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Abstract
Background  Familial primary hyperparathyroidism (PHPT) includes syndromic and non-syndromic disorders. The former 
are characterized by the occurrence of PHPT in association with extra-parathyroid manifestations and includes multiple 
endocrine neoplasia (MEN) types 1, 2, and 4 syndromes, and hyperparathyroidism–jaw tumor (HPT–JT). The latter consists 
of familial hypocalciuric hypercalcemia (FHH) types 1, 2 and 3, neonatal severe primary hyperparathyroidism (NSHPT), 
and familial isolated primary hyperparathyroidism (FIHP). The familial forms of PHPT show different levels of PHPT pen-
etrance, developing earlier and with multiglandular involvement compared to sporadic counterpart.
All these diseases exhibit Mendelian inheritance patterns, and for most of them, the genes responsible have been identified. 
DNA testing for predisposing mutations is helpful in index cases or in individuals with a high suspicion of the disease. Early 
recognition of hereditary disorders of PHPT is of great importance for the best clinical and surgical approach. Genetic testing 
is useful in routine clinical practice because it will also involve appropriate screening for extra-parathyroidal manifestations 
related to the syndrome as well as the identification of asymptomatic carriers of the mutation.
Purpose  The aim of the review is to discuss the current knowledge on the clinical and genetic profile of these disorders along 
with the importance of genetic testing in clinical practice.
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Introduction

Familial primary hyperparathyroidism (PHPT) represents 
approximately 10–15% of all cases of PHPT [1]. The most 
common heritable syndromic form is the multiple endocrine 
neoplasia (MEN) type 1 (MEN1) syndrome, which affects 
2% to 4% of patients with PHPT. Other syndromic disorders 
include MEN type 4 (MEN4), type 2 (formerly known as 
MEN2A), and hyperparathyroidism–jaw tumor (HPT–JT). 
Non-syndromic hereditable PHPT consists of familial 
(benign) hypocalciuric hypercalcemia (FHH) types 1, 2 and 
3, neonatal severe primary hyperparathyroidism (NSHPT), 
and familial isolated primary hyperparathyroidism (FIHP). 
All these diseases exhibit Mendelian inheritance patterns, 
and for most of them, the genes responsible have been iden-
tified (Table 1).

Over the past decade, accumulating evidence has shed 
light on the clinical and genetic underpinnings of famil-
ial PHPT. Particularly noteworthy is the advancement in 
analysis techniques, which has facilitated the identifica-
tion of novel candidate genes implicated in the so-called 
phenocopies of MEN1, accounting for approximately 
10% of cases. There is now a greater understanding 
of MEN4, a rare phenocopy of MEN1 associated with 
germline mutations in the Cyclin Dependent Kinase 
inNhibitor 1B (CDKN1B) gene, confirming its later 
tumor onset, milder phenotype, and lower prevalence 
compared to MEN1 [2, 3].

Recent findings describe families carrying mutations 
in the MYC-associated factor X (MAX) gene, predis-
posing them to pheochromocytoma and paraganglioma 
development, suggesting the existence of a new syn-
drome termed MEN5 [4].

Furthermore, the understanding of FIHP has evolved 
over the past 80 years, culminating in the recognition of 
incomplete expressions of MEN1, FHH, or HPT-JT. Among 
FIHP probands who test negative for mutations in MEN1, 
Calcium Sensing Receptor (CASR), or Cell Division Cycle 
73 (CDC73) genes, there is emerging evidence implicating 
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germline mutations of the Glial Cells Missing Homolog 2 
(GCM2) gene, necessitating further investigation [5].

Finally, genes responsible for FHH in patients CASR 
mutation-negative remained elusive for a significant period 
until the identification of two novel genes (GNA11 and 
AP2S1) not previously associated with calcium metabolic 
disorders [6, 7].

The diagnosis of hereditary PHPT should be confirmed 
by genetic testing for germline mutations involved in famil-
ial PHPT preceded by genetic counseling. Early recognition 
of hereditary disorders of PHPT is of great importance for 
the best clinical and surgical approach. Genetic testing is also 
useful in routine clinical practice because it will also involve 
appropriate screening for other extra-parathyroidal manifesta-
tions related to the syndrome as well as the identification of 
relatives who may be asymptomatic carriers of the mutation. 

Finally, it helps remove anxiety and costs of monitoring in 
order to rule out carrier status. The specific clinical impact 
of genetic testing varies according to the different PHPT 
disorders.

This review highlights recent advances on the clinical 
aspects and genetics of familial PHPT along with the impor-
tance of genetic testing in clinical practice.

