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Abstract Chronic kidney disease (CKD) is a risk factor
for fractures. The current evaluation of fracture risk is based
upon the combination of various clinical factors and quan-
titative imaging of bone. X-ray-based tools were developed
to evaluate bone status and predict fracture risk. Dual energy
X-ray absorptiometry (DXA) is available worldwide. Longi-
tudinal studies showed that low areal Bone Mineral Density
(BMD) measured by DXA predicts fractures in the CKD
population as it does in non uremic populations, with good
specificity and moderate sensitivity. Peripheral quantitative
computed tomography (pQCT) and high resolution pQCT
are research tools which measure volumetric BMD at the
tibia and radius. They are able to discriminate between the
cortical and trabecular envelopes which are differentially
affected by renal osteodystrophy. In CKD, a rapid thinning
and increased porosity at the cortex is observed which is
associated with increased the risk for fracture.

Keywords DXA - pQCT - HRpQCT - Fractures - Chronic
kidney disease - Bone
Introduction

Patients with chronic kidney diseases (CKD) stages 3a—5d
have higher risk for fractures than the general population,
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worldwide [1-5]. In addition, incident hip fractures are asso-
ciated with substantial worsening of morbidity and mortality
in dialyzed patients [6—8]. However, there is little consensus
on the methods for evaluating bone status in CKD patients.
To date, no large clinical trials specifically targeting CKD
patients for testing the efficacy of treatments currently used
for osteoporosis have been performed. Thus, we need to
develop and validate diagnosis and treatment strategies for
better management of bone fragility in this population. The
current evaluation of fracture risk is based on a combination
of various clinical factors plus quantitative imaging based on
X-Ray attenuation by bone. As it passes through bone, the
X-ray beam loses part of its energy, due to photon absorption
(removal from the beam) and scattering (change of direc-
tion). The amount of attenuation depends on the intensity of
the incident X-ray beam and the physical properties of bone
(including the amount of minerals and the size of the bone).
This allows to image bone and, eventually, after calibration,
to deduce quantitative parameters such as bone mineral den-
sity (BMD).

Determinants of bone strength

Fractures occur when the load in a region of a bone exceeds
the ultimate strength of that bone. The risk of fracture
increases with falls and trauma in combination with a
decrease in bone strength (illustrated in Fig. 1) [9]. Bone
strength results from bone loss (i.e. reduced bone quantity)
and/or reduced bone quality [10]. Bone quantity (i.e. bone
mass) ensues, in adults, from the bone remodeling balance,
which is determined by a number of elements including
genomic, hormonal, nutritional and mechanical factors.
Bone loss occurs when bone is more resorbed than formed.
The level of bone remodeling (turnover) is defined by the

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40620-017-0433-7&domain=pdf

636

J Nephrol (2017) 30:635-643

Mechanical

Age strain Hormones |4—r{ Nutrition ]-—- microbiota system background

Gut Central nervous Genetic

Y A 4 y

Y

Bone modeling /remodeling

v ] v
Bone Structural Properties Bone material Properties
-Micro architecture (porosity, - Matrix quality, micro damages Bone Mass
-Macro architecture (geometry) - Mineralisation (mineral/matrix ratio)

Bone BO“?
quality quantity
"
/ Skeletal factors 4=  BONESTRENGTH
//L:[,J::,x:%-,\ Extra skeletal || Falls || polonce dsorders (cersbrl schemc,
ypotension, peripheral neuropathy,
factors Trauma uremic myopathy...etc)

