker-positivity) (subclinical AKI). c AKI with dysfunction 
(RIFLE/AKIN/KDIGO). d AKI with tubular damage (biomarker-pos-
itivity) and dysfunction (RIFLE/AKIN/KDIGO). Arrows indicate the 
potential progression from subclinical AKI (b) to AKI (d) and from 
hemodynamic AKI (c) to AKI (d) (figure modified from Murray et al. 
[14])
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more frequently received renal replacement therapy (RRT) 
and were more likely to experience patient mortality com-
pared with patients without evidence of AKI (group A). Two 
subsequent prospective studies [15, 16] enrolling patients 
treated in an emergency department assessed the short-term 
prognostic relevance of biomarker based (subclinical) AKI. 
In the study by Nickolas, urinary (u) NGAL or uKIM-1 were 
elevated whereas sCr level was less than 1.4 mg/dl in 15% of 
patients. These patients were at increased risk of subsequent 
RRT and increased hospital mortality. In another multicenter 
study (N = 665) a subgroup of 29 patients (4.3%) were con-
sidered to have subclinical AKI (plasma NGAL positive/
sCr negative) on admission at the emergency unit. These 
patients had significantly higher rates of clinical events for 
the combined endpoint of renal replacement therapy (RRT) 
or in-hospital mortality than the patients who were sCr nega-
tive/plasma NGAL negative [16]. Adult patients enrolled in 
the Translational Research in Biomarker Endpoints in AKI 
(TRIBE-AKI) without clinical AKI but within the highest 
versus 2 lowest tertiles of peak urinary IL-18 and KIM-1had 
worse long-term survival [17]. Renal transplant recipients 
who did not develop delayed graft function but had high 
perioperative urinary biomarker levels (NGAL and IL-18) 
had higher rates of poor graft outcomes at 1 year than those 
who developed delayed graft function but had below median 
levels of urinary biomarkers [18].

In a recent multicenter German study including 200 
patients urinary biomarkers (NGAL, midkine, and inter-
leukin 6) were identified as independent predictors of AKI 
post cardiac surgery [19]. Focusing on the NGAL data only, 
the majority of patients (66.8%) was classified as NGAL 
negative/RIFLE negative (ie, no renal injury), 21.1% as 
NGAL positive/RIFLE negative (ie, subclinical AKI), 4.5% 
as NGAL negative/RIFLE positive (ie, isolated functional 
AKI), and 7.5% as NGAL positive/RIFLE positive (ie, 
higher risk functional AKI). The odds ratios for the primary 
end point (need for acute RRT or in-hospital mortality), in 
NGAL positive/RIFLE negative patients (subclinical AKI) 
versus NGAL negative/RIFLE negative patients was 5.86 
[95% CI 1.34–25.65 (P = .020)] and adjusted hazard ratio 
(HR), 7.18 [95% CI 1.52–33.93 (P = .013)]. These subclini-
cal AKI patients had a 10-fold increase in in-hospital mortal-
ity compared with NGAL negative/RIFLE negative patients. 
Separation for long-term survival was found in biomarker 
positive versus negative patients independent of RIFLE sta-
tus [20].

Other studies have investigated the frequency of “subclin-
ical AKI” after nephrotoxic exposure. In a recent prospec-
tive observational cohort study, Kidney Injury Molecule-1 
(KIM-1) and NGAL were used to identify aminoglycoside-
induced nephrotoxicity in 158 children and young adults 
with cystic fibrosis [21]. The median peak fold-change dur-
ing tobramycin exposure for KIM-1 was 2.28 (IQR 2.69) 

and 4.02 (IQR 7.29) for NGAL. Urine KIM-1 rises earlier 
and reaches a peak at 3–5 days, whereas NGAL rises later 
and reaches a peak at 9–11 days. None of these children 
developed AKI defined by the KDIGO criteria. According 
to the proposed definition these patients suffered thus from 
subclinical AKI during at least 2 weeks.