Syndromic forms of primary 
hyperparathyroidism

These disorders are characterized by the occurrence of 
PHPT in association with extra-parathyroid manifes-
tations such as MENs and HPT-JT (Fig. 1). MENs are 

Table 1   Clinical and genetic features in heritable forms of primary hyperparathyroidism

MEN multiple endocrine neoplasia (type 1, 4, or 2), HPT–JT hyperparathyroidism-jaw tumor syndrome, FHH familial hypocalciuric hypercal-
cemia (type 1, 2, and 3), NSHPT neonatal severe primary hyperparathyroidism, FIHP familial isolated primary hyperparathyroidism, AD auto-
somal dominant, AR autosomal recessive, het heterozygous, homo homozygous, GEP-NET gastroenteropancreatic neuroendocrine tumor, PTH 
parathyroid hormone

Disease Main gene(s)/Chr 
location

Inheritance Variant types Encoded protein Functional effect Parathyroid expres-
sion

Main associated 
tumors/manifestations

Syndromic
MEN1 MEN1/11q13 AD Het Menin Inactivating Multiple adenomas Pituitary, GEP-NETs
MEN4 CDKN1B/12p13.1 AD Het p27 Inactivating Multiple adenomas Pituitary, GEP-NETs
MEN2 RET/10q11.21 AD Het RET Activating Asymmetric adeno-

mas
Medullary thyroid 

cancer, Pheochro-
mocytoma

HPT-JT CDC73/1q31.2 AD Het Parafibromin Inactivating Asymmetric 
adenomas, atypical 
tumor, carcinoma

Jaw, kidney and uter-
ine lesions

Non-syndromic
FHH1 CASR/3q13.3-q21.1 AD Het CaSR Inactivating High set point to 

inhibit PTH secre-
tion

Lifelong mild hyper-
calcemia, PTH inap-
propriate normal 
or mild elevated, 
hypocalciuria

FHH2 GNA11/19p13.3 AD Het Gα11 Inactivating High set point to 
inhibit PTH secre-
tion

Same profile of FHH1

FHH3 AP2S1/19q13.32 AD Het Adaptor protein
2σ-subunit

Inactivating High set point to 
inhibit PTH secre-
tion

Most severe form of 
FHH; may be asso-
ciated with target-
organ involvements 
(kidney stones or 
fractures)

NSHPT CASR/3q13.3-q21.1 AR Homo CaSR Inactivating Marked hyperplasia Seen in first week of 
life; severe PHPT, 
life-threatening

FIHP MEN1, CASR, 
CDC73, 
GMC2/6p24.2

Other gene(s) not 
identified

AD Het Menin, CaSR, 
Parafibromin, 
GCMb

Inactivating Multiple adenomas None
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Fig. 1   Clinical features in syndromic forms of primary hyperparathyroidism
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characterized by tumors in at least two of the three main 
endocrine tissues.

Multiple endocrine neoplasia type 1 (MEN1)

MEN1 (MIM#131100) is a rare autosomal dominant syn-
drome first described by Wermer in 1954 [8], which has 
an estimated prevalence of approximately 1–20/100,000 
inhabitants and 1–18% among patients with PHPT [1, 9].

The most common endocrine manifestations are the 
“classical triad” namely PHPT, gastro-entero-pancreatic 
neuroendocrine tumors (GEP-NETs), and anterior pitui-
tary tumors [9]. Other endocrine tumors include thymic 
and bronchial/lung NETs and adrenocortical tumors [9]. 
Clinical diagnosis of MEN1 currently requires the com-
bined occurrence of at least two of the three typical mani-
festations [9].

PHPT is often the first manifestation of the disease, 
which occurs in  ~ 100% of the patients by the age of 
50 years, with no apparent gender predilection [10–12]. 
Compared to sporadic cases, PHPT in MEN1 often devel-
ops earlier in life, with the youngest reported case at the 
age of four years, and the subjects generally show lower 
PTH levels [13–15]. It is typically characterized by a mul-
tiglandular involvement, asynchronous or metachronous, 
of the parathyroid glands (Fig. 2). However ectopic locali-
zation, particularly in the thymus and anterior mediasti-
num, along with the presence of supernumerary glands, are 
also much more frequent in the context of the syndrome 
than the sporadic form [16–18]. These disease features 
justify the high rate of persistence and recurrence after 
surgery reported in these patients compared to sporadic 
cases [13]. Surgery represents the definitive treatment of 
PHPT. Preoperative localization is of limited value in this 
setting as bilateral neck exploration is recommended irre-
spective of the findings in localization studies [19].

