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FST	� Furosemide stress test
IGFBP7	� Insulin-like growth factor-binding protein 7
IL-18	� Interleukin-18
KIM-1	� Kidney injury molecule-1
NAG	� N-Acetyl-β-d-glucosaminidase
NGAL	� Neutrophil gelatinase-associated lipocalin
OR	� Odds ratio
ROC	� Receiver operating characteristic curve
RRT	� Renal replacement therapy
sCr	� Serum creatinine
TIMP2	� Tissue inhibitor of metalloproteinases 2

Introduction

Acute kidney injury (AKI) is an important health prob-
lem. Patients who develop AKI have markedly increased 
in-hospital mortality and, even if they do survive the acute 
phase, they still have an increased likelihood of morbidity 
and mortality over the long term [1–3]. Current treatments 
focus on avoiding the potential injury due to nephrotoxic 
drugs or intravenous contrast agents, and on providing 
supportive care [3]. Theoretically speaking, more specific 
therapies have been identified in animal models, but their 
efficacy has not been proven in subsequent human clinical 
trials; this is because AKI is difficult to identify before loss 
of organ function sets in, by which time the damage may 
be irreversible [4]. Therefore, there is growing expectation 
about the development of biomarkers that can identify AKI 
in its earliest stage, when interventions could be more suc-
cessful. In particular, of great interest is the possibility of 
individual risk stratification for AKI, in order to avoid any 
unnecessary kidney stress and, if appropriate, to start a pre-
ventive treatment [4].
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For all these reasons, over the last decade there has 
been considerable progress made in the discovery and 
development of new tools, predictive models and bio-
markers of AKI; several of them have now been evalu-
ated in different clinical settings [5–7]. Although there is 
a growing literature on the performance of various bio-
markers in clinical studies, information is limited on how 
these biomarkers could be used by clinicians to manage 
patients with AKI [5].

The purpose of this narrative paper is to review the 
current state of the art in prediction and early detection 
of AKI. This shall be done by describing the most impor-
tant and promising tools, biomarkers and potential inno-
vations in this field. We will also focus on their real and 
potential applications in everyday clinical practice.

New biomarkers of AKI

Accessible markers of AKI can be components of serum 
or urine. Hopefully, one or more of these biomarkers, 
either alone or in combination, will prove to be useful in 
facilitating early diagnosis, guiding targeted interventions 
and monitoring the disease progression and resolution 
[8]. The most important and promising biomarkers are 
summarized in Table 1.

Neutrophil gelatinase‑associated lipocalin

Human neutrophil gelatinase-associated lipocalin (NGAL) 
is a 25-kDa protein initially identified bound to gelatinase 
in specific granules of the neutrophil. NGAL is synthe-
sized during a narrow window of granulocyte maturation 
in the bone marrow [9], but may also be induced in epithe-
lial cells in the setting of inflammation or malignancy [10]. 
NGAL should be considered as a marker of tubular damage 
[11].

NGAL was identified as being one of the seven genes 
whose expression was upregulated more than tenfold 
within the first few hours after ischemic renal injury in a 
mouse model [12]. Although it was shown that exogenous 
administration of NGAL protects against ischemic kid-
ney injury in mice [13], lipocalin-2 knockout mice do not 
exhibit increased sensitivity to bilateral renal ischemia/
reperfusion injury [14]. NGAL is upregulated and can be 
detected in the kidney [15] and urine of mice 3 h after cispl-
atin (20 mg/kg) administration and it has been proposed as 
an early biomarker for diagnosing AKI [16]. A prospective 
study of pediatric patients undergoing cardiopulmonary 
bypass (CPB) for cardiac corrective surgery found urinary 
NGAL to be a powerful early marker of AKI, preceding 
any increase in serum creatinine (SCr) by 1–3 days [17]. 
A similar study of adult patients showed urinary NGAL 
levels at 1, 3, and 18 h after cardiac surgery to be signifi-
cantly higher in patients who went on to develop clinically 

Table 1   Overview of the most recent and promising biomarkers for early detection of AKI

EO endogenous ouabain, ER emergency room, FABPs fatty acid-binding proteins, ICU intensive care unit, IGFBP7 insulin-like growth factor-
binding protein 7, IL-18 interleukin-18, KIM-1 kidney injury molecule-1, NGAL neutrophil gelatinase-associated lipocalin, ROC receiver oper-
ating characteristic curve, TIMP2 tissue inhibitor of metalloproteinases 2, Tx transplantation

Biomarker Settings studied Source Measured from Used for Diagnostic 
accuracy 
(ROC)

NGAL Cardiac surgery, ER, hos-
pitalized patients, kidney 
Tx, sepsis, critically-ill 
patients

Leukocytes, loop of henle 
and collecting ducts

Serum plasma Detection of established AKI, 
early diagnosis, prognosis

0.53–0.96
Urine

Cystatin-C Hospitalized patients, 
cardiac surgery

Nucleated cells Serum plasma Detection of established AKI, 
early diagnosis, prognosis

