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Introduction

Acute Kidney Injury (AKI) is a term that is used to 
describe an acute reduction in glomerular filtration rate 
(GFR) occurring over hours to days, with a subsequent rise 
in serum creatinine concentrations. It is an umbrella term 
with a variety of diverse causes that precipitate and propa-
gate acute kidney injury with a rapid reduction in kidney 
function. This abrupt loss of GFR is usually sufficient to 
result in the retention of metabolic waste products, and in 
the disruption of fluid, electrolyte, and acid-base homeo-
stasis. AKI was previously referred to as acute renal fail-
ure (ARF) but during the past decade this terminology 
has changed from ARF, for which the focus generally was 
limited to the most severe episodes with complete or near 
complete loss of kidney function, to the current terminol-
ogy of AKI, which is more representative of the full spec-
trum of acute kidney dysfunction and includes both injury 
and/or kidney impairment [1–6].

Acute kidney injury is associated with major adverse 
clinical outcomes and significant health care costs, and is 
now considered to be a major public health problem around 
the globe. Several observational studies have suggested 
that AKI, even if mild and transient, is associated with the 
subsequent development of chronic kidney disease (CKD) 
[7–12]. Although recovery of kidney function occurs in 
the majority of patients surviving an AKI episode, a large 
number of patients do not recover completely, and some 
will remain dialysis-dependent as a consequence [13–16]. 
CKD is a well-known risk factor for AKI, because chroni-
cally impaired kidneys lose their ability to auto-regulate 
and therefore become susceptible to acute injury whenever 
exposed to a sufficiently severe insult [17]. Recent studies 
suggest that both AKI and CKD are not separate disease 
entities but are in fact components of a far more closely 
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interconnected disease continuum. Accordingly, consid-
erable conceptual overlap may exist between these two 
“separate conditions” with regard to underlying pathology 
and pathophysiology, definitions, risk factors, and indeed 
clinical outcomes [18]. However, the true nature of this 
relationship is complex and poorly understood. This review 
explores potential relationships between AKI and CKD, 
and seeks to uncover a number of “missing links” in this 
tentative emerging relationship.

Epidemiology of AKI and CKD

The epidemiology of acute kidney injury

The prevalence and incidence of AKI vary by definition 
and among populations. Prior to the adoption of newer 
and more precise classification systems for AKI, the preva-
lence ranged widely from 1 to 26% [19–21]. Over the last 
15 years, substantive efforts have been made to reach a con-
sensus on definitions and classification of AKI. In 2002, 
the Acute Dialysis Quality Initiative (ADQI) developed 
the RIFLE definition (Risk, Injury, Failure, Loss of kid-
ney function, and End-stage kidney disease) and published 
it in May 2004 [1]. Three years later, in September 2007, 
the Acute Kidney Injury Network (AKIN) working group 
made further modifications [3–5]. Finally, in March 2012, 
KDIGO combined and modified the RIFLE and the AKIN 
definitions to develop a new definition of AKI in order to 
establish a single unifying classification system for AKI in 
clinical practice and in research [6].

In the United States, approximately 1% of patients have 
AKI at the time of admission to the hospital [22]. The 
prevalence of AKI is >40% at the time of admission to the 
intensive-care unit (ICU) if sepsis is present [23] and >60% 
during the stay in ICU [24]. Large epidemiologic studies 
from the last quarter century, confirm that the incidence of 
AKI continues to rise in hospitalized-patients despite sub-
stantial advances in healthcare delivery, technology, and 
research [7, 25]. Current estimates suggest that the inci-
dence ranges from 295 cases per million people per year for 
dialysis-requiring AKI, to more than 5000 cases per million 
people per year for non-dialysis-requiring AKI [26].

The estimated incidence rate of AKI during hospitaliza-
tion is between 2 and 5%. Postoperatively, AKI develops in 
approximately 1% of general surgical cases [21], and the 
highest incidence is seen in ICU, where it occurs in up to 
two-thirds of patients [27].Twenty-one percent of kidney 
transplant recipients develop AKI within the first 6 months 
after transplantation [28]. The incidence of community-
acquired AKI among all hospital admissions has been 
shown to be as high as 4.3% [29]. However, this is prob-
ably an underestimate of the true incidence because many 

patients, with community-acquired AKI, will neither have 
blood tests performed nor be admitted to the hospital. This 
ascertainment bias has been described in other community-
acquired AKI studies [30]. The economic burden of AKI 
is substantial and increasing [31]. In England, AKI is esti-
mated to cost between £434 and £620  million per year 
(excluding costs in the community) and this exceeds the 
overall costs associated with lung and skin cancer com-
bined [31].

The epidemiology of chronic kidney disease

Chronic kidney disease (CKD) and End-stage renal disease 
(ESRD) are major global public health problems [32–34]. 
They are the ninth leading cause of death in the United 
States [35]. It is reported that one in ten American adults 
have some degree of CKD, and end-stage renal disease 
(ESRD) affects more than one million individuals world-
wide [33]. The incidence of CKD is at least 30-fold higher 
than that of ESRD [36, 37]. At the current rate of growth, 
it is expected that the incidence rate of new ESRD cases in 
the U.S. will be over 400,000 per year in 2030, with an esti-
mated prevalence of over two million [33]. Hsu et al. con-
cluded that the growth in ESRD incidence in USA has far 
outpaced the growth in CKD prevalence, and the increase 
in CKD prevalence had a minor contribution to the ESRD 
epidemic [37]. This sentinel observation was supported by 
several studies over the next decade that has linked AKI 
with CKD, ESRD and other adverse outcomes [7, 14, 
38–47].