There is no unanimous agreement regarding the timing 
of initial surgery in index cases and reoperation in those 
who develop recurrences [9, 20–22]. In cases where symp-
toms arising from gastrinoma, specifically Zollinger-Elli-
son syndrome (ZES), are inadequately controlled by medi-
cal treatments, parathyroidectomy (PTX) might become 
necessary, given that hypercalcemia tends to exacerbate 
hypergastrinemia [23]. The surgery of choice is subtotal 
PTX (removal of  ~ 3.5 glands) with bilateral transcervical 
thymectomy [9]. According to the latest guidelines, total 
PTX with subsequent autotransplantation of the parathy-
roid tissue (fresh or cryopreserved) may also be considered 
when no pathologic parathyroid tissue has been identi-
fied at neck exploration [9]. Although these more invasive 
operations reduce the risk of recurrence, they increase the 

risk of post-surgical hypoparathyroidism [24]. The rate 
of persistence and recurrence of PHPT depends on the 
type of surgery. The persistence rate is relatively low for 
subtotal (0%–22%) and total PTX (0%–19%), whereas it 
varies between 0%–53% for less than subtotal PTX. The 
recurrence rate is high following less than subtotal PTX 
(ranging from 0 to 100%), compared to subtotal (0%–65%) 
or total PTX (0%–56%) [24–26]. Despite these data, some 
authors propose a less invasive PTX (i.e., less than subto-
tal PTX or unilateral clearance) in selected patients with 
localized disease that was carefully documented on pre-
operative imaging studies [20, 21, 27, 28].

Cinacalcet, an allosteric modulator of the CaSR that binds 
to a different site from calcium binding, may be used to 
control hypercalcemia in patients who are not undergoing 
surgery as initial treatment or as an alternative to repeated 
surgery in patients with persistent/recurrent disease. Most 
patients experienced mild hypercalcemia, which normalized 
with relatively low daily doses of cinacalcet [29, 31–34]. 
While some studies suggest that cinacalcet may be more 
effective in MEN1 compared to sporadic PHPT, the lim-
ited sample sizes in these studies prevent definitive con-
clusions [29, 32–34]. Notably, in a randomized, crossover, 
double-blind study, the efficacy of cinacalcet in familial and 
sporadic PHPT with similar severity showed comparable 
responses [34].

GEP-NETs, mainly duodeno-pancreatic NETs, develop 
in 40–90% of MEN1 patients, and their prevalence varies 
depending on the age, the population under study and the 
diagnostic methods utilized [27]. Magnetic Resonance Imag-
ing (MRI) appears to exhibit greater sensitivity compared 
to computed tomography (CT) while also avoiding ionizing 
radiation exposure. Despite its invasiveness and operator-
dependency, systematic endoscopic ultrasonography (EUS) 
remains the most sensitive method. Functioning imaging, 
particularly 68Ga-DOTATATE PET/CT, seems to have good 
sensitivity to detect GEP-NETs in MEN1. Moreover, the 
likelihood of underestimating duodeno-pancreatic NETs is 
significant, given that pancreatic involvement typically pre-
sents as diffuse microadenomatosis (lesions  < 0.5 mm) in 
almost all patients [35–40].

GEP-NETs typically manifest after 40 years of age as 
non-functioning or functioning tumors, i.e., tumors secret-
ing gastrin, insulin, glucagon, or vasoactive intestinal pep-
tide (Fig. 3) [9, 22]. They can occur by the age of 5 years 
and in 20% of cases, may represent the first manifestation 
of MEN1. Due to their potential malignancy, they are the 
most frequent cause of mortality in patients with MEN1 
[39, 41]. Compared to sporadic cases, GEP-NETs have a 
higher propensity for multifocality, exhibit a slower pro-
gression rate, and a greater likelihood of recurrence [39, 
42]. Consequently, the criteria for surgical intervention 
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differ from those applied to sporadic cases and that have 
evolved over time. Key determinants for deciding when 
and how to proceed with treatment include the tumor grad-
ing based on mitotic rate and Ki-67 proliferative index, 
lesion size, presence or absence of metastasis, and whether 
the lesion secretes specific hormones [39].

As recently reported by the International Consensus 
based on the previous guidelines, surgical intervention 
is recommended for patients with insulinoma, VIPoma, 
or glucagonoma, regardless of the lesion size [9, 39, 43]. 
Most gastrinomas are multiple and occur within the duo-
denum, and most clinical centers undertake non-surgical 