0.79–0.89
Urine

KIM-1 Hospitalized patients, 
cardiac surgery

Proximal tubular cells Urine Increased risk of AKI, estab-
lished AKI, prognosis

0.61–0.78

IL-18 Cardiac surgery, ICU, hos-
pitalized patients, Tx

Monocytes, dendritic cells, 
macrophages

Urine Detection of established AKI, 
early diagnosis, prognosis

0.70–0.95

FABPs Contrast nephropathy, 
Sepsis, cardiac surgery, 
ischemic/reperfusion 
injury

Hepatocytes, proximal 
tubular cells

Urine Detection of established AKI, 
progression to CKD

0.84–0.96

TIMP-2 and IGFBP7 Major surgery, sepsis, 
shock, trauma

Tubular epithelial cells Urine Detection of established AKI, 
prognosis

0.76–0.85

EO Cardiac surgery Adrenal cells Plasma Identification of patients with 
increased risk of AKI

0.73–0.80
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significant AKI [18]. Elevated NGAL levels have also been 
reported in heart failure, coronary heart disease, and stroke; 
some studies have shown NGAL to be an independent pre-
dictor of major adverse cardiovascular events and mortality 
[19–21].

NGAL has been one of the most widely studied bio-
markers in AKI [22], in particular in the cardio-surgical 
field [23, 24]. NGAL has been tested in multiple studies 
that have included a total of more than 4000 patients at risk 
for AKI due to sepsis, cardiac surgery, exposure to contrast 
media, or after renal transplantation. In these studies, the 
average sensitivity and specificity of NGAL ranged from 
70 to 80%, upon different king of ARF triggering mecha-
nism (sepsis vs. cardiac surgery). The diagnostic accuracy 
(receiver operating characteristics, ROC) was among 0.53 
and 0.96 [25–28]. Moreover, in a recent extensive meta-
analysis of data from 19 studies including >2500 patients, 
serum and urine NGAL levels were found not only to be 
diagnostic of AKI, but also able to predict clinical out-
comes such as need for dialysis and mortality [21].

NGAL shows the potential to be a simple and power-
ful biomarker able to provide an early (within a few hours) 
AKI diagnosis [17], and capable of differentiating between 
prerenal kidney disease and acute tubular necrosis (ATN) 
[29]. NGAL tests are available for clinical use in Europe 
and will eventually be available in North America too, 
although it is not clear which test (urine vs. plasma sample) 
provides the best diagnostic performance for AKI. Some 
authors have suggested that a combination of the two tests 
might be the best option [25].

Cystatin‑C

Cystatin-C (Cys-C) is a 13-kDa protein that was initially 
known as interalia γ-trace, post-γ-globulin, and gamma-
CSF and is believed to be one of the most important extra-
cellular inhibitors of cysteine proteases. Cys-C is freely 
filtered by the glomerulus, reabsorbed and catabolized, but 
not secreted, by the tubules. Over the past decade, serum 
Cys-C has been extensively studied and found to be a sensi-
tive serum marker of the glomerular filtration rate (GFR) 
and a stronger predictor than SCr of risk of death and cardi-
ovascular events in older patients [30, 31]. The only rodent 
study in which Cys-C was measured was in the rat model of 
end-stage renal disease (ESRD) in which sequential bilat-
eral nephrectomy was carried out 7 days apart. The kinet-
ics of changes in serum Cys-C and creatinine concentra-
tions mimicked the clinical condition [32]. Urinary Cys-C 
levels have been found to be elevated in individuals with 
known tubular dysfunction [33, 34]. In addition, Herget-
Rosenthal et  al. reported that elevated urinary Cys-C lev-
els were highly predictive of poor outcome (i.e. need for 
renal replacement theory, RRT) in a heterogeneous group 

of patients with initially nonoliguric AKI [35]. In one pro-
spective study, Cys-C was measured in both the plasma and 
urine of patients undergoing cardiac surgery. Within the 
first 6 h urinary values of Cys-C rose predicting AKI, but 
no change was observed in plasma levels, suggesting that 
the urinary test might be superior to the plasma assay for 
the early detection of AKI [36].

When compared with (SCr), Cys-C seems to be less 
affected by age, gender, and body weight. Serum levels 
of Cys-C are a more precise indicator of kidney function 
than SCr levels [37, 38] but seem to be influenced by large 
doses of corticosteroids, hyperthyroidism, inflammation, 
hyperbilirubinemia and hypertriglyceridemia [39, 40]. Cur-
rently, it is unclear if the value of Cys-C is generalizable 
to all forms of AKI or is specific to particular populations 
[41–43].