Studies suggesting a link between AKI and CKD

Whether AKI directly causes CKD is unknown. How-
ever, the body of evidence from observational studies sug-
gests the presence of a strong independent association of 
AKI with the development of new-onset CKD and ESRD 
(Table  1). Ishani et  al. analysed the outcomes of over 
200,000 hospitalised elderly patients who were followed 
for a period of 24 months [7]. Compared to patients with 
no AKI or CKD, they found that that the hazard ratios for 
ESRD were highest for patients with pre-existing CKD 
who experienced a single AKI episode. The rates of new 
onset ESRD were also higher for patients who had an AKI 
event but without previous CKD.

Wald et al. provided further evidence that AKI is linked 
to an elevated risk of ESRD [14]. In a population-based 
study of hospitalised patients with severe AKI-requiring 
dialysis in Ontario Canada, they found that found that the 
risk of new ESRD was increased by almost threefold. Evi-
dence has since accumulated that patients with relatively 
mild kidney impairment at baseline, and who sustain a 
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severe dialysis-requiring AKI event, incur an elevated risk 
of ESRD [13]. Using the Kaiser Permanente database, Lo 
et al. found that dialysis-requiring AKI was independently 
associated with a 28-fold higher risk of developing stage 
four or five CKD after adjustment for confounding factors 
[13]. Newsome et al. demonstrated an increased ESRD risk 
after acute myocardial infarction in a cohort of patients 
with pre-existing CKD (evident by reduced GFR) and a 
higher burden of co-morbidities (e.g. diabetes mellitus 
and hypertension) that are well known to exert an adverse 
impact on CKD progression even in the absence of AKI 
[40]. One might argue that those who eventually progressed 
to ESRD after AKI did so because of the higher burden of 
co-morbidities rather than the AKI itself. It is noteworthy 
that not all observational studies have shown significant 
independent associations of AKI with ESRD. For example, 
in a study by Hsu et al. AKI events did not predict subse-
quent development of ESRD (adjusted HR 1.47; 95% CI 
0.95–2.28) when the model was adjusted for age, gender, 
race, diabetes, diagnosed hypertension, proteinuria and 
baseline estimated Glomerular Filtration Rate (eGFR) [43]. 
Moreover, this lack of independence of this association 
persisted even after a sensitivity analysis using alternative 
definitions of baseline renal function.

Amdur et al. concluded that ATN (acute tubular necro-
sis) and ARF independently increased the risk of CKD 
using observational data from the United States Depart-
ment of Veterans Affairs database [12]. In their analysis 
of over 113,000 veterans, patients with a recorded AKI or 
ATN episode, but without CKD, experienced significantly 
higher rates of progression to Stage 4 CKD. The adverse 
impact of an acute AKI event on CKD progression has also 

been examined in detail within other high-risk patient sub-
groups. For example, a study by James et al. examined the 
association between AKI and long-term changes in kidney 
function following coronary angiography [41]. These inves-
tigators described a significant dose-dependent association 
between the severity of AKI and the subsequent likelihood 
of kidney disease progression with a very comprehensive 
adjustment for confounding factors. A similar study by the 
same investigators that included over 900,000 patients from 
the Alberta Kidney Disease Network found that proteinuria 
further magnified both the risk of an AKI event (by over 
fourfold) and its attendant consequences on mortality and 
kidney disease progression [42]. These studies add cre-
dence to the hypothesis that both AKI and CKD represent 
a continuum of disease rather than separate disease entities 
[42]. Table 1 lists the principal studies that link AKI with 
CKD.

Despite the large number of studies that demonstrated 
associations of AKI with the development of CKD, one 
cannot state for certain that AKI is truly in the causal 
pathway. The lingering doubt that remains is in part due 
to inherent weaknesses in the design of published stud-
ies. First, many studies that have explored the association 
of AKI with CKD have utilised large administrative data 
sets which are often based on clinical codes and therefore 
lack the precision required in defining the presence and 
severity of AKI. Furthermore, these studies are also lim-
ited by the presence of a code-creep bias, a phenomenon 
that is inherently associated with these types of data sets 
[48]. Consequently, there is a continued risk of confound-
ing secondary to variation in the availability and degree 
of recording of follow-up measures of kidney function. In 

Table 1   Studies associating acute kidney injury with chronic kidney disease and end stage renal disease

RRT renal replacement therapy, Labs laboratory tests, MI myocardial infarction, ICU intensive care unit, CKD chronic kidney disease, HIV 
human immunodeficiency virus, ESRD end stage renal disease

1st author [reference] Year AKI identification method Patients/clinical setting Number of patients Mean/median 
follow-up period in 
months