Fig. 2   Ultrasound image of two enlarged parathyroid glands in a 
26-year-old woman with MEN1. The tumors (arrows) are located at 
the lower right pole of the thyroid (A, transverse view; B, longitu-
dinal view), and at the lower left pole of the thyroid (C, transverse 

view; D, longitudinal view), and show a homogeneous pattern, regu-
lar shape, and halo sign. Both lesions show the typical color Doppler 
signals i.e., vascular pole (E and F, transverse view)
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management, unless the tumors are localized within the 
pancreas and/or  > 20 mm. Non-functioning duodenopan-
creatic NETs  < 20 mm can be monitored conservatively 
in the absence of an aggressive family history, signs of 
malignancy, or rapid progression on imaging studies under 
surveillance, whereas tumors  > 20 mm should be treated 
by surgery [9, 39, 43]. For patients for whom surgery is 
contraindicated or proves unsuccessful, alternative medical 
therapies become crucial. Medical treatment of the hormone 
excess states in MEN1 patients with functional duodenop-
ancreatic NETs is similar to that recommended for patients 
with the sporadic counterpart. Anti-secretory drug require-
ments can change over time, and patients with ZES are 
recommended to have their acid-secretory control checked 
every 6–12 months. Insulinoma management often involves 
diazoxide [39]. Some studies have highlighted the potential 
therapeutic effectiveness of somatostatin analogues (SSAs) 
in MEN1-related NETs smaller than 2 cm, for both secretion 
control and tumor growth [44, 45]. Specifically, lanreotide 
appears to be preferable to octreotide in this context, as it 
allows for dose escalation by shortening the administration 
interval in case of progression on standard doses [46]. The 
efficacy of these therapies seems to be more pronounced in 
MEN1-related NETs compared to sporadic ones, likely due 
to various factors such as earlier stage presentation, higher 
prevalence of well-differentiated low-grade tumors with sig-
nificant SSTR2 positive expression, and a greater frequency 
of functioning NETs in MEN1 cases vs. sporadic ones [46].

Other treatments based on a case-to-case basis include 
chemotherapy with agents such as alkylating agents, topoi-
somerase inhibitors, and antimetabolites, or receptor-tar-
geted therapies involving radiolabeled SSAs, such as 90 
Yttrium or 177 Lutetium [47].

Pituitary involvement is present in approximately 40% of 
patients with a mean age of 38 years, and is more common 
in women [1]. The most frequent pituitary tumors are prol-
actinomas (up to 65%) (Fig. 3), followed by somatotropino-
mas (6–8%), ACTH-secreting adenomas (< 5%), and gon-
adotropin-secreting adenomas (< 2%). Some cases exhibit 
co-secreting adenomas with unusual hormonal secretions 
[5]. Microadenomas, which are generally non-functioning 
or PRL-secreting tumors, are more common than macroad-
enomas [29–31].

The management of pituitary adenomas is similar to that 
of non-MEN1 patients. It typically involves medical thera-
pies to control hypersecretion (such as octreotide and dopa-
mine agonists) or surgical removal. Surgery is recommended 
in patients with hormone hypersecretion, which is poorly 
controlled with medical treatment, when there is a compres-
sion of the optic nerves or chiasm, or when the diagnosis 
is uncertain and a biopsy is needed [4, 5]. Radiotherapy 
should be considered for unresectable residual tumor tissue 
[5]. Asymptomatic non-functioning adenomas may be fol-
lowed safely with serial magnetic resonance imaging [48].

MEN1 patients also develop adrenal tumors in up to 73% 
of cases, as the majority are asymptomatic and carcinoids 
(thymic, bronchopulmonary, and gastric) [1, 49]. Thymic 
carcinoids present in 2.8%–8% of cases, are the most aggres-
sive tumors with a poor prognosis [49].

Several non-endocrine manifestations have been observed 
in individuals with MEN1 syndrome. These include skin 
lesions such as angiofibromas, lipomas (Fig. 3), collageno-
mas, tumors of the central nervous system (i.e., meningi-
oma, neuroblastoma, and ependymoma), hibernomas and 
leiomyomas [9]. The prevalence of these manifestations 
ranges in different series, with multiple facial angiofibromas 

Fig. 3   (A) Magnetic resonance imaging of the pituitary (coronal T2 
weighted section) shows a hypointense left lesion cleaved from sur-
rounding structure compatible with a 6-mm prolactinoma in a 9-year-
old boy with MEN1 syndrome (arrow). (B) Contrast-enhanced com-
puted tomography of the abdomen (transverse section) shows a 2-cm 
lesion of the posterior inferior margin of the pancreatic tail compat-

ible with neuroendocrine tumor in a 28-year-old man with MEN1 
syndrome (arrow). (C) Contrast-enhanced computed tomography of 
the abdomen (transverse section) shows a subcutaneous 6 × 2.5  cm 
lesion of the right lower abdominal wall compatible with lipoma in a 
60-year-old woman with MEN1 syndrome (arrow)
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occurring in 22% to 88% of cases, collagenomas in 0% to 
72%, and lipomas in 5% to 34% [50–54]. The presence of 
these lesions, particularly angiofibromas or collagenomas, 
alongside one of the endocrine tumors from the triad, may 
suggest the diagnosis of MEN1 syndrome [52]. Non-endo-
crine malignancies, including breast cancer, melanoma, 
neuroblastoma, renal cell carcinoma, prostate cancer, lung 
cancer, and colorectal cancer, have been reported in patients 
with MEN1 [54–56]. A recent retrospective Chinese study 
found a significantly higher incidence of non-MEN1 malig-
nant tumors compared to the general population, particularly 
breast cancer, papillary thyroid cancer, and urologic neo-
plasms [57]. Intriguingly, these patients also exhibit a more 
severe clinical presentation of MEN1.