Kidney injury molecule‑1

Kidney injury molecule-1 (KIM-1) is a type I cell mem-
brane glycoprotein containing a unique six-cysteine 
immunoglobulin-like domain and a mucin domain in its 
extracellular region. KIM-1 was initially identified using 
representational difference analysis on kidneys follow-
ing ischemia/reperfusion injury: KIM-1 mRNA levels 
increased more than any other known gene after kidney 
injury [44]. In preclinical and clinical studies using several 
mechanistically different models of kidney injury, urinary 
Kim-1 has been used as an early diagnostic indicator of kid-
ney injury [45, 46]. Several reports have shown that KIM-1 
appears to be a very sensitive indicator of AKI in noncar-
diac surgical patient populations [47], and after cardiac 
surgery [48]. Han et  al. demonstrated marked expression 
of KIM-1 in kidney biopsy specimens from 6 patients with 
acute tubular necrosis, and found elevated urinary levels 
of KIM-1 within 12 h after an initial ischemic renal insult, 
prior to the appearance of casts in the urine. Moreover, this 
work showed that increased KIM-1 level was associated 
with a greater than 12-fold (odds ratio, OR 12.4, 95% con-
fidence interval, CI 1.2–119) risk for the presence of ATN 
[45]. Liangos et al. studied urinary KIM-1 and N-acetyl-β-
d-glucosaminidase (NAG) in 201 patients with established 
AKI and found that elevated levels of urinary KIM-1 and 
NAG were significantly associated with the clinical com-
posite endpoint of death or dialysis requirement, even after 
adjustment for disease severity or comorbidity [49].

KIM-1 seems to be very useful in differentiating ATN 
from other forms of AKI. Furthermore, Koyner et al. also 
described a predictive preoperative power of KIM-1 in rela-
tion to the development of stage 1 and stage 3 AKI; this is 
probably due to the presence of subclinical proximal tubu-
lar injury reflected in increased KIM-1 levels [50].
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Interleukin‑18

Interleukin-18 (IL-18) is a cytokine that has been identified 
as an interferon-γ (IFN-γ)-inducing factor in livers of mice 
treated with Propionibacterium acnes and lipopolysaccha-
ride [51]. The precursor form of IL-18 (24 kDa) is enzy-
matically cleaved by IL-1β-converting enzyme to produce 
mature 18-kDa IL-18 protein [52]. Renal IL-18 mRNA 
levels have been shown to be significantly upregulated fol-
lowing ischemia–reperfusion injury, inflammatory/autoim-
mune nephritis, and cisplatin-induced nephrotoxicity [53].

Urinary IL-18 levels are elevated in patients with AKI 
and delayed graft function compared to normal subjects and 
patients with prerenal azotemia, chronic renal insufficiency, 
and nephrotic syndrome [54]. IL-18 has been shown to be 
more elevated in patients with established acute tubular 
necrosis AKI than in those with prerenal azotemia, urinary 
tract infection, or chronic kidney disease (CKD) [55, 56]. 
In particular, in a study of critically-ill adult patients with 
acute respiratory distress syndrome (ARDS), increased uri-
nary IL-18 was found to be an early marker of AKI, pre-
ceding changes in serum creatinine by 1–2 days, and was 
also an independent predictor of death [56].

Fatty acid–binding protein

Fatty acid-binding proteins (FABPs) are small (15  kDa) 
cytoplasmic proteins abundantly expressed in all tis-
sues with active fatty acid metabolism [57]. Two types of 
FABP have been identified in the human kidney: liver-type 
FABP (L-FABP) in the proximal tubule and heart-type 
FABP (H-FABP) in the distal tubule [58, 59]. Free fatty 
acids (FFAs) in proximal tubules are bound to cytoplasmic 
FABPs and transported to mitochondria or peroxisomes, 
where they are metabolized by β-oxidation [60]. Urinary 
L-FABP has been identified in preclinical and clinical 
models and has been found to be a potential biomarker in a 
number of pathologic conditions, including CKD, diabetic 
nephropathy, IgA nephropathy, and contrast nephropa-
thy. Using human L-FABP (hL-FABP) transgenic mice, it 
has been demonstrated that protein-overload nephropathy 
and unilateral ureteral obstruction, two models of renal 
interstitial injury, are associated with increased expres-
sion and urinary excretion of L-FABP [61, 62]. In a clini-
cal study, elevated urinary levels of L-FABP were found 
to be an independent predictor of AKI (elevation time 
within 4–24 h) [63]. In both injured models, a less severe 
tubulointerstitial damage was observed in the transgenic 
mice when compared with wild-type mice, supporting the 
notion that L-FABP plays a protective role in the setting of 
increased renal tubular stress [64]. L-FABP has also been 
advocated as a potential biomarker for monitoring pro-
gression of CKD. Kamijo et al. found increasing L-FABP 

levels with deterioration of renal function in patients with 
nondiabetic CKD [62]. In addition, Nakamura et  al. have 
reported that urinary L-FABP may serve as a noninvasive 
biomarker to discriminate between IgA nephropathy and 
thin basement membrane disease [65] as well as a potential 
predictive marker for contrast-induced nephropathy [66]. 
Although L-FAPB appears to be an attractive candidate 
biomarker for a number of renal diseases, additional stud-
ies are needed to determine the utility of L-FABP in AKI, 
especially in the setting of ischemia/reperfusion injury, 
nephrotoxin exposure, and sepsis.