Renal outcome

Newsome [40] 2008 Diagnostic codes Acute MI and elderly 87,094 49 ESRD
Hsu [43] 2009 Code for RRT and Labs CKD inpatients 39,805 20.2 ESRD
Amdur [12] 2009 Diagnostic codes Inpatients 113,272 75 CKD
Ishani [7] 2009 Diagnostic codes Inpatients 233,803 24 ESRD
Wald [16] 2009 Diagnostic codes ICU inpatients 8855 36 ESRD
Lo [14] 2009 Code for RRT and Labs Inpatients 3773 32.9 CKD
James [41] 2010 Labs Coronary angiography 11,249 30 CKD
James [42] 2010 Diagnostic codes Inpatients and outpatients 920,985 35 CKD/ESRD
Lafrance [44] 2010 Labs CKD 6862 19.4 CKD
Choi [45] 2010 Labs HIV 17,325 68.4 ESRD
Ishani [39] 2011 Labs Cardiac surgery 29,388 61.2 CKD
James [46] 2011 Labs Coronary angiography 14,782 19.7 CKD
Thakar [47] 2011 Labs Diabetes mellitus 3679 61.2 CKD
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these datasets, patients with less severe AKI are likely to 
be under-represented due to the low sensitivity of adminis-
trative clinical coding [49]. Second, it is noteworthy that a 
number of AKI outcome studies have not included informa-
tion on classification of CKD by stage at study inception, 
or the rates of CKD progression prior to the AKI event. 
These are potentially serious flaws in that it is uncertain 
whether patients with CKD at baseline had pre-existing 
mild or severe degree of kidney impairment which would 
in any event predict more rapid progression irrespective of 
intercurrent AKI episodes. Furthermore, without accurate 
information on the trajectory of GFR decline prior to the 
AKI event, it is very difficult to ascertain whether those 
who developed ESKD did so as a result of a pre-ordained 
CKD trajectory or due to the sole effect of an acute AKI 
event. Third, it is unclear whether the findings from pub-
lished studies are generalizable to all patients given inher-
ent differences in the type of and severity of exposure [13], 
and differences in populations studied [39, 41, 46]. Finally, 
the risk for developing CKD and ESRD associated with 
an AKI exposure could not be determined in many studies 
due to lack of follow-up of appropriate non-AKI controls, 
an essential component in establishing causality. In fair-
ness, these limitations are common and seem unavoidable 
in many of the published observational studies. Neverthe-
less, their presence does reduce the quality and strength 
of the evidence base linking AKI to ESRD. In truth, pro-
spective cohort studies of sufficient size and diversity with 
internal or external controls, and with prolonged follow-up 
periods, are required to examine the true nature of the AKI-
exposure ESKD relationship, and to identify subgroups of 
patients who are at greatest risk.

The pathophysiology of AKI and progression 
to CKD: What do animal models tell us?

The pathophysiology of AKI represents a very complex 
interplay between the immune system, the accompanying 
inflammatory response, tubular injury and the extent of 
any associated vascular insult [50]. Regardless of the initial 
insult and aetiology of AKI, there is a rapid loss of proxi-
mal tubular cell polarity and cytoskeletal integrity [51]. 
Adhesion molecules and other membrane proteins undergo 
mislocalisation [52, 53]. These changes result in disruption 
of normal cell to cell interactions and when severe enough 
cell necrosis and apoptosis ensue [53]. With severe AKI 
injury, viable and non-viable cells are sloughed off and the 
basement membrane, in some regions of injury, remains as 
the only barrier between the peri-tubular interstitium and 
the glomerular filtrate. As cellular debris, from epithelial 
injury, accumulates in the lumen, obstruction ensues and 
leads to an increase in the intra-tubular pressure and the 

back-leakage of the filtrate. As a consequence, a greater 
inflammatory response is generated which will lead to fur-
ther injury [50].

Within the injured kidney, the damaged endothelium is 
a major contributor to the pathophysiology of AKI. Dis-
sipation of the glomerular filtration pressure results in the 
alteration of vascular tone and reactivity, as well as a loss 
of vascular autoregulation [54]. There is an enhanced vas-
cular response to vasoconstrictors with impaired response 
to, and production of, vasodilators [50]. An unbridled vaso-
constrictive response to angiotensin II, prostaglandin H2, 
thromboxane A2, leukotrienes C4, D4, endothelin-1, and 
other vasoconstrictors occur [55]. At the same time, the 
effect of nitric oxide, bradykinin, acetylcholine and other 
vasodilators is diminished [56, 57]. The interactions of 
Toll-like receptors (TLRs) with their ligands result in the 
release of cytokines and chemokines, and the attraction of 
inflammatory cells [58–60]. Cytokines upregulate expres-
sion of leucocytes integrins and their ligands, namely inter-
cellular adhesion molecule-1 (ICAM-1) and vascular cell 
adhesion molecule (VCAM), resulting in increased adher-
ence of leukocytes to endothelial cells and therefore an in 
increase in interstitial leucocytes [60, 61]. These activated 
leukocytes generate pro-inflammatory cytokines and these 
in turn produce a number of injurious changes in proxi-
mal tubular epithelial cells and disrupt cell-matrix adhe-
sion therefore resulting in cell shedding into the lumen 
[61]. Macrophages contribute to kidney fibrosis and are an 
important source of the C3 component of complement [50]. 
The complement system may potentiate leukocyte endothe-
lial interactions and mediates injury [62]. Dendritic cells 
can activate naive T cells, thus linking the innate immune 
response to adaptive immunity [63].