Loss-of-function germline mutations of the MEN1 gene 
are responsible for the syndrome and are identified in up 
to 90% of index cases with familial disease, and in up to 
30% of sporadic cases [58–60]. The MEN1 is an onco-sup-
pressor gene located on chromosome 11q13. Its product, 
menin, interacts with multiple protein partners and plays a 
crucial role in cell cycle regulation, DNA repair, and tran-
scriptional regulation of target genes [61–63]. In accordance 
with Knudson’s two-hit model, which is the mechanism of 
action of tumor suppressor genes, two different hits on the 
MEN1 gene are necessary to initiate disease development 
leading to the complete functional loss of the encoded menin 
protein [64].

Despite several studies aimed at establishing a potential 
relation between mutations and clinical manifestations, there 
is currently no confirmed evidence of a correlation between 
genotype and phenotype in MEN1 [65, 66]. Genetic testing 
for MEN1 mutations is essential for the early identification 
and management of asymptomatic carriers [9].

A subset of patients (5–25%) with clinically suspected 
MEN1 syndrome do not have a pathogenic variant within 
the MEN1 coding region, potentially due to the technical 
limitations of the molecular screening or missed alterations 
in untranslated or uncovered regions of the genome. Five to 
10% of such cases may represent MEN1 phenocopies [17, 
67]. In fact, germline mutations in CDKN1A and CDKN2B 
have rarely been identified in MEN1 kindreds [68].

Surveillance

The patients necessitate lifelong follow-up and surveillance, 
which can affect their psychologic well-being [46–48]. The 
current guidelines recommend that patients with MEN1 
and their families be monitored by multidisciplinary teams 
including endocrinologists, gastroenterologists, radiologists, 
oncologists, cardiothoracic, and pituitary surgeons, patholo-
gists, and clinical geneticists.

Patients and asymptomatic first-degree relatives at risk 
(i.e., mutant-gene carriers) should have lifelong follow-up at 

regular intervals (3- to 6-months and annually, respectively) 
[9]. Biochemical screening should possibly start by the age 
of five years for screening insulinoma and anterior pituitary 
tumor, and by the age of 8 years for screening PHPT [9].

Multiple endocrine neoplasia, type 4

MEN4 (MIM#610755) is a heritable autosomal dominant 
syndrome with a phenotype mimicking MEN1 [69, 70]. Pel-
legata et al. were the first to report a 3-generation family 
whose affected members presented MEN1-related tumors, 
including PHPT, acromegaly and pituitary adenoma, in 
addition to renal angiomyolipoma and testicular cancer, 
but tested negative to MEN1 mutations [69]. The authors 
identified a pathogenic nonsense mutation (p.W76*) in 
the CDKN1B gene located on chromosome 12p13.1 and 
encoding the cell cycle inhibitor p27. This was based on the 
previous discovery of a causative mutation in the homolog 
gene in a colony of rats that spontaneously developed the 
combination of multiple endocrine tumors with overlapping 
features of MEN1 and MEN2 syndromes. Murine Cdkn1b 
was initially described as an atypical tumor suppressor gene 
characterized by haploinsufficiency, a mechanism that could 
explain the later onset of tumors in hemizygous compared 
with homozygous deficient mice in the animal model [71, 
72]. Due to the rarity of biallelic inactivation of CDKN1B, 
it has been suggested that haploinsufficiency in MEN4 may 
also explain the tumorigenic progression [73].

The incidence of CDKN1B mutations in patients with 
MEN1-related neoplasia is difficult to estimate, due to the 
relatively few cases of MEN4 kindreds being reported or 
undiagnosed, but it was initially estimated at around 3% 
[17]. Forty-one MEN1-like index cases harboring germline 
CDKN1B variants and which can be regarded as MEN4, 
have been described to date [2, 74–76]. Only 53% of the 
cases with available data have a proven or suspected positive 
family history for MEN1-like endocrine disorders despite 
the presence of a germline CDKN1B mutation. Conse-
quently, even apparently sporadic PHPT cases carrying a 
germline CDKN1B, especially if developed at an early age, 
might have suspected MEN4 form [77–79].