Fig. 1 Schematic illustration of determinants of fracture

‘activation frequency’ which represents the birth rate of
bone remodeling units. Bone quality depends on both bone
material and structural properties [11]. Structural param-
eters correspond to bone micro- and macro-architecture (i.e.
geometry and topology), while material properties depend
on the quality of bone mineral and matrix. Microarchitec-
ture (e.g. cortical porosity, trabecular number/thickness and
spatial distribution) impacts bone strength at both cortical
and trabecular levels. Bone mass and some of the structural
properties can be evaluated using X-ray based tools. In addi-
tion, macro- and micro-architecture parameters, combined
or not with mineral density data, are used for modeling bio-
mechanical properties of bone. The spatial distribution of
cortical bone is computed via several parameters, which
allow to predict cortical bone strength. For instance, the
cross-sectional moment of inertia reflects the distribution
of the bone mass around a neutral or central axis of the bone
and the buckling ratio is the ratio of the outer radius to the
cortical thickness [12]. Other engineering methods such as
finite element analysis (FEA) allow to test virtual mechani-
cal stress on bones to evaluate bone strength.

Deterioration of bone strength in CKD
CKD affects both structural and material properties of bone

[13]. Bone primary and secondary mineralization are sub-
stantially impaired by renal insufficiency which leads to a
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decrease in material properties. Indeed, primary mineraliza-
tion slows down or even ceases when osteomalacia or uremic
mixed lesions occur while secondary mineralization (which
takes place after primary mineralization, once the new bone
osteons have been formed) can be increased in adynamic
osteopathy or decreased in osteitis fibrosa.

Evaluation of bone fragility

The main characteristics of the quantitative X-ray-based
devices are summarized in Table 1.

Standard X-rays and morphological evaluation of bone
for fracture detection

Standard skeletal X-rays are useful morphological tools to
detect fractures or fissures. This evaluation is guided by clin-
ical symptoms and thorough physical examination. Indeed,
while some fractures such as hip fractures are obvious on
standard X-ray, others such as tarsal, metatarsal or rib fis-
sures can remain difficult to assess and necessitate further
evaluations, including technetium bone scans coupled to
computerized tomography or magnetic resonance imaging
(MRI) (Fig. 2). As for vertebral fractures, it is well known
that they are underdiagnosed [14] and that spine fractures
observed on lateral chest X-rays are often overlooked or not
reported [15]. Osteopenia (i.e. reduction in bone density on
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Table 1 Main characteristics of X-ray based tools used for assessment of bone status

IN VIVO EX VIVO
DXA QCT pQCT HR-pQCT Micro-CT Biopsy
Nano-CT
Resolution um 3000 3000-1000 500 80-100 10 —1 um and 5-10 pm
<1 pm
Bone mineral Areal BMD g/em? Cortical and trabecular volumetric BMD g/cm? — -
density
Information Trabecular bone 3D cortical macro architec- 3D cortical macro- 3D cortical poros- 2D micro architecture
provided by the score (TBS) ture— architecture ity trabecular p
device cortical porosity architecture
trabecular p archi-
tecture
Bone site Hip spine Hip spine Tibia radius Tibia radius Any bone small Iliac crest

samples

DXA dual energy X-ray absorptiometry, QCT quantitative computed tomography, pQCT peripheral QCT, HR-pQCT high resolution pQCT, BMD

bone mineral density, u micro

radiographs) can be found on plain X-rays; however, this
sign is observed when more than 30-40% of bone has been
lost. In CKD, thin cortices or endocortical resorption can be
detected, indicating more or less the severity of renal osteo-
dystrophy. It is worth noting that standard X-ray is not suf-
ficient to confirm or exclude the diagnosis of osteoporosis.

High-resolution X-ray images can be used to analyze
bone texture, a surrogate of trabecular microarchitecture,
via fractal analysis methods. The combination of this tech-
nique with BMD measurements has been shown to better
predict fractures in osteoporotic women than BMD alone
[16]. However, this technique is not widely available and
there are no data on CKD patients.