The permeability of the damaged endothelium follow-
ing an AKI event increases with a subsequent develop-
ment of interstitial oedema and reduction of blood flow. 
This will result in greater ischaemic injury to vulnerable 
regions, like the outer medulla [64]. Consequently, inhibi-
tors of angiogenesis are upregulated and angiogenic factors 
are downregulated, causing a reduction in the number of 
microvessels, tissue capillaries and chronic hypoxia [65]. 
T-regulatory cells are involved in this process of inhibition 
of angiogenesis in mouse models [66]. Chronic hypoxia 
causes tubulointerstitial fibrosis which reduces the delivery 
of oxygen and nutrients to tubules resulting in their death 
leading to further fibrosis [50]. The loss of microvessels 
has been implicated in post-AKI alteration in the urine 
concentrating ability of the kidney and the development of 
salt-sensitive hypertension [50]. It is conceivable that this 
vicious circle of hypoxic injury and subsequent tubuloint-
erstitial fibrosis, together with the development of salt-sen-
sitive hypertension, may be the driver of future progression 
to CKD.
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Normally, the human proximal tubule cells divide at a 
low rate [50]. It has been suggested that non-fibrotic heal-
ing and recovery from AKI depend on the integrity of 
the following processes involving the epithelial cells: (1) 
Spreading and migration to cover exposed areas of the 
basement membrane. (2) Rapid proliferation to restore cell 
number. (3) Differentiation to restore functional integrity 
of the nephron [50, 67]. When the injury is severe or on a 
background of underlying CKD the recovery process can 
often be suboptimal. Subsequently, this can result in incom-
plete repair and persistent tubulointerstitial inflammation, 
with proliferation of fibroblasts and excessive deposition of 
extracellular matrix [68, 69]. Tubulointerstitial fibrosis is a 
characteristic feature of the maladaptive repair that accom-
panies AKI [70]. In addition, it is well known that tubu-
lointerstitial fibrosis is a hallmark of CKD and it is often 
much more severe than the glomerular pathology that may 
have been integral to the initiation of the renal disease [51]. 
The injured epithelial cells play an important role in the 
process of fibrosis by generating profibrogenic cytokines 
[51]. This induces the generation of myofibroblasts, many 
of which are perivascular fibroblasts, or pericytes, and they 
contribute directly to the fibrotic process [51]. Yang et al. 
demonstrated a casual association between the develop-
ment of fibrosis and epithelial cell cycle arrest at G2/M in 
mice [71].

In this section, we summarize the findings from several 
studies that implicate specific pathophysiological mecha-
nisms between AKI and CKD. However, the reliability and 
predictive value of animal modelling for human outcomes 
and for understanding human pathophysiology is a conten-
tious issue. Indeed, important concerns have been raised by 
a growing body of scientific literature which had critically 
assessed the validity of this type of modelling [72].

The arbitrary definition of CKD

The development of a definition and a staging system for 
CKD by the Kidney Disease Outcomes Quality Initia-
tive (KDOQI) in 2002 was a landmark event and a major 
step forward in improving the evaluation and management 
of CKD [73]. It established a common platform for CKD 
nomenclature worldwide. Since then the concept of renal 
disease has undergone a transition from a state of a some-
what neglected ‘nephrologist-only’ life-threatening disor-
der to a “common disease process with a spectrum of sever-
ity that warrants attention by primary care physicians” 
before referral to kidney specialists. This transition has had 
a major influence the development of effective preventive 
strategies and therapeutic interventions. It has also had a 
huge positive impact on public health. However, there are 
several major limitations associated with this definition and 

these have become more obvious and recognizable when-
ever an attempt is made to link CKD with AKI.

KDOQI defined CKD as the presence of kidney dam-
age (with or without a reduction in GFR) for ≥3 months, or 
the presence of GFR < 60 mL/min/1.73 m2 for ≥3 months 
(with or without kidney damage). The choice of a cut-off 
value of greater than 3 months for the definition of CKD 
was arbitrary. Similarly, the cut-off levels between different 
stages were arbitrary, and were based on the categorization 
of a continuous measure of kidney function (i.e. GFR). A 
decade after KDOQI guidelines were introduced, the Kid-
ney Disease: Improving Global Outcomes (KDIGO) CKD 
guidelines were developed and published [74]. They were 
based on KDOQI definitions and staging with some further 
modifications to improve accuracy, utility and quality of 
care. Unfortunately, many limitations of the KDOQI defini-
tion/staging system were inherited by KDIGO CKD guide-
lines. The 3 months threshold that is used to define CKD 
creates a new and important complexity, when taken in the 
context of linking AKI and CKD together. First, it would 
imply that all CKD cases are potentially classified as an 
AKI at the onset of GFR decline (fulfilling the AKI defini-
tion) and during the first 3 months. This creates an obvious 
overlap between CKD and AKI although the underlying 
disease process leading to CKD, in this case, is by default a 
chronic process from the outset rather than an acute insult 
to the kidney. Second, some cases of AKI, (e.g. acute inter-
stitial nephritis) resolve completely but slowly and may 
take >3 months to do so [75]. These slowly-resolving AKI 
episodes may be incorrectly mislabelled as CKD because 
they persisted for ≥90  days, despite the obvious recover-
ing trend in the creatinine trajectory. Third, it is well known 
that most cases of CKD are irreversible, persistent and pro-
gressive. However, CKD may be entirely reversible in some 
cases, either spontaneously or with treatment. Whether 
labelling these cases as CKD rather than a slowly-resolving 
AKI, remains to be fully debated. More importantly, these 
limitations of the existing CKD definition makes us wonder 
as to whether AKI cases that progress to CKD were in fact 
CKD from the outset but detected early? Were these AKI 
cases “smouldering CKD” that were detected incidentally 
for the first time? If these assumptions are true, then the 
concept of ‘AKI progression to CKD’ should be challenged 
and carefully redefined.