The type and distribution of CDKN1B mutations vary 
between MEN4 and sporadic cancers harboring somatic 
CDKN1B mutations [80]. To date, approximately half of 
the identified CDKN1B mutations in MEN4 are missense, 
and for several of these, the pathogenic role has been estab-
lished by in vivo or in vitro functional studies [2, 68, 73, 81, 
82]. In addition, frameshift and nonsense mutations resulting 
in p27 protein truncation, which tend to be more common 
in sporadic cancers, as well as variants in regulatory ele-
ments within the promoter or the 5′UTR region of the gene, 
have been described in 29% (12/41) and 17% (7/41) cases 
of MEN4, respectively [2, 74–76, 80].
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The age of onset of disease in MEN4 patients appears 
to be later than in those with MEN1 [2]. Given the recent 
identification of the disease, the penetrance of MEN4-related 
endocrine tumors is still not well characterized. Similarly to 
MEN1, despite an autosomal dominant transmission, MEN4 
is more common in women (57% vs. 70%, respectively) [2, 
56, 74, 75, 83].

The most common endocrine disorder in MEN4 is PHPT, 
which is present in 68% of index cases (57% if considering 
all the described CDKN1B-mutated cases), and less than 
in the MEN1 syndrome (nearly 100%, see above) [2, 74, 
75, 83]. The average age of onset of PHPT in MEN4, is 
significantly older than that of MEN1 (mean age 50-years 
vs. 25-years, respectively) [9]. Of note, the lowest age at 
diagnosis of PHPT was in a 15-year old subject [78]. Unlike 
with MEN1, PHPT is mostly caused by a single benign para-
thyroid adenoma (70%); only one case of carcinoma and 
atypical tumor have been reported [2, 74, 75, 83]. Interest-
ingly, the risk of developing PHPT within the syndrome 
seems to be significantly higher in individuals harboring 
frameshift mutations compared with those with missense 
variants (66.7% vs. 39.3%, P = 0.029) [2].

There are currently no specific guidelines on the manage-
ment of PHPT in MEN4. The surgical approach in MEN4-
related PHPT should be personalized, however the indica-
tions for surgery should be the same as that of MEN1. A 
close follow-up for disease recurrence is recommended. 
Unlike with MEN1, screening for PHPT in asymptomatic 
carriers with MEN4 should be started at the age of 15 years 
and not earlier [84].

The second most common manifestation in MEN4 is pitu-
itary adenoma, affecting approximately 30% of cases [2]. 
The type of pituitary adenomas is predominantly function-
ing (76%), particularly corticotropinoma (38%), followed by 
somatotropinoma and prolactinoma (both 19%) [2, 74, 75, 
83]. The age of diagnosis for these tumors also varies widely, 
from 5 to 79 years [2, 85, 86]. Pituitary adenomas gener-
ally appear to be less aggressive in MEN4 than in MEN1 
patients, however their clinical course is heterogeneous due 
to the functioning status, size, potential invasive behavior 
[87]. The management of pituitary tumors in MEN4 does 
not differ from those of sporadic or other familial cases. 
Routine surveillance for the development of pituitary tumors 
in asymptomatic carriers should be performed on a case-by-
case basis and following existing guidelines for other MENs 
[87].

GEP-NET tumors are much rarer than those of MEN1 
(9% vs. 30–70%, respectively), half of them are gastrinomas 
and half are non-functioning NET [2, 9, 74, 75, 83]. No 
cases of insulin secreting tumors, glucagon or vasoactive 
intestinal polypeptide have been reported to date. The diag-
nosis and management of GEP-NETs in MEN4 are similar to 
that in MEN1 [9]. Other endocrine manifestations of MEN4 

include single cases of bronchial, thymic and gastric carci-
noid, three cases of breast cancer, five of thyroid, and two of 
prostate cancer. There have only been three cases of adrenal 
adenoma (two non-functioning and one cortisol-secreting), 
which instead is present in up to 40% of MEN1 cases [54, 
68, 83, 88–90]. A single case of meningioma has also been 
described (1.6% of all CDKN1B-mutated cases), compared 
to 8% found in 74 MEN1 cases in an American prospec-
tive study, and 2.7% found in 106 MEN1 index cases in an 
Italian retrospective study [52, 54, 90, 91]. Other clinical 
manifestations, however, seem specific to MEN4, as they 
are absent in other MEN syndromes. These are reproduc-
tive organ cancers, namely testicular carcinoma and small 
cell carcinoma of the cervix, described in the son of the first 
described MEN4 family and in a patient with apparently 
sporadic MEN4 respectively [69, 92]. Renal carcinoma, 
although reported in only one case, was also considered a 
clinical manifestation specific to MEN4, however its asso-
ciation with the syndrome needs confirming in a wider case 
study [93].