Dual energy X-ray absorptiometry
Bone mineral density

DXA measures areal bone mineral density (g/cm?) at the
hip (neck and total regions), the spine (L1/L2 to L5) and
the radius (ultradistal, distal and proximal regions). The
results are expressed as a T-score, i.e. the number of stand-
ard deviations above or below the mean BMD measured in
sex-matched 25-year-old healthy subjects (i.e. at the end
of peak bone mass acquisition). Densitometric osteoporo-
sis is defined by a T-score lower than —2.5. Spine BMD
may be overestimated due to vertebral osteoarthritis or
aorta calcifications. Areal BMD is influenced by body size,
which is a major limitation for its use in pediatric CKD
populations. Epidemiological studies have clearly iden-
tified low BMD as a fair predictor of osteoporotic frac-
tures. However, in a non-uremic population, up 40-50% of
patients with osteoporotic vertebral fractures have BMD
values higher than —2.5 [17], indicating that factors other

than BMD must be taken into account when evaluating
the fracture risk [18]. For instance, a prevalent fracture is
unequivocally a risk for future fracture. Indeed, patients
with fractures are at higher risk for future osteoporotic
fractures of the spine, wrist and hip compared to patients
with similar BMD with no fractures [19] and prior verte-
bral fractures are a better predictor of future fracture than
low BMD alone [20].

Vertebral fracture assessment (VFA)

Two-thirds of patients with vertebral fractures (VF) are
asymptomatic; therefore, these fractures are often ignored
while it is essential, as seen above, to identify previous
vertebral fractures. Lateral imaging of the spine using
fan-beam methodology (which eliminates parallax errors
in viewing the vertebral body, compared to routine spine
X-ray) can be performed on the same device as DXA BMD
measurement. These images are then analyzed by the VFA
software which allows to identify prevalent vertebral frac-
tures. However, the automatic fracture detection provided
by the VFA software needs to be checked by a trained
physician [21].

Trabecular bone score (TBS)

TBS is derived from an algorithm that analyzes the spatial
organization of pixel intensity, which in turn corresponds to
the differences in the X-ray absorption power of an osteo-
porotic bone versus a normal trabecular pattern [22]. TBS
is not a direct measurement of bone microarchitecture but it
is related to bone microarchitecture parameters.
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Fig.2 a, b MRI T1-weighted imaging of the foot in a CKD-5D
75-year-old patient referred for “subacute arthritis of the foot”.
Arrows fracture localized at the proximal metaphysis of the first meta-

Neck geometry and hip structural analysis

Due to a better understanding of bone biomechanics and
of the role of geometry in bone strength, a number of tech-
niques has been derived from DXA hip measurements such
as hip structural analysis (HSA). The major limitations
of these approaches are mainly due to the bi-dimensional
nature of DXA measurements. HSA parameters correlate
with BMD. Whether they provide additional information
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tarsal bone (a) and anterior part of the calcaneus (b). ¢ Standard X
ray: The calcaneus fracture is barely visible

independent of BMD and improve fracture prediction is still
a matter of controversy [23].

FRAX for evaluating fracture risk at the individual level

We have seen above that BMD measurement is a fair but
not perfect predictor of fractures in the general popula-
tion, in which 1/3 of fractures occur in patients with BMD
higher than —2.5 [24]. The FRAX tool combines BMD
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measurement at the femoral neck and clinical risk factors
for fracture such as weight, height, prevalent fracture, family
history of hip fracture, and steroid use, but it does not take
falls into account. This software, a World Health Organiza-
tion (WHO) initiative, calculates the 10-year probability of
hip fracture and major osteoporotic fractures at the individ-
ual level. Major osteoporotic fractures include hip, vertebral,
wrist and humeral fractures.

DXA in CKD

At the radius, both cortical and trabecular measurements
may be affected by the fistula in CKD-5d patients. Bone
mineral content is not influenced by hemodialysis sessions
[25]. BMD measured by DXA integrates bone quality and
quantity properties but BMD does not provide any informa-
tion on the underlying renal osteodystrophy. BMD measure-
ment by DXA was not recommended by the 2009 Kidney
Disease Improving Global Outcomes (KDIGO) guidelines,
but only cross-sectional studies comparing BMD in CKD
patients with and without a prevalent fracture were available
at this time [26]. In 2015, a meta-analysis gathering data
from 13 studies including 1782 patients at stages CKD 3-5d
showed that BMD was significantly lower at the femoral
neck, lumbar spine, the 1/3 and ultradistal radius in patients
with fractures compared to those without, regardless of dial-
ysis status [27]. These data, together with longitudinal stud-
ies, led the KDIGO working group to revise the guidelines
[28] and recommend, in 2017 [29], BMD measurements in
CKD patients.