Imperfect biomarkers of AKI

The Acute Kidney Injury Network (AKIN) and Kidney 
Disease Improving Global Outcomes (KDIGO) guidelines 
use small absolute changes in serum creatinine concentra-
tions, 0.3 mg/dL (26.4 µmol/L), to define the presence of 
AKI [3–6]. This definition was based on findings of several 
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studies that showed a strong association between adverse 
outcomes and minor changes in serum creatinine level [38, 
76–78]. Evidence has now emerged which suggests that 
this may not be true to the same extent in people with pre-
existing CKD [79] as variations in serum creatinine con-
centration are more prominent in individuals with CKD. As 
with all other laboratory tests, serum creatinine measure-
ments are affected by within- and between-sample coeffi-
cients of variation, intra-individual variation and biologic 
variation. Biological variation may result from variations 
in diet, muscle mass and breakdowns, tubular secretion, 
variability in volume homeostasis and from medications 
use [80]. The variation in measured serum creatinine level 
could be as high as 9% [1–11, 13, 15, 16]. Because only a 
small increase in serum creatinine is needed to meet AKI 
criteria, random variation in creatinine level may be a sig-
nificant contributor to AKI diagnosis in the absence of a 
true reduction in GFR. This is called a false-positive AKI. 
It has been shown that a high variation in serum creatinine 
concentrations, in the days preceding the development of 
AKI, was not associated with inpatient mortality or dialysis 
[80]. In their study, Lin et al., using the KDIGO definition, 
found an 8% overall false-positive rate for AKI diagnosis. 
This false-positive rate was substantially higher at 30.5% 
for the subgroup of CKD patients with serum creatinine 
≥1.5 mg/dL [80]. Therefore, an absolute change in serum 
creatinine of 0.3  mg/dL may represent a relatively incon-
sequential change in GFR among CKD patients compared 
to those without CKD. This fact might partially explain 
why most randomized trials for AKI interventions have 
been unsuccessful in improving clinical outcomes [81–84]. 
Under these circumstances, non-AKI events are likely to be 
misclassified as AKI events as there is no true reduction in 
GFR. Consequently, patients with false-positive AKI may 
be included in clinical trials of AKI and therefore dilute 
the observed effect size. These imperfections in the defini-
tion of AKI have potentially led to the generation of false 
conclusions regarding the efficacy or lack of efficacy of 
specific therapeutic interventions. The question of whether 
small changes in serum creatinine concentrations reflect 
clinically meaningful variations in kidney function which 
are then causally linked to adverse outcomes or are merely 
a marker of underlying severe disease or diminished renal 
reserve (which could be the actual mediators of the adverse 
outcomes) remains a major conundrum for the experts. 
Moreover, an AKI definition using small increments in 
serum creatinine concentrations has not been validated for 
use among patients with CKD.

A second major limitation of serum creatinine con-
centration is the inability to detect early changes in GFR. 
It takes a day or two for creatinine to rise after the reduc-
tion in GFR [85]. Therefore, the serum creatinine level at 
a point in time reflects a clinical event (kidney injury) that 

has happened in the past. It is now obvious that serum cre-
atinine is an imperfect AKI biomarker; especially as it is 
being used on the basis of a relative change in value of a 
continuous variable instead of crossing a specific thresh-
old [86–90]. Creatinine is a continuous variable that gets 
dichotomized to define a binary outcome i.e. AKI versus 
No AKI, using thresholds that are completely arbitrary. 
Using small changes in the serum creatinine to define AKI 
increases the sensitivity of the diagnostic criterion at the 
expense of specificity. The vice-versa happens when larger 
changes in creatinine are used.

An ideal AKI biomarker should accurately reflect the 
true level of kidney impairment, predict relevant outcomes, 
and be detectable early in the course of disease to allow 
for timely intervention. One of greatest challenges faced 
in the current evaluation of novel AKI biomarkers is that 
serum creatinine is used as the gold standard against which 
all other biomarkers are compared. The validation process 
is largely hindered by the use of an imperfect gold stand-
ard, and the downstream consequence of this action is 
misinterpretation of the diagnostic performance of the bio-
marker. To identify a more reliable biomarker for AKI, we 
first need to find a perfect gold standard for the validation 
process.

A third limitation in AKI research is the use of urine 
output for the diagnosis AKI. Research studies in AKI that 
rely on oliguria as a surrogate end-point lack precision and 
are likely to result in false conclusions. Urine output consti-
tutes a major component of the diagnostic criteria for AKI 
[1–6]. Disappointingly, the correlation between the urine 
output criteria and the serum creatinine criteria remains 
quite poor [91]. In many occasions, oliguria may well 
reflect the response to hypovolaemia and suboptimal resus-
citation rather than a true AKI event. Consequently, tran-
sient oliguria will lead to a diagnosis of AKI. It is also well 
known that the urine output is a physiological variable that 
may be affected by several types of medications. For exam-
ple, patients treated with diuretics or dopamine could well 
have an increase in urine output independent of a true aug-
mentation of kidney function, and this will alter the urine 
output criteria for diagnosing an AKI [10, 92]. Similarly, 
due to the non-linear relationship between body weight and 
urine output in obese patients, the use of a weight-based 
definition for AKI is an additional major limitation in this 
situation. Under the current definition, urine output of 
50 mL per hour in a 110-kg patient for 12 h would result in 
misclassification as AKI stage-2 [10, 92].

Despite the relative advantages of the current AKI cri-
teria, the adoption of serum creatinine as the gold standard 
for AKI diagnosis limits future advances in AKI research. 
It is likely that current AKI criteria will require further 
modification driven in part by development of more sen-
sitive and specific biomarkers of kidney injury. It would 
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be unrealistic to expect that we can develop the perfect 
de-novo AKI biomarker that can simultaneously diag-
nose AKI, stratify risk, and predict clinical outcomes over 
a short period of time. Indeed, it is very possible that the 
perfect AKI biomarker is in fact a composite set of several 
biomarkers that measure both kidney function & kidney 
damage. The development and clinical implementation of 
such biomarkers will help re-design the AKI classification 
system in a way that is not solely dependent upon serum 
creatinine.