The prognosis for patients with MEN4 is generally better 
than for MEN1 patients with a similar spectrum of endo-
crine tumors. Recurrence/persistence of PHPT after surgery 
is quite rare (25%), compared with the high rate recorded in 
MEN1 cases and pancreatic, bronchial and thymic malig-
nant tumors, which are the leading cause of death in MEN1 
subjects [2, 74, 75, 83].

The suspicion of a MEN4 diagnosis could arise in a 
proband or relatives within kindred exhibiting a MEN1-like 
clinical phenotype but testing negative for germline MEN1 
mutations. In such cases, referral for CDKN1B genotyping 
is advisable [2]. Genetic testing for CDKN1B could be con-
sidered in specific clinical settings, such as patients with 
parathyroid adenomas developing before the age of 30 years, 
multigland parathyroid involvement, multiple GEP-NETs, 
or pituitary adenoma presenting at a young age. Given the 
relatively low penetrance of neoplasms diagnosed in MEN4 
compared with MEN1 [9], Halperin et al. has suggested 
that the diagnosis of MEN4 could also rely on at least one 
clinical hallmark (PHPT, pituitary adenomas, or GEP-NET), 
coupled with the identification of germline CDKN1B vari-
ants in the affected individual or one first-degree relative [2].

Multiple endocrine neoplasia type 2 (MEN2)

MEN2 (MIM#162300), formerly known as MEN2A, is an 
autosomal dominant hereditary syndrome [94]. MEN2 is 
classically associated with medullary thyroid carcinoma 
(MTC), pheochromocytoma (PHEO), and PHPT. Three 
other variants have been described namely MEN2 with 
cutaneous lichen amyloidosis, MEN2 with Hirschprung’s 
disease, and familial medullary thyroid cancer [1]. The esti-
mated prevalence is 1.3–2.4/100,000 [95].
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Almost 100% of patients with MEN2 develop MTC, 
approximately 50% PHEO (Fig. 4) and 5%–35% PHPT [1, 
96, 97]. A recent Danish nationwide study reported a 8% fre-
quency of PHPT [97]. PHPT in patients with MEN2 is usu-
ally mild and associated with few or no symptoms [97, 98]. 
The diagnosis often occurs during the surgical procedure or 
follow-up for MTC [96, 99]. An international retrospective 
multicenter study of 1085 MEN2 index cases reported a very 
low prevalence (0.9%) of PHPT presenting as first manifes-
tation with a median age at diagnosis of 34.5 years [100]. 
Median age at diagnosis of PHPT was lower (39 years) 
than the sporadic counterpart (63 years), but higher than 
in MEN1 (33 years) [13]. However, a recent single-center 
retrospective study found no difference in mean age at diag-
nosis of PHPT between MEN1 and MEN2 patients [101].

A higher incidence of parathyroid multiglandular involve-
ment in MEN2 has been reported, although lower than in 
MEN1. However some studies have reported a significant 
incidence of solitary gland disease (27%–48%) [96, 97, 102].

MEN2 is due to germline gain-of-function mutations in 
the REarranged during Transfection (RET) proto-oncogene 
(Table 1). In particular, mutations at codon 634 are associ-
ated with the highest penetrance of PHPT, and mutations at 
codons 609, 611, 618 and 620 with a penetrance of between 
1 and 12% [100, 102, 103].

At surgery, bilateral neck exploration to identify all 
abnormal parathyroid glands is advisable, and the current 
choice is the resection of only the enlarged gland(s) with 
intraoperative PTH monitoring [19, 98]. Prophylactic PTX 
at the time of thyroidectomy for MTC is not advisable given 
the low penetrance of PHPT [98]. Persistence and recur-
rence (23%) of PHPT have been reported in 5%–11% and in 
9%–23% of cases, respectively [96, 97, 99, 104].

Multiple endocrine neoplasia, type 5

MEN5 is a recently proposed syndrome with an autoso-
mal dominant pattern of inheritance that has extended the 
well-established inherited MENs. It is a familial pheochro-
mocytomas/paraganglioma syndrome caused by germline 
variants in the MAX tumor suppressor gene [105–107]. A 
few subjects also develop functioning pituitary adenomas 
(prolactinomas or somatotropinomas) often occurring after 
pheochromocytomas and non-endocrine tumors, i.e., gan-
glioneuromas, ganglioneuroblastoma, and neuroblastomas 
[108] and renal oncocytoma and pancreatic NET [109, 110]. 
PHPT/hypercalcemia was reported in four patients, but there 
was a documented multiglandular parathyroid disease only 
in one [4, 106, 108]. The potential inclusion of parathyroid 
disease in the phenotype of this syndrome still remains to 
be established (Fig. 5).