In the Health, Aging and Body Composition Study, 2754
participants (70-79 years of age at enrolment), including
587 CKD patients (21%) were measured at baseline and fol-
lowed for 11 years [30]. The CKD population consisted of
83% CKD stage 3a and 13% CKD 3b. The adjusted fracture
hazard ratio (HR) for each standard deviation (SD) of lower
femoral neck BMD was 2.69 [95% confidence interval (CI)
0.99-3.77] in CKD and 2.15 (1.80-2.57) in the non-uremic
population. For hip fractures only, the adjusted femoral neck
BMD hazard ratio was 5.82 (3.27-10.35) in CKD and 3.08
(2.29-4.14) in the non-uremic subjects. Thus, lower femoral
neck BMD was associated with greater fracture risk regard-
less of renal function.

A second prospective cohort of 131 predialysis patients
(mean age 62 years) was measured with DXA BMD at the
total hip, lumbar spine, and ultradistal and 1/3 radius at base-
line and after 2 years [31]. Most of the patients had type 2
diabetes. They included, at baseline, 34% CKD stage 2, 40%
CKD stage 4 and 26% CKD stage 5. Low BMD at all sites
and a greater annualized % decrease in BMD predicted frac-
ture. Multivariate models showed that the odds ratio (OR) of
fracture was 1.75 (1.30-2.20) for each SD of lower total hip

BMD. Interestingly, in this study, HRpQCT was not better at
predicting fracture than BMD measured by DXA.

Finally, a Japanese study measured 485 hemodialyzed
(HD) patients (mean age 60 years) at baseline and 40 months
later. Forty-six fractures occurred during the follow-up
period. The adjusted fracture HR was 0.65 (0.47-0.90) for
each SD of higher femoral neck BMD (p =0.009). Receiver
operating characteristic (ROC) analyses stratified according
to parathyroid hormone (PTH) below or above the median
value of 204 pg/ml (21.6 pmol/l), showed that the area under
the curve (AUC) for femoral neck BMD was 0.72 in the
lower stratum and 0.51 in the higher stratum [32].

Thus, while BMD measurement by DXA predicts frac-
tures in CKD patients with bone and mineral disorders, a
number of issues remain to be discussed. The community
of nephrologists must be aware that BMD measurement by
DXA has high specificity and moderate sensitivity. In addi-
tion, the FRAX software does not take into account CKD
as an independent risk for fracture. Thus, it is likely that the
FRAX score calculation underestimates fracture risk in this
population. The follow-up rate needs to be outlined, knowing
that the International Society for Clinical Densitometry rec-
ommends calculating “the least significant change” (LSC),
i.e. the least amount of BMD change between two measure-
ments that can be considered significant at the individual
level, for a 95% confidence level (=precision error X 2.77).
Precision characterizes the reproducibility of the measure-
ment and depends on the operator, the DXA device and the
population. Thus, it should be checked whether the LSC
generally used in non-uremic populations (0.030 g/cm?
at the hip) is similar in CKD patients. The type of CKD
patients who will benefit from DXA measurement remain
to be defined, knowing that the current drugs for osteopo-
rosis treatment are not recommended in CKD 4-5 patients.
Finally, the reimbursement of this test in the CKD popula-
tion needs to be addressed by Health Authorities in each
country.