TIMP‑2 and IGFBP7

Tissue inhibitor of metalloproteinases 2 (TIMP2) and 
insulin-like growth factor-binding protein 7 (IGFBP7) 
are markers of cellular stress in the early phase of tubular 
cell injury caused by a wide variety of insults (inflamma-
tion, ischemia, oxidative stress, drugs, and toxins) [67–70]. 
Therefore, both markers are involved in the process of 
G1 cell-cycle arrest that prevents cells from dividing in 
the case of damage to the DNA until such damage can 
be repaired [71]. Importantly, both biomarkers appear as 
“alarm” proteins for other nearby cells in a paracrine fash-
ion [72, 73]. Two multicenter observational studies were 
performed in critically-ill patients at risk for AKI [74]. The 
top two markers from the discovery phase were validated 
in a second study (Sapphire) and compared to a number of 
previously described biomarkers. In the discovery phase, 
522 adults were enrolled in three distinct cohorts includ-
ing patients with sepsis, shock, major surgery, and trauma 
and over 300 markers were examined. In the Sapphire vali-
dation study, 744 adult subjects with critical illness and 
without evidence of AKI (at enrolment) were enrolled; 
the final analysis cohort was a heterogeneous sample of 
728 critically-ill patients (14% with moderate to severe 
AKI). IGFBP7 and TIMP-2, used together, demonstrated 
an area under the curve (AUC) for AKI of 0.80 (0.76 and 
0.79 alone). Furthermore, combined used of IGFBP7 and 
TIMP-2 significantly improved risk stratification when 
added to a 9-variable clinical model.

Endogenous ouabain

Endogenous ouabain (EO) is a neuroendocrine hormone 
synthesized in the adrenal cortex [75–77]. EO modulates 
the activity of Na, K-ATPase and induces signal transduc-
tion via sodium-calcium exchange and the Src-dependent 
pathway [78]. The hypertensive effect of EO is well estab-
lished in both animal and human models [79–81], as well 
as its association with organ damage [82, 83]. Furthermore, 
a rat model of ouabain-induced hypertension exhibited 
reduced creatinine clearance, proteinuria, and impaired 
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podocyte nephrin expression; thus, elevated EO per se may 
be a direct cause of podocyte damage. Ouabain-infused 
rats exhibited a significant reduction of creatinine clear-
ance (−18%, p < 0.02) and an increase in urinary protein 
excretion (+54%, p < 0.05) compared to controls [84]. The 
mechanism of the EO effect is likely mediated by changes 
in cell Ca2+ (activation of the Ca++-dependent protease 
calpain [85] with an increase in nephrin protein cleavage 
[86]) or, via NFkB (active activation of the transcriptional 
regulator Snail with reduction in nephrin expression [87]).

Recently, a significant association has been reported 
of preoperative EO levels with adverse renal outcomes in 
cardiac surgery patients and with mortality in critically-ill 
patients. In one study [84], elevated preoperative EO levels 
were associated with a higher incidence of postoperative 
AKI (20.3 vs. 2.8%, p < 0.001) and ICU stay (2.4 ± 0.59 vs. 
1.4 ± 0.38 days, p = 0.014); in a second study [88], the pre-
operative EO value was added to a different clinical AKI 
predictive model and resulted in a significant improvement 
of risk prediction power (AUC of AKI from 0.79 to 0.84; 
p < 0.0001). Finally, post-operative EO levels were also 
associated with a higher mortality rate after cardiac surgery 
[89].

Other new potential biomarkers

Recently, some new potential biomarkers have been pro-
posed for early determination of AKI in specific conditions. 
Clusterin [8, 90], osteopontin [91], intestinal trefoil factor 
(TFF3) [92], glutathione-S-transferase (GST) [93, 94] and 
pyruvate kinase M2 [95] were associated with the develop-
ment of drug-induced nephrotoxicity in an in  vitro study 
and animal models focusing on potential new mechanisms 
of development of renal damage [95]. However, further 
investigations are needed to confirm these relationships and 
the potential benefits of these new molecules.

Transition from AKI to CKD

A potential association has been described between some 
of the new early biomarkers of AKI and the presence of 
chronic subclinical kidney damage. In this way, these bio-
markers should also be considered markers of progression 
from AKI to CKD with a prognostic value.

NGAL

In a cross-sectional study of 80 non-diabetic patients with 
CKD stages 2–4, serum NGAL was found to be elevated 
in those with the most advanced CKD [96]. Moreover, uri-
nary and serum NGAL levels have been noted to be ele-
vated in a wide range of kidney diseases, including diabetic 
nephropathy, autosomal polycystic kidney disease and IgA 

nephropathy [97, 98]. NGAL was also identified in an ani-
mal model as an active player in kidney disease progression 
[99].

KIM‑1

In a retrospective study of patients with non-diabetic pro-
teinuric kidney disease, KIM-1 levels in urine were found 
to be elevated, but subsequently decreased when patients 
received treatment with angiotensin-converting enzyme 
inhibitors or a low-sodium diet [100]. In a recent study of 
a cohort of patients with type 1 diabetes and proteinuria, 
serum KIM-1 level at baseline strongly predicted the rate 
of estimated GFR loss and risk of ESRD during 5–15 years 
of follow-up [101]. Moreover, in an animal model KIM-1 
showed a potential direct role in CKD progression by pro-
moting kidney fibrosis, interstitial kidney inflammation and 
progressive renal failure with anemia, proteinuria, hyper-
tension, and cardiac hypertrophy [102].