The mystery of the unknown: baseline GFR 
and baseline creatinine

The glomerular filtration rate (GFR) varies under nor-
mal physiological conditions and during illness [92]. A 
popular example is that of a low GFR in vegetarians and 
higher GFR in consumers of large quantities of animal 
protein, even when they have a similar renal mass [93]. It 
is not clear what the maximum GFR can be, but it can be 
approached by subjecting subjects to high animal protein 
load [92–97]. The difference between baseline and maxi-
mal (i.e. stress or peak) GFR is called the Renal Functional 
Reserve (RFR) [93]. The maximum capacity of a func-
tioning renal mass is not reflected by the baseline GFR of 
a given individual. Bellomo et  al. explained this using an 
example of four different patients [93]. Patient A (animal 
protein consumer) and B (vegetarian) have the same renal 
mass but different baseline GFRs owing to different basal 
protein in-takes levels. Patient A has a GFR of 120  mL/
min that can be stimulated to 170 mL/min. Patient B has 
a baseline GFR of 65 mL/min that also can be stimulated 
to 170  mL/min. Therefore, the RFR differs in these two 
patients because their GFR capacity is different. Patient 
C had a unilateral nephrectomy. The baseline GFR corre-
sponds to his maximal GFR under unrestricted dietary con-
ditions. If a moderate protein restriction is applied the base-
line GFR may decrease and some degree of RFR become 
evident. Patient D, a vegetarian with a history of unilat-
eral nephrectomy, will have a lower baseline compared to 
patient C but a higher RFR. Therefore, in general, restor-
ing some RFR requires severe protein restriction, and hence 
baseline GFR does not always correspond to the extent of 
functioning renal mass unless we place it in the context of 
maximal capacity. Bellomo et  al. espoused the view that 
the baseline GFR for an individual does not give us insight 
into the true renal function reserve, and needs to be deter-
mined: “In this regard GFR is not unlike a resting ECG for 
the kidney. When it is grossly abnormal, renal function is 
impaired, but when it is normal, a stress test is required.”

One of the challenges in accurately diagnosing AKI is 
the absence of a baseline serum creatinine concentration 

from laboratory records or when available the time lag 
between its measurement and the current serum creatinine 
value. The conundrum is whether the patient has a “true” 
AKI event or a progression of pre-existing CKD. KDIGO 
recommends that in the absence of a known baseline serum 
creatinine level prior to AKI, an estimated creatinine 
should be determined based upon an MDRD (Modification 
of Diet in Renal Disease) GFR of 75 mL/min per 1.73 m2 
[6]. While this clinical construct has some benefits, there 
are residual deficiencies. Estimating the baseline serum 
creatinine using the KDIGO approach will almost certainly 
result in more patients with undiagnosed CKD patients 
being mislabelled as AKI.

Physiological variations in GFR, in the context of 
unknown RFR, and the situation of unknown baseline in 
presumed AKI patients remain as a major challenge in AKI 
studies (see Fig. 1). In such cases patients may be labelled 
as having an AKI event (in reality a pseudo-AKI event) 
when in fact, changes in serum creatinine concentrations 
are really due to biologic variation, measurement error and 
inter-laboratory differences.

Assessing AKI in the community

The term community acquired-AKI (CA-AKI) has gained 
popularity with increased attention over the last few years. 
It is used to define AKI that occurs outside of the hospi-
tal setting [98–103]. CA-AKI is reported to account for 1% 
of all hospital admissions and is two to three times more 
prevalent than hospital-acquired AKI [29, 99–103]. The 
true incidence of CA-AKI, however, remains difficult to 
determine due to differences in AKI definitions, popula-
tions studied, timing of diagnosis and differences in inclu-
sion criteria. One particular challenge relates to the clas-
sification of AKI as either a community-based event or a 
hospital-acquired event. It is widely known that changes in 
serum creatinine level lag behind changes in GFR, there-
fore, an elevation in creatinine level 48 h following a hos-
pitalization may in truth be a reflection of a CA-AKI event 
rather than a hospital-acquired event [85]. This renders 
accurate differentiation between CA-AKI and hospital-
acquired AKI very difficult, and thus there is a degree of 
overlap between these two terms. This is a major limitation 
of CA-AKI studies and reflects our inability to define the 
true time frame for the event. Nevertheless, CA-AKI is an 
important subgroup to study given the high frequency in 
clinical practice and the potential for early intervention at 
a primary care level. It is widely known that angiotensin 
converting enzyme inhibitors (ACE), angiotensin receptor 
blockers (ARBs) and diuretics are commonly implicated 
in pre-renal cases of CA-AKI [98]. With rising prevalence 
of hypertension (29–31 percent) in clinical practice, these 
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medications are commonly prescribed to treat hyperten-
sion and reduce cardiovascular complications [104]. Simi-
larly, their use is common among patients with heart failure 

patients and diabetic nephropathy. Primary prevention pro-
grammes for CA-AKI that recommend temporary with-
drawal of these agents in the setting of volume depletion 

Fig. 1   An illustration of the limitations of the current AKI and CKD 
definitions, and the resulting ambiguity of the renal diagnosis. Avail-
ability of previous serum creatinine level reading have a huge impact 
on the final renal diagnosis for the same patient. Mr. X is a Cauca-
sian who have an underlying progressive CKD, the onset of which 
occurred when he was 50 year old. At the age of 57, he was hospital-
ized with an acute illness and got his serum creatinine level checked. 
In scenario (1), the final renal diagnosis during hospitalization is pro-
gressive CKD, based on the availability of several previous creatinine 
readings and a recent reading i.e. 155. This is the correct diagnosis in 
his case. In scenario (2), during hospitalization, the same Mr. X will 
be misdiagnosed with AKI because of the absence of a recent creati-

nine reading and the presumed baseline creatinine of 82. In scenario 
(3), again he will be misdiagnosed with AKI due to the absence of a 
known creatinine baseline. In scenario (4), the same patient will be 
misdiagnosed as an AKI on CKD because he is a known case of CKD 
but did not have any creatinine level checked for several years before 
his acute hospitalization. In these scenarios, although the patient is 
the same and the underlying renal disease process did not change, 
the diagnosis was different in each scenario. It’s unknown how many 
similar cases were miscoded and labelled as AKI and subsequently 
got included in epidermiological studies linking AKI and CKD. AKI 
acute kidney injury, CKD chronic kidney disease, ESRD end stage 
renal disease
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and sepsis may prove useful in limiting the severity of kid-
ney injury and indeed longer term consequences.