Non-steroidal anti-inflammatory drug administration was 
associated with a significant increase in urinary NGAL in 
children who did not develop clinical AKI following car-
diopulmonary bypass surgery [22]. NGAL levels are also 
elevated following contrast administration in patients who 
do not develop a significant increase in sCr level [23, 24]. 
Based on the above discussed studies where biomarkers 
were measured concomitantly with sCr, at least two types 
of subclinical AKI seem to exist. First, subclinical AKI can 
be detected in patients who never develop “functional” AKI 
and where the biomarkers disappear after the exposure to the 
insult has stopped [21–24]. This type is often observed dur-
ing the exposure to potentially nephrotoxic substances (ami-
noglycosides, NSAIDs, contrast media). The question can 
be raised whether in these clinical situations the increased 
levels biomarkers should not be considered more as markers 
of “exposure”, reflecting “renal handling of the xenobiotic” 
rather than of tubular damage. One could consider that the 
renal handling of many drugs imposes a stress to the tubular 
cells which, in case of overexposure, eventually can gener-
ate structural damage important enough to provoke frank 
nephrotoxic AKI. It is thus possible, but not yet proven, that 
some of these biomarkers are able to predict subsequent 
clinically relevant nephrotoxicity [25].

The second type of subclinical AKI is probably more 
frequent and exists only in the relatively short period that 
the sCr is not yet sufficiently elevated to fulfill the actually 
AKI KDIGO definition [13, 20]. The fact that the sCr is not 
yet elevated does not exclude that the GFR has not declined 
because of the existence of functional renal reserve (see 
below). However, as far as we know, the proportion of sub-
clinical AKI patients that after a few days develop function-
ally based AKI versus those that never develop functional 
AKI is not known. To the best of our knowledge no differ-
ences in gender or race exist in the incidence or prognosis 
of “subclinical AKI”.

Hemodynamic AKI

In Fig. 1 hemodynamic AKI, formerly called “pre-renal” 
or “transient” AKI are represented by group C where func-
tional loss (increased sCr to a level that meets the KDIGO 
definition) occurs in absence of detectable kidney dam-
age, based on biomarkers. Transient AKI is a reversible 
state and presumably also reflects hemodynamic dysfunc-
tion. The hemodynamic changes occur as a “normal” renal 
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physiologic response to a reduction in “absolute” extracel-
lular volume or a reduction in “effective” circulating volume, 
like in heart failure and severe liver cirrhosis. It has been a 
matter of debate when exactly this prerenal AKI becomes 
intrinsic AKI [26–28], and it has been suggested they often 
do coexist in the same patient [29]. Transient AKI was not 
associated with substantial tubular injury as reflected by nor-
mal NGAL release [30], whereas an increased biomarker 
excretion was observed in more sustained AKI. Expression 
of renal genes is different in two murine models of AKI, 
one induced by severe extracellular fluid volume depletion 
(vAKI) and the other by ischemic injury (iAKI), but with 
comparable increases in sCr [31]. The genes induced by 
vAKI included those involved in metabolic, transport, and 
osmoregulatory pathways, which are essential to the nor-
mal response of the kidney to volume depletion, and this 
expression was reversed by volume repletion. By contrast, 
pathways upregulated in the iAKI model represented those 
genes involved in cell injury, death and inflammation. These 
data were further translated to humans suggesting that AKI 
caused by volume depletion and those by intrinsic AKI rep-
resent distinct molecular entities [32].

The role of renal functional reserve (RFR)

A “normal” sCr does not exclude a decline in GFR while a 
normal or even a supranormal GFR does not exclude kidney 
functional changes nor subclinical structural damage. When 
estimating renal function, the concept of renal functional 
reserve (RFR) should be taken into account. RFR is defined 
as the increase in GFR above basal fasting values which 
can be activated by stress, oral protein load, amino acid, 
dopamine, or glucagon infusion [33]. The increase in GFR 
indicates the capability of the kidneys to compensate tem-
porarily for functional loss of part of the nephrons [34, 35].

The concept of RFR might be relevant when evaluating 
renal function in AKI. RFR may be activated in critically ill 
patients as evidenced by the finding of “supra-normal” GFR 
values when measured by daily 24-h creatinine clearances 
in patients on a ventilator and/or receiving vasopressors for 
hemodynamic support [34, 36–38]. As far as we know no 
data on urinary biomarkers exist in states of hyperfiltration 
in critically ill patients.