L‑FABP

In two different studies (on diabetic and non-diabetic 
patients), urinary L-FABP was found to be more sensitive 
than proteinuria in predicting the progression of CKD [103, 
104].

Cys-C is considered a “functional biomarker” of AKI 
because it is freely filtered and reabsorbed by the proximal 
tubule and this process is inhibited in the presence of kid-
ney damage [43]. It has been suggested that Cys-C might 
better predict the risk of developing CKD, highlighting a 
state of ‘preclinical’ kidney dysfunction rather than iden-
tifying the early phase of AKI [105]. Moreover, other data 
suggest that Cys-C is modified by age, sex, muscle mass, 
obesity, smoking status, thyroid function, inflammation, 
and malignancy. These factors suggest the need for age-
specific and sex-specific reference standards [106].

Ongoing problems with novel biomarkers

Although all these new molecules are promising candidate 
biomarkers for AKI, they are still rarely used in everyday 
clinical practice. Even if the primary results are really 
encouraging, the use of Cys-C, NGAL or other alternative 
makers of early AKI is still an area of ongoing research 
[107]. Indeed, recently some authors have shown that there 
are a couple of “blind spots” in the use of these new mark-
ers and, sometimes, the real meaning of the increased lev-
els of NGAL, KIM-1 or other biomarkers is not completely 
understood [108, 109]. Some authors reported the inability 
of these new biomarkers to predict AKI with sufficient clin-
ical pertinence to justify the cost of these analyses in rou-
tine practice [109, 110]. And some of the biomarkers have 
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still not been evaluated with enough data in very specific 
populations (infant and elderly) [43, 111].

Furthermore, the assays for detection are not standard-
ized and it is still under discussion whether is better to use 
urine or plasmatic values. Indeed, Mårtensson et  al. pro-
posed that the plasma NGAL level is a closer reflection of 
systemic inflammation than of the extent of renal injury 
inflicted [112]. Finally, the presence of these new markers 
in the urine leads to another problem: the real availability 
and reliability of these tests in critically-ill patients, where 
urine output is reduced (or totally absent) and usually 
forced by drugs. In conclusion, the data in our possession 
are still inconsistent and additional studies are needed to 
focus on the cost-effectiveness of earlier detection of AKI 
with these new compounds compared to creatinine, and to 
determine whether these biomarkers have complementary 
value. This is, at least in part, due to the heterogeneity of 
AKI subtypes, that is a great limit for large population stud-
ies in human subjects.

Sepsis‑induced AKI

Sepsis represents the one of the main causes of AKI in 
developed countries [113, 114]. It is estimated that more 
than 20% of septic patients may show some degree of AKI, 
and the mortality rate of this subgroup will increase up to 
35% [115, 116]. Although sepsis is one of the most com-
mon causes of AKI, the framework for the identification 
and management of sepsis-induced (or sepsis-associated) 
acute kidney injury (SI-AKI) has not been well established 
[114, 117]. Both the severity of the kidney injury and the 
clinical implications (morbidity and mortality rate) worsen 
with delayed recognition of the injury itself. Moreover, 
because no singular effective therapy has been uncov-
ered, early initiation of supportive care is the milestone of 
therapy (sepsis-associated acute kidney injury). It is easy 
to understand why early detection is of critical importance 
in SI-AKI. In fact, traditional urinary indices and biochem-
istry (such as SCr, FeNa and FeU, urine sodium, etc.) are 
totally inadequate to delineate subtypes and severity of 
AKI during sepsis [118–120].

Novel AKI biomarkers already have shown an ability 
to identify SA-AKI before SCr levels. Plasma and urine 
NGAL levels were significantly higher in 83 patients with 
SA-AKI compared to patients with nonseptic AKI [121]. 
In 150 critically-ill adult patients, urinary NGAL showed 
significant discrimination for AKI in patients with sepsis 
(AUC = 0.80) [122] but serum NGAL levels alone showed 
only a marginal predictive capacity for AKI in children 
with sepsis (AUC, 0.68). Also KIM-1 was reported to be 
effective in early (within 3 h of admission) identification of 
acute kidney dysfunction in a subset of 150 septic patients 
[123]. In a large multicenter study of critically-ill adults 

[74], TIMP-2 and IGFB7 showed the best predictive power 
(AUC = 0.82) in a subset of patients with sepsis. Its AKI 
prediction power was superior to other novel biomarkers 
such as NGAL, IL-18, L-FABP and KIM-1.

Finally, some studies have shown an association between 
SI-AKI and some acute phase proteins or kidney function 
protein. E-selectin (inflammatory and endothelial activa-
tion protein) was associated with AKI in patients after 
sepsis [124]; microalbuminuria was also able to predict 
subsequent development of AKI (AUC = 0.86) in an obser-
vational cohort study on septic patients [125].

Unfortunately, several studies reported that plasma lev-
els of some molecules (e.g. NGAL and Cys-C) are deeply 
influenced by the inflammatory state [106, 122, 126, 127]; 
this could represent a potential limit for the clinical use of 
these new biomarkers in the presence of systemic inflam-
mation. Simultaneous comparison of plasma and urine 
levels of biomarkers is mandatory and should represent an 
effective way to overcome this problem.