As for the techniques derived from DXA measurements
such as TBS, scant data are available and it is difficult to
draw conclusions about their utility in routine practice. In
addition, aorta calcifications may alter TBS calculation in
the CKD population. In a cohort of 1426 participants (aged
>40 years, mean age 67 years) including 199 patients with
glomerular filtration rate (GFR) below 60 ml/min/1.73 m?
(72.4% CKD stage 3a, 25.1% CKD stage 3b, and 2.5% CKD
stage 4) lower lumbar spine TBS was independently asso-
ciated with a higher fracture risk in adults with reduced
kidney function [33]. In a smaller population of 53 CKD-
5d patients, analyzed at the time of kidney transplantation,
spinal X-ray detected prevalent asymptomatic fractures in
26% of patients. TBS was 8% lower in CKD patients than in
controls; however, TBS was similar in CKD patients with or
without fractures [34].
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Quantitative computed tomography
Central quantitative computerized tomography

This technique, which uses standard computerized tomog-
raphy, provides volumetric BMD (g/cm?), after calibration
with a phantom, as well as macro-geometry parameters at
the level of the hip and the spine, the bone sites prone to
osteoporotic fractures. It is not influenced by osteoarthritis
and its measurements of bone geometry are true 3D parame-
ters, while DXA-derived evaluation is an extrapolation from
2D parameters [35]. Its drawbacks are the higher radiation
doses and greater costs for routine diagnosis.

Peripheral quantitative computed tomography

In addition to volumetric BMD, macro- and micro-archi-
tecture parameters can be evaluated with an accuracy that
depends on the spatial resolution of the device (Table 1).
Interestingly, while DXA use is limited in children with
CKD due to the confounding effect of smaller body size and
opposing PTH effects on the trabecular and cortical enve-
lopes, peripheral quantitative computed tomography does
not suffer from these limitations [36]. Peripheral as well as
high resolution QCT are not used in routine practice due to
the lack of device availability.

Peripheral QCT (pQCT)

pQCT analyses the trabecular and cortical compartments
separately at the tibia and radius (resolution 400-500 pm).
Recently, clinical cone beam computed tomography
improved this technique and its resolution (220 um). It
allows to measure large portions of distal bones with fair
spatial resolution and limited irradiation [37]. In a cross-
sectional study of 52 CKD 5d patients, including 27 patients
with fractures, pQCT analysis showed that a decrease in cor-
tical density, area and thickness was associated with frac-
tures—with the OR varying from 3 to 16—while DXA BMD
was not [38].

High-resolution peripheral QCT (HR-pQCT)

HR-pQCT measures volumetric BMD at the distal tibia and
radius. Acquisition time is 15 min per site. This device also
provides information on trabecular and cortical microarchi-
tecture parameters such as trabecular thickness, number and
distribution and cortical porosity (Fig. 3a—c). The XtremeCT
11 (Scanco®, Briittisellen, Switzerland) has an 82 pm spatial
resolution. Longitudinal follow-up is possible due to specific
software. This technique allows to compare two images of
the same bone slice and enables to describe where formation
and resorption took place during the observation period [39].