There are no data about the exact changes of RFR in AKI, 
but it may well be that in AKI, a part of RFR is activated and 
subsequently lost before the decline in GFR and an increase 
in sCr are noticeable. In these cases, the reduced GFR in 
some “injured” nephrons is compensated for by other non-
injured functioning nephrons [34]. Interestingly, RFR meas-
ured after an acute protein load was recently explored to 
predict post cardiac surgery AKI in patients with “normal” 
resting GFR, (i.e. eGFR > 60 ml/min/1.73m2) the day before 

undergoing cardiac surgery [39]. Inadequate preoperative 
RFR was associated with a 10 fold increased risk for post-
operative AKI. In the same study, levels of urinary cell cycle 
biomarkers [TIMP-2] × [IGFBP7] before the operation did 
not discriminate between the groups with and without post-
operative AKI. However, [TIMP-2] × [IGFBP7] at post sur-
gery ICU admission predicted AKI with an AUC of 0.87 
(95% CI 0.79–0.84).

The role of “novel” biomarkers as indicators 
of structural renal damage

An ideal biomarker should be measurable from non-inva-
sive sources and the test should be easy to perform with a 
rapid turnover and high reliability. The biomarker should 
be organ- specific, its levels should correlate with severity 
of damage and it should be able to pick up AKI in a stage 
when functional damage is not yet detectable (thus ‘subclini-
cal AKI’). Different biomarkers have different windows of 
opportunities which makes it difficult to define optimal tim-
ing of their analysis after renal injury, especially when the 
exact moment of the renal insult is unknown [40].

Except for the setting or paediatric cardiovascular sur-
gery, the performance of the “first” generation of the novel 
biomarkers is poor and adds little or nothing to a clinical 
model [40–42].

One of the explanations might be that biomarkers, besides 
markers of damage, are often influenced by comorbidities, 
and systemic inflammation [43–46].

Correlating biomarkers of structural damage with histo-
logical evidence of kidney injury is difficult because kidney 
biopsies are rarely performed in AKI. In addition, a clear 
correlation between severity of AKI and histological find-
ings is often lacking and in both human or experimental 
septic AKI, there are no consistent renal histopathological 
changes at all [47]. In kidney biopsies performed in hos-
pitalized deceased kidney donors at the time of organ pro-
curement, change in sCr concentration during donor hospi-
talization performed extremely poor to diagnose AKI, and 
performance of urinary L-FABP, IL-18, KIM-1 or NGAL 
was not better. In donors who did not have sCr-based AKI 
(so-called subclinical AKI), NGAL concentrations were 
however higher with increasing severities of tubular injury 
on biopsy [48]. An increase in [TIMP-2] × [IGFBP7] has 
been considered as the earliest signal of cellular stress [49], 
because damaged renal epithelial cells activate cell stress 
responsive genes involved in cell cycle arrest immediately 
before S phase, and IGFBP7 and TIMP-2 are among the 
mediators of this process [50, 51].

However, recent experimental work [52] suggests 
that the urinary TIMP2 × IGFBP7 elevations in AKI-
induced by renal ischemia are not due to stress-induced 
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tubular cell gene transcription. Rather, increased glomer-
ular damage, decreased tubular reabsorption, and urinary 
TIMP2 × IGFBP7 leakage seem to be the most likely mecha-
nisms contributing to the elevated urinary levels.

A recent meta-analysis on urinary TIMP2 × IGFBP7 
concluded there was significant heterogeneity among the 
included studies and that publication bias could not be 
excluded [53]. Cell cycle inhibitor levels are also influenced 
by several comorbidities, independent of kidney injury [54]. 
They can only be used as an add-on test to standard param-
eters and should thus not be used as a stand-alone test. Also, 
no data on its performance outside ICU setting are available 
[55, 56].

Only few studies have used biomarkers as a clinical deci-
sion tool and results have been conflicting. The PrevAKI 
trial [57] was a single-center randomized trial of 276 patients 
undergoing cardiac surgery with a [TIMP-2] × [IGFBP7] 
greater than 0.3 within 4 h of surgery. Patients were ran-
domized to either standard care or an intervention group 
who received a targeted bundle of AKI-prevention strategies 
for 48 h postoperatively based on the recommendations of 
the Kidney Disease Improving Global Outcomes (KDIGO) 
guidelines [3]. A 17% absolute risk reduction in AKI at 72 h 
and 15% reduction in moderate to severe AKI (KDIGO stage 
II and III) was demonstrated with this intervention.