Tools for AKI predicion and severity diagnosis

Recently several tools have been proposed to determine 
the severity of kidney damage and the long-term patient 
prognosis after kidney injury has been established [128]. 
Between these options, the most valuable and promising in 
terms of cost-effectiveness seem to be the furosemide stress 
test (FST), the renal functional reserve (RFR) examination 
and predictive models.

Furosemide stress test

Koyner et al. [128] recently demonstrated that the 2-h urine 
output after a standardized high-dose furosemide stress test 
(FST), 1 mg/kg of furosemide in naive patients or 1.5 mg/
kg in those with prior exposure, in clinically euvolemic 
patients with early AKI has the predictive capacity to iden-
tify those with severe and progressive AKI [129]. The area 
under the ROC curve (AUC) for 2-h urine output after FST 
was 0.87 for severe AKI (AKIN stage-3) in a subset of 77 
patients (p = 0.001). The ideal cutoff for predicting progres-
sive AKI during these first 2 h was a urine volume <200 ml 
(or <100 ml/h) with a sensitivity of 87.1% and a specificity 
of 84.1% [129]. These data demonstrate that urine output 
in the first 2  h after FST outperforms several biomarkers 
of AKI for the prediction of AKI progression and future 
need for RRT. Specifically, FST was significantly better 
than our complete panel of urinary biomarkers at predicting 
progression to AKIN stage 3. The addition of biomarkers 
to FST results did not provide any additional benefit. Simi-
larly, FST outperformed all other biomarkers in predicting 
the end point of receipt of RRT and inpatient death.
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Renal functional reserve test

The concept of renal functional reserve (RFR) was intro-
duced in the 80 s [130]. The renal functional reserve was 
defined as the ability of the kidney to increase renal plasma 
flow (RPF) and GFR after a stimulus such as a protein 
load [131, 132]. GFR is not a fixed function and it may 
increase in healthy subjects in response to different stimuli 
(both physiological and pathological); the absence of RFR 
defines a state of hyper-filtration which seems to be a nega-
tive factor for the progression of renal failure [133]. This 
capacity to increase the level of function depends on an 
intact nephron mass and describes RFR. In this way, sub-
jects with a reduction in RFR were considered ‘sub-clinical 
AKI’ with an increased susceptibility of the kidney even in 
the presence of mild exposure [133]. There is no single val-
idated method/test available to determine RFR in an easy, 
accurate way and which could be used in clinical practice, 
although in the past multiple attempts have been made 
[134–136]. Recently, Sharma and Ronco described a stand-
ard protocol for a ‘renal stress test’ (RST) to evaluate RFR 
using weight-adjusted oral protein loads (1 g/kg) in healthy 
subjects [137]. This test, performed in 18 healthy volun-
teers, seems to be very easy and accurate with no clinical 
risks for the patients. Moreover, Pekkafal and Kara pro-
posed the incorporation of a Doppler resistive index (RI) 
and pulsatility index (PI) into the assessment of RFR [138]. 
The RFR assessment should be of particular utility in spe-
cific clinical situations (such as determining the status of 

the kidneys in potential living kidney donors; preparatory 
evaluation/counseling, etc.) [133].

Models predicting AKI

Considering the ongoing issues regarding early AKI detec-
tion, it is becoming strategically important to identify sub-
jects with an increased risk of acute renal damage after a 
therapeutic procedure. This is dramatically true, for exam-
ple, in post-surgical AKI. More so, neither the new markers 
of early AKI nor, least of all, the “classic” SCr or blood-
urea-nitrogen (BUN) levels are able to identify suscepti-
ble patients. All these molecules start to increase in blood 
and urine when the kidney damage already exists; but it 
is reported that poor outcomes can be observed just with 
an increased risk of AKI, even before the kidney damage 
occurs (see Fig. 1). An accurate, validated prediction model 
for AKI after cardiac surgery could help in clinical decision 
making, patient counseling, informed decision making, 
resource utilization, and preoperative medical optimiza-
tion [139]. For these reasons, in the last 15 years many new 
models predicting AKI have been proposed [88, 140–146]. 
Based simply on good clinical “observation”, these models 
can predict post-operative AKI with a fairly good power, 
usually expressed by an AUC between 0.76 and 0.84. 
Recently, two meta-analyses [7, 147] compared the most 
important predictive models, showing the strengths and 
weaknesses of each. The main features of all models are 
summarized in Table 2.

Fig. 1   AKI development: distribution of various diagnostic tools 
across the timeline of the development of acute kidney injury. Clini-
cal predictive models, identification of a favorable genetic back-
ground and biomarkers of individual susceptibility (like EO or KIM-

1) could be used to identify patients with an increased risk of renal 
complication. All the other new biomarkers and useful diagnostic 
tools might be used to determine diagnosis of AKI as early as pos-
sible after the damage has occurred
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The most robust and externally validated models are for 
AKI requiring dialysis. However, dialysis events are rare 
(1–2%) and frequently occur several days after the opera-
tion, limiting the benefit of application of these scoring sys-
tems [7]. More studies are needed to develop and validate 
scores to predict milder AKI not requiring dialysis, which 
is very common and contributes to several in-hospital out-
comes. Unfortunately, the studies on models with a more 
sensitive definition of AKI suffer from different definitions 
of AKI, small cohorts and the lack of external validation. 
Moreover, in most proposed models the use of intraopera-
tive variables greatly reduces their utility in clinical prac-
tice. Indeed, what we would get is a real prediction “a pri‑
ori” of AKI risk, not just a score for post-event outcomes.