Fig. 3 a—c HRpQCT images of tibia (a, ¢) and radius (b) in a CKD
patient a, b with increased cortical porosity at the radius level com-
pared to healthy control (¢). d, e Synchrotron radiation computerized
tomography images of iliac crest bone biopsies from a CKD-5d (d)
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and non-uremic osteoporotic patient (e). Note in a and d the increase
in cortical porosity (arrow) and in d the deep erosion lacunae (dotted
arrow), the thin cortices (arrow heads) and the increase in cortical
porosity at the endocortical surface (arrows)
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HR-pQCT analysis helps us to better understand the
mechanisms of bone loss in CKD [40]. Nickolas at al, stud-
ied 53 CKD patients (including ten hemodialysis patients)
with HR-pQCT and DXA at baseline and after 1.5 years
[41]. They found a significant decrease in DXA BMD at
the total hip and ultradistal radius. Cortical area, density,
and thickness at the distal radius were reduced significantly
while cortical porosity increased. Most interestingly, time-
averaged levels of PTH and bone turnover markers predicted
cortical deterioration. Thus, for the first time, the relation-
ship between the severity of secondary hyperparathyroidism
and cortical bone loss was evidenced, thanks to these lon-
gitudinal data. The same team demonstrated the persistent
bone loss at the peripheral skeleton despite corticosteroid
withdrawal in kidney transplant patients [42]. Thus, corti-
cal porosity and cortical thickness are critically affected by
CKD [43]. Cortical architecture depends mostly on mod-
eling levels at the periosteal surface and remodeling at the
endosteal surface and within the cortex. The endocortical
(inner) third of cortices is the most active surface, where
trabecular bone is formed at the expense of the cortex, a pro-
cess highly deleterious for bone strength (Fig. 2a, b). Recent
studies confirmed that cortical porosity is highly heteroge-
neous and demonstrated that thorough analysis of this het-
erogeneity, using HR-pQCT, would improve our knowledge
of how cortical bone can deteriorate rather quickly [44] in
the osteoporotic process associated with CKD [43]. Finally,
HR-pCQT has been used to analyze the complex relation-
ships between bone structure and vascular calcifications in
the general population [45] and in CKD [46].

Very high-resolution QCT, nano-CT and synchrotron
radiation CT

It is possible, for research purposes, to analyze ex vivo bone
biopsies at higher resolutions (10 um to 10 nm) using nano
quantitative CT or synchrotron radiation CT [47] (Fig. 3d,
e). Synchrotron radiation provides a high-energy monochro-
matic X-ray beam, which yields high-quality images. These
approaches allow to examine micro and nano structures of
bone including collagen and mineral properties such as the
degree of mineralization of bone (DMB), a strong determi-
nant of bone strength [48] as well as osteocytes lacunae and
their canaliculi network [49] (Fig. 3).

Magnetic resonance imaging (MRI)

MRI can distinguish microarchitecture deterioration in
patients with various metabolic bone diseases, compared
to controls, as shown by a number of cross-sectional stud-
ies with small sample sizes (summarized in [50]). In the
trabecular compartment, MRI images the marrow content
since bone signal is hypointense. The voxel sizes range from

130 to 250 um with a slice thickness of 400—1500 um (for a
scan time of 10—15 min). Bone can be analyzed at any site,
including spine and hip, and there is no patient irradiation.
Using high to ultrahigh field scanners (3-7T) and specific
sequences may improve image and quantification accuracy.
Fifty CKD patients were analyzed with 1.5T MRI early and
6 months after kidney transplantation. All patients received
glucocorticoids. While vertebral BMD decreased by 3% dur-
ing follow-up, trabecular microarchitecture parameters did
not change significantly. In contrast, FEA analyses of bone
strength such as cortical and trabecular stiffness and failure
strength were significantly reduced overtime [51]. Recently,
ultrashort echo time MRI has made it possible to analyze
cortical bone. This technique is based on the measurement
of concentrations of bone water (BW) at two levels (bound
to collagen and within the porosities). Techawiboonwong
et al. reported that CKD patients with renal osteodystrophy
had higher BW than premenopausal and postmenopausal
controls (by 135 and 43%, respectively) while no difference
in volumetric BMD between CKD patients and controls was
observed. Taken together, these preliminary data suggest
that MRI could yield additional information beyond BMD,
to better assess bone fragility [52].

Conclusions

Fractures have become an increasing concern in the CKD
population. HRpQCT remains the research tool that helps
us to better understand the mechanisms of increased bone
fragility. DXA BMD is available worldwide and is a fair
predictor of fractures with a good specificity but insufficient
sensitivity. Now, DXA measurements are recommended for
assessment of bone status in the CKD population—however
a number of questions remains regarding the modalities of
these measurements and the therapeutic strategies to imple-
ment when high risk for fracture is detected in patients with
late-stage CKD.
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