It is quite possible that the frequency of AKI is far 
greater in the community than previously considered. 
A recent study by Xu and colleagues, have demonstrated 
higher rates of CA-AKI than previously shown using novel 
informatics software that permits greater detection of dis-
crete AKI events [105]. Taking this into consideration, one 
might speculate that higher rates of AKI in the commu-
nity may in part account for the increasing prevalence of 
CKD. First, undiagnosed CA-AKI events in the community 
may partly or fully explain cases of CKD that are labelled 
as having an unknown aetiology? Second, higher rates of 
CKD progression may in some patients be accounted for by 
higher frequency of AKI events? Third, is it possible that 
the high rates of community AKI may be responsible for 
the rising prevalence of hypertension in the general popula-
tion? These are important research questions for the clini-
cal and scientific community that require further detailed 
investigations.

Shared risk factors for AKI and CKD: a single 
disease continuum versus separate entities

Advanced age, black race, diabetes mellitus, hypertension, 
metabolic syndrome, atherosclerotic disease, and cardiac 
failure have all been hypothesised as potential risk factors 
for developing AKI [7, 11, 106]. Similar risk factors have 
been identified for CKD [107, 108]. It has been shown that 
patients with CKD have a 10-fold higher risk for AKI com-
pared to patients without CKD [7, 25, 109]. These obser-
vations would suggest a significant overlap in risk factors 
for both AKI and CKD. This complex relationship between 
AKI and CKD makes it almost impossible to accurately 
adjust for confounding factors and hence limits the inves-
tigation of AKI as a risk factor for CKD, and vice versa. 
The complex interplay of AKI and CKD with regard to 
pathophysiology, shared risk factors and adverse outcomes 
remains an intriguing relationship as highlighted by Bed-
ford et al. in a recent editorial [18].

There are several prospective studies underway to elu-
cidate the clinical epidemiology of AKI in at-risk popula-
tions. Examples of these include the US-based Assessment, 
Serial Evaluation, and Subsequent Sequelae of Acute Kid-
ney Injury (ASSESS-AKI) study and the UK-based AKI 
Risk in Derby (ARID) study [110, 111]. These studies aim 
to delineate risk factors that identify those at highest risk 
of adverse long-term outcomes. The ASSESS-AKI study is 
a prospective study that includes patients with and without 
CKD [110]. The goals of this study are to evaluate long-
term outcomes of AKI in hospitalized patients, determine 
the natural history of AKI and to delineate the risk factors 

for progression and for complications. Similarly, the ARID 
study is a prospective, case-control study that aims to deter-
mine natural history, risk factors and long term outcomes 
of AKI in a general hospitalized population, including 
those with less severe AKI and pre-renal azotaemia [111]. 
The results of these observational studies are likely to shed 
new light on the relationships between AKI and CKD.

Biochemical versus histological recovery

There is substantial variation in nephron number among 
individuals, and this may reach up to 10-fold within select 
populations [112–122]. It has been suggested that a lower 
number of nephrons, acquired in utero, markedly increases 
susceptibility to future kidney disease [122]. Currently, 
low birth weight is the strongest clinical surrogate marker 
for an adverse intrauterine environment and the associa-
tion with a reduced nephron number [123]. Kidneys with 
fewer nephrons have a smaller filtration surface area and 
hence diminished capacity for sodium excretion, with a 
subsequent development of hypertension and kidney dis-
ease [112, 113, 124–128]. A meta-analysis of 31 observa-
tional studies found a 70% increase in relative risk of CKD 
in individuals who had with low birth weight [129]. Simi-
lar findings were found in patients with acquired intrinsic 
renal disease and after surgical nephrectomy [122]. Studies 
have shown that low birth weight increases the prevalence 
of microalbuminuria and proteinuria in adulthood; likely a 
consequence of reduced nephron number [130–137].

Following an AKI event which results in nephron loss, 
the surviving nephrons undergo both structural and func-
tional hypertrophy [138]. The mean driving force for glo-
merular filtration increases in the surviving glomeruli 
leading to an increase in filtration rate [139]. The greater 
the nephron loss the greater the increase in the glomeru-
lar filtration rate of the surviving nephrons [140]. In animal 
models, alterations in the glomerular structure are detected 
as early as 2 weeks following nephrons loss, and involve 
over half of the remaining nephrons by 7 weeks [141]. 
While this adaptive process is typically considered benefi-
cial as it minimizes the reduction in total GFR that would 
otherwise occur, it nevertheless is detrimental in the long-
term. The reduction in nephron number eventually leads 
to a pathological sclerotic process involving the surviving 
nephrons [141–144]. This progressive sclerosis represents 
a breakdown of the adaptation mechanism, and ultimately 
manifests as proteinuria and long term deterioration in 
renal function [145].