Despite all these limitations, the use of clinical predic-
tion models for AKI is currently the only validated strategy 
available to identify patients with a particularly high risk. 
Recently, several studies [88] have shown that combining 
the clinical variables and the new biomarkers could signifi-
cantly increase the predictive power for the development of 
AKI compared to the clinical models alone. These results 
appear more interesting when biomarkers of individual sus-
ceptibility are chosen because in this way the pre-operative 
prediction power of the models is preserved.

Renal angina

A new concept—renal angina—was introduced in 2010 by 
Goldstein and Chawla [117, 148]. The term ‘angina’ was 
used in the context of AKI to identify the development of 
clinical or subclinical renal injury. Renal angina (RA) is 
not associated to a physical symptomatology (like pain) but 
is rather a conceptual framework to identify evolving AKI 
based on the presence of oliguria (for 1 h), any increase in 
SCr (>0.1 mg/dl), and fluid overload [148–150]. The RA 
concept has been assessed in one large cohort of critically-
ill adult patients with good results: it demonstrated a high 
sensitivity (92%) associated with the development of AKI, 
and an extremely high (99%) negative predictive value 
[151]. Moreover, for a better detection of renal angina, a 
bedside assessment tool called the Renal Angina Index 
(RAI) has been developed in the pediatric population. 
The performance of the RAI in different pediatric cohorts 
was remarkably consistent, with a risk prediction AUC of 
0.74–0.81 [152]. In conclusion, RA probability assessment 
in AKI appears to have good performance metrics both in 
children and adults; future research will need to adjust and 
recalibrate the RA concept, especially in combination with 
other AKI biomarkers [153].

Table 2   Overview of the most important clinical predictive models of post-surgical AKI

AKI-D AKI requiring dialysis, AKI-ND AKI not requiring dialysis, AKICS Acute Kidney Injury After Cardiac Surgery Score, CICSS Continuous 
Improvement in Cardiac Surgery Study, CLIN-RISK Clinical Risk Score for AKI, MCSPI Multicenter Study of Perioperative Ischemia Score, 
NNECDSG Northern New England Cardiovascular Disease Study Group Score, SRI simplified renal index, STS Society of Thoracic Surgeons 
Bedside Risk Tool
# Only internal validation

Model name CICSS Cleveland 
clinic

STS SRI MCSPI AKICS NNECDSG CLIN-RISK

First author Chertow Thakar Mehta Wijeysundera Aronson Palomba Brown Simonini
Year of study 1987–1994 1993–2002 2002–2004 1999–2004 1996–2000 2003–2005 2001–2005 2009–2012
Number of 

patients
42,733 15,838 449,525 10,751 2381 603 8363 802

Outcome (%) AKI-D (1.1) AKI-D (1.7) AKI-D (1.4) AKI-D (1.3) AKI-ND (4.8) AKI-ND (11) AKI-ND (3) AKI-ND (9.9)
ROC 0.76 0.81 0.84 0.81 0.84 0.84 0.72 0.79
Validation 

(ROC)
Yes (0.71–

0.78)
Yes (0.66–

0.86)
Yes (0.75–

0.81)
Yes (0.73–

0.79)
Yes# (0.80) Yes# (0.85) Yes (0.76) No

Number of 
variables

7 13 10 8 8 8 11 8

Demographics X X X X X X
Clinical X X X X X X X X
Operation type X X X X X X
Intraoperative X X
Postoperative X
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Emerging concepts in AKI: genetic susceptibility 
and new “OMICS” technologies

It is well known in clinical practice that two patients with 
identical backgrounds and clinical risk factors can react dif-
ferently to the same insult. Therefore, models using tradi-
tional risk factors remain inadequate [142, 154–156]. Fur-
thermore, we are still unable to predict who is going to go 
on to chronic dialysis and who is going to recover. How-
ever, some of these risk factors may be elucidated by two 
emerging fields: perioperative genomics and new biomark-
ers derived from the new ‘OMICS’ technologies.

Genetic susceptibility

In AKI the role of genetic variation as a determinant of 
both risk and outcome is not well defined [157]. Recently 
an individual genetic AKI susceptibility has also been 
proposed [158–160]. Traditional methods of identifying 
genetic associations are based on multigenerational studies 
but, by definition, this type of study is not feasible in the 
field of perioperative medicine. Using association studies, 
a large number of genetic polymorphisms have been iden-
tified that are able to predict different and variable kidney 
responses in the face of the same kind of injury [157]. In 
summary, the majority of these high-risk genetic variants 
are associated to a proinflammatory state, the response to 
oxidative stress, or alteration of renal vascular response 
[161]. It is also probable that a patient’s DNA sequence 
variants have more effect on host repair and regeneration 
biology than the risk of AKI per se [157].