The BigpAK study [58] used a similar design and evalu-
ated patients undergoing major elective noncardiac surgery 
with at least one risk factor for AKI. Patients with elevated 
[TIMP2] × [IGFBP7] greater than 0.3 postoperatively were 
randomly allocated to either standard care or application of 
the KDIGO AKI care bundle that included a nephrology 
consultation. This policy reduced AKI severity, postopera-
tive creatinine increase, length of ICU, and hospital stay. 
However, it remains unclear if the use of biomarkers contrib-
uted to these relative improvements [59]. At present, there is 
a paucity of data on the possible outcome benefit using these 
markers to guide treatment of AKI and it remains unclear 
whether their use improves patient outcome. Their role in 
clinical practice remains thus unclear, whereas a potential 
role in research, be it to explore nephrotoxicity or to enrich 
trials, is a possibility (Table 1).

Estimation of real time GFR and sCr kinetics

Serial measurements of creatinine clearance provide more 
timely and accurate information on renal function compared 
to serial sCr measurements in critically ill patients [11]. An 
example of a series of consecutive 4 h creatinine clearances 
in one individual is given in Fig. 2 [60].

Several researchers have attempted to develop an equation 
allowing the calculation of GFR based on kinetic estimation 

(keGFR) to avoid incorrect interpretation of sCr under the 
non-steady state conditions of AKI [10, 61].

The kinetic GFR is derived from the initial sCr, the vol-
ume of distribution, the creatinine production rate, and the 
quantitative difference between consecutive sCr values 
over a given time period. As this calculated GFR is based 
on a mathematical model the method has inherent limita-
tions that are related to the accuracy of the assumptions of 
the model. The most problematic issue is that the model 
assumes a constant creatinine production rate and more or 
less stable creatinine distribution volume. Also, the for-
mula still requires the use of a baseline sCr value and GFR, 
obtained prior to the insult causing AKI, which is often not 
available. Although the baseline GFR can be estimated by 
back-calculation [1], this is known to be prone to errors [62]. 
Nevertheless, the kinetic equation can provide a more timely 
diagnosis of AKI and a better appreciation of the severity of 
AKI, whereas it can also detect renal recovery earlier. This 
could be helpful for clinicians, both for prognostication and 
drug dosing. The use of the kinetic eGFR has been validated 
in a number of recent independent clinical studies [63–66].

A point-of-care bedside fluorescence-based measured 
GFR (mGFR) assay has experimentally been developed for 
the rapid bedside measurement of GFR which is potentially 
applicable in AKI. Fluorescent conjugates of a small freely 
filterable reporter (inulin) and a large non-filterable marker 

Fig. 2   Delayed increase in serum creatinine following a decrease in 
GFR as estimated by 4 h creatinine clearance. Open circles indicate 
the evolution of the measured 4 h creatinine clearance; the closed cir-
cles indicate the evolution of the sCr in an individual participating in 
the EARLY ARF trial (Endre et  al. Kidney Int. 2010;77(11):1020–
1030) (figure modified from Pickering et al. [60])
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(500 kDa dextran) are infused as a bolus, and the in vivo 
fluorescent signals in plasma are detected and quantified by 
a radiometric optical fiber system. The plasma volume is 
estimated by dilution of the large dextran molecule and the 
GFR is determined using a radiometric two-compartment 
method 60 min after injection. The GFR measured by this 
method presented excellent agreement with a concurrent 6-h 
iohexol-based GFR measurement [67]. The technique proved 
to be safe, rapid, accurate and reproducible at measuring 
GFR across a wide range of kidney functions [68].

Thus fully developed real-time transcutaneous or intra-
vascular monitoring of GFR may prove to be an ideal bed-
side tool for risk stratification, early diagnosis, prognosis and 
therapy guidance, especially drug dosing, in AKI.

Conclusion

Current classification criteria for AKI rely on imperfect 
functional parameters such as serum creatinine and urinary 
output. The use of 4 h creatinine clearances, kinetic eGFR 
formulas and bedside real time GFR measurements can be 
helpful to pick up functional AKI and recovery in an earlier 
stage. The research on biomarkers resulted in the creation 
of a concept called ‘subclinical’ AKI. There is currently no 
hard evidence that the use of biomarkers for kidney damage 
improves patient outcomes. The potential role of the concept 
subclinical AKI depends upon the application and setting.

The day we will dispose of more reliable markers, includ-
ing bedside “true” GFR measurements will probably make 
the need of a concept such as ‘subclinical AKI’ redundant.
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