AKI may results from an injury to one or more seg-
ments within the kidney: the renal tubules, the interstitium, 
blood vessels or glomeruli. The damage that ensues is com-
monly secondary to a wide variety of insults, which may 
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be ischemic, nephrotoxic, inflammatory or vascular-medi-
ated (injury and/or occlusion). AKI may or may not result 
in nephron loss. It is well known that nephron loss from 
acute kidney injury is irreversible [146]. However, there is 
a paucity of studies that have evaluated kidney biopsy find-
ings after complete recovery from AKI. Patients are usu-
ally labelled as ‘recovered from AKI’ when their serum 
creatinine level is back to the baseline following an AKI 
episode. It is unclear however if this putative recovery is 
purely biochemical, histological or both. It is expected that 
with a histological recovery a full regenerative process 
took place and was successful in restoring the damage tis-
sues back to normal (i.e. to the pre-injury state). Unfortu-
nately, serum creatinine level cannot be used as a surrogate 
marker for complete histological recovery. This is because 
if nephrons were lost during the event, then the surviving 
nephrons are likely to have undergone an adaptive process 
described above (i.e. structural and functional hypertrophy 
with increased filtration rate). These adaptive mechanisms 
may result in restoration of kidney function to the base-
line serum creatinine level and GFR (i.e. a biochemical 
recovery) although there is no accompanying histological 
recovery. One might hypothesize that the absence of histo-
logical recovery and the resultant adaptive processes in the 
remaining nephrons may be responsible for the progression 
of AKI to CKD and ESRD later in life. In these circum-
stances, where histological recovery did not occur, AKI 
was responsible for the CKD process from the very outset 
(at least pathologically) rather than an AKI progressing to 
CKD. It is understandable that obtaining kidney biopsies 
from patients who recovered completely, at least biochemi-
cally, from AKI is not practical and nor ethical, but testing 
this hypothesis may help provide greater clarity and better 
understanding of the complex link between AKI and CKD.

Current perspective and future directions in AKI 
research

The term AKI is not a single entity but an umbrella 
term that encompasses a wide variety of renal disorders 
which lead to the acute reduction of GFR and the subse-
quent rise in serum creatinine concentration. The causes 
are diverse and vary in intensity and duration, and the 
resultant pathobiology and clinical outcomes are likely 
to reflect the type, magnitude and duration of the expo-
sure. Indeed, despite our growing understanding of this 
complex condition, it is impossible to describe a standard 
AKI insult with a well-defined pathogenesis and patho-
physiology. Consequently, it remains quite challenging 
to robustly and scientifically link AKI and CKD and vice 
versa. Most epidemiological studies that have associ-
ated AKI with CKD have investigated populations using 

the umbrella term “AKI”, but in each case, the cause of 
AKI was not defined or poorly defined. It is well known 
that some renal diseases have a progressive course that 
culminate in ESRD (e.g. acute rapidly progressive glo-
merulonephritis, acute interstitial nephritis, previously 
undiagnosed diabetic nephropathy) and that the rates of 
progression can vary widely. These may be inadvertently 
mislabelled as AKI in the absence of a baseline serum 
creatinine.

Regardless of the underlying kidney insult, an AKI 
reflects an acute deterioration in the functional status of 
the kidney. It is likely that the underlying kidney insult that 
causes the AKI is the principal determinant of the long-
term prognosis & renal outcome rather than the AKI itself. 
This is supported by the fact that that current AKI staging 
system lacks predictive capability [147]. It would appear 
that the magnitude of change in serum creatinine level does 
not predict outcome. Furthermore, one must contend that 
the current AKI staging system, although an improvement 
on previous systems, remains a purely an artificial system 
and has not been sufficiently validated for use in the clini-
cal management of patients [148]. The correlation between 
serum creatinine level and GFR is poor in the acute setting, 
and hence a rising creatinine level results in progression 
in AKI stage, despite improvement in GFR. Nevertheless, 
using the term AKI as a diagnosis is very useful to the 
practicing clinician in guiding investigations and manage-
ment of patients. Unfortunately, this might not be the case 
when it is used for clinical research. In studies of AKI, 
classifying AKI patients by the underlying cause rather 
than using the generic term AKI may be more scientifically 
valid. This will assist clinical investigators in phenotyping 
patients with greater accuracy. Such studies of AKI may 
provide results that have greater validity and reliability.

If scientific studies in the future demonstrate that AKI 
and CKD represent a continuum rather than separate enti-
ties then it is likely that a paradigm shift will develop in 
the classification, diagnosis and management of acute and 
chronic kidney diseases. The use of AKI and CKD terms 
may be abolished then, and the underlying disease process 
may become the principal diagnosis with reference to the 
resultant change in GFR as a secondary effect that may 
or may not predict the outcome. It is reasonable to argue 
that the AKI aetiology may not be known early on until 
more definitive diagnostic tests are performed (e.g. kidney 
biopsy). As mentioned above, it is totally acceptable to use 
the term AKI as a temporary diagnosis in this setting, but it 
is better avoided when designing research studies and trials. 
Ideally, patients with AKI should be clustered according to 
the underlying aetiology. This may be the only scientifically 
valid method to obtain robust results about kidney disease 
progression and outcomes, and test various therapeutic and 
preventive interventions.
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Conclusion

Despite significant advancements in our understanding 
of AKI and CKD, the precise nature of this relationship 
remains unclear. Several links are missing and without 
them it is very difficult to ascertain if these two conditions 
represent a disease continuum or separate distinct entities 
(see Fig.  2). A major paradigm shift in the classification 
and staging of AKI and CKD might need to happen first 
before these missing links can be found.
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