Proinflammatory genes

Usually in postoperative cardiac surgery, the patient’s 
inflammatory mediators are elevated because CPB, 
ischemia–reperfusion injury and endotoxemia from gen-
eral hypoperfusion represent a significant systemic inflam-
matory trigger [162, 163]. As a consequence, it was sup-
posed that patients who are genetically predisposed to an 
exaggerated immune response may also be more suscepti-
ble to postoperative AKI. Specific polymorphism of IL-6 
and tumor necrosis factor (TNF)-α genes were reported to 
be associated to AKI predisposition (hazard ratio, HR, for 
TNF-α 2.47, p = 0.04) [155, 159, 164].

Renal vascular tone modulators

Polymorphisms of modulators of renal vascular tone 
have also been proposed as mediators of increased renal 
risk. These genes include angiotensin-converting enzyme 
insertion/deletion (ACE I/D), angiotensinogen, angioten-
sin receptor 1, and endothelial NO synthase [157]. Only 

a single positive study [165] reported an increased risk 
in association with ACE D allele (odds ratio, OR, 2.37, 
p = 0.021).

Apolipoprotein E

Polymorphism ε4 apolipoprotein E (APOE), an important 
regulator of lipoprotein metabolism and immunomodula-
tion, has been associated with a postoperative rise in creati-
nine in several studies [165, 166] in patients after coronary 
artery bypass graft (CABG). This finding has not been con-
firmed in a more consistent multiple studies.

Other genes

Oxidative stress genes (like NADPH) and haptoglobin 2–2 
polymorphism have been studied as contributors to post-
operative risk [167, 168]. Preliminary results showed an 
association between these gene polymorphisms and AKI 
onset, dialysis and mortality (OR, respectively, 2.11 and 
5.4, p < 0.05).

Ongoing problems with perioperative genomics

Although several polymorphisms have been investigated, 
most studies focused on a select number of individual 
genes in small homogenous sample populations. Overall, 
the results have been variable and often inconsistent across 
studies [157]. The lack of robust and reproducible asso-
ciations is not surprising given the complex, multifactorial 
nature of perioperative renal injury. In addition, we have a 
rudimentary understanding of how individual genes may 
contribute to create a phenotype more prone to develop 
AKI. Furthermore, none of these studies combined the 
prognostic information from genetic polymorphisms with 
existing predictive models. Because of these limitations 
to association studies, the next step in refining our under-
standing of at-risk genotypes will require large prospective 
studies of patients who develop AKI. The ideal model for 
such clinical studies will continue to be cardiac surgery 
for several reasons: this represents a high-volume surgical 
population, the epidemiology of AKI in this setting is well 
characterized, the timing of the injury is measurable, and 
improved risk prediction may translate into definable man-
agement strategies in the future [161].

New ‘OMICS’ technologies and AKI

‘Omic’ technologies (e.g. proteomics, metabolomics, 
exomes, etc.) should give researchers a holistic view of 
the molecules that are expressed (or overexpressed) in 
both physiological and pathological conditions [169–171]. 
These new technologies can be applied not only for a better 
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understanding of normal physiological processes but also 
in pathological processes where they can play a role in the 
screening, diagnosis and prognosis as well as in aiding our 
understanding of the etiology of the diseases. The applica-
tion of metabolomics, proteomics and functional genom-
ics to evaluate and monitor the presence of acute kidney 
disease is still under development [172–174]. Validation 
of these new biomarkers could provide additional tools to 
detect the onset and severity of kidney injury. Moreover, a 
significant opportunity exists to integrate metabolomic and 
proteomic analyses in the study of renal pathophysiology 
[171, 172]. Several new metabolites [175–178] and exomes 
[179–181] have been proposed as biomarkers of AKI both 
in animal and human models. Future work is needed to 
focus on unambiguous identification of metabolite bio-
markers and extensive validation efforts to put these mark-
ers to good use for early disease diagnosis in clinical prac-
tice [171].

Conclusion

Acute kidney injury is a very dangerous complication. It 
is associated with an increased risk of mortality and mor-
bidity, and longer hospital stay, requires additional treat-
ment, and increases the costs of the heath care. This clini-
cal syndrome is characterized by a progressively worsening 
course, being the consequence of an interplay of different 
pathophysiologic mechanisms. Several different factors, 
like hemodynamic or inflammatory status, genetic back-
ground and use of nephrotoxic compound, are all involved. 
Unfortunately, the heterogeneity of AKI subtypes poses a 
great limit for large population studies in human subjects. 
In this setting, the use of classic clinical predictive models 
associated with novel renal biomarkers (both biological and 
genetic) may well be the only way to refine the methods of 
treatment and improve the prognosis of patients. Introduc-
tion of novel independent biomarkers of AKI into the clini-
cal setting is crucial for earlier diagnosis and improved risk 
assessment. The purpose of this review was to help clarify 
the biological basis of new AKI biomarkers that might con-
tribute to improving the early detection or diagnosis of this 
pathology. But before biomarkers can be advocated for the 
diagnosis of AKI, further research is needed. Our under-
standing of how to prevent and manage AKI in an optimal 
way requires additional effort.
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