Hyperparathyroidism‑jaw tumor syndrome (HPT‑JT)

HPT-JT (MIM#145001) is a rare disorder with an autoso-
mal dominant inheritance. It has an estimated prevalence 
of 12% among patients suspected of having heritable forms 
of PHPT. Its full-blown expression is characterized by the 
combination of PHPT, tumor of the jaw bone, cysts and/or 
tumors of the kidney, and uterine tumors. The penetrance of 
the disease is variable and incomplete so that a few patients 
carrying Cell Division Cycle 73 (CDC73) mutations do 
not show the typical clinical manifestations of the disease 
throughout their life.

PHPT is the main manifestation of HPT-JT and is highly 
penetrant with all parathyroid glands at risk for tumor devel-
opment in an asynchronous manner. PHPT is the initial 

Fig. 4   (A) Contrast-enhanced computed tomography of the abdomen 
(transverse section) shows a 1.9-cm left adrenal lesion in a patient 
with MEN2 syndrome (arrow). (B) 18F-Dopa PET/CT scan of the 

abdomen shows intense uptake of the radiotracer in the left adrenal 
gland consistent with the diagnosis of pheochromocytoma (arrow)
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manifestation of the disease in up to 85% of affected patients 
[1, 101, 111–113]. It rarely develops as early as the first 
decade of life, but typically presents in the second or third 
decade, or even beyond [111]. One of the recently published 
largest cohort of patients with HPT-JT syndrome, showed 
that in approximately one-third of patients, PHPT was diag-
nosed because of symptoms and surveillance of calcium 
levels due to family history, and in one-fifth on incidental 
finding of hypercalcemia by routine blood tests [111].

Single-gland parathyroid involvement (up to 86%) is more 
common than multiglandular disease (up to 54%) in HPT-
JT patients compared to other forms of familial PHPT such 
as MEN1 [1, 114–116]. Parathyroid tumors can be macro- 
or microcystic, and, whereas most tumors are classified as 
adenomas, carcinomas (up to 31%) and atypical tumors (up 
to 4%) are overrepresented in HPT–JT [1, 111, 112].

PHPT is usually mild and/or asymptomatic, although it 
may be moderate/severe and symptomatic in cases of carci-
noma or atypical tumor [117, 118]. Non-functioning para-
thyroid malignancy very rarely occurs in this setting [119].

The optimal surgical approach to PHPT has not yet been 
established, varying between bilateral or targeted neck 
exploration and extensive or limited PTX [26]. Early bilat-
eral exploration is indicated because of the increased risk 
of parathyroid carcinoma [19]. Given the improvement in 

imaging techniques, some surgeons offer a focused approach 
with selective PTX in patients with preoperative concord-
ant imaging studies, a single-gland involvement and with-
out suspicion of parathyroid malignancy [1, 26, 111]. On 
the other hand, a subtotal PTX should be considered for 
patients with absent or discordant preoperative localization, 
because of the increased risk of multiglandular involvement 
and recurrent PHPT [26]. However, this latter approach 
may be not favored in view of the adverse consequences 
of lifelong hypoparathyroidism, the incomplete penetrance 
of parathyroid cancer in the syndrome, and the likelihood 
that close biochemical monitoring for recurrent PHPT will 
promote successful early resection or prevention of cancer. 
In fact, in a multicenter series Mehta et al. found that rou-
tine subtotal or total PTX conferred no benefit and likely 
leads to an increased risk of permanent hypoparathyroidism 
[115]. Irrespectively of the surgical approach, according to 
the literature, the risk of recurrence is as high as 36%, thus 
requiring lifelong regular PHPT biochemical and instrumen-
tal monitoring [1].

Jaw tumors are fibro-osseous lesions that typically involve 
the mandible or maxilla. and may develop in approximately 
10–40% of patients with HPT-JT, and often prior to the third 
decade of life [1, 26, 111, 114]. Jaw tumors may be the first 
manifestation of HPT-JT in about 30% of cases and are 

Fig. 5   Suggested decisional algorithm for genetic testing in patients 
with familial PHPT. The green dashed box indicates a provisional 
diagnosis of HPT-JT. MEN1 multiple endocrine neoplasia type 1, 
MEN2 multiple endocrine neoplasia type 2, MEN4 multiple endo-
crine neoplasia type 4, HPT-JT hyperparathyroidism-jaw tumor syn-

drome, FHH familial hypocalciuric hypercalcemia, FHH1 familial 
hypocalciuric hypercalcemia type 1, FHH2 familial hypocalciuric 
hypercalcemia type 2, FHH3 familial hypocalciuric hypercalcemia 
type 3, FIHP familial isolated hyperparathyroidism
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multiple in approximately 30% of patients [1]. The major-
ity are ossifying fibromas, benign and slow growing tumors 
arising from the periodontal ligament in molar or premolar 
areas and most often appear to be radiographically radiolu-
cent compared to the mixed radiolucent/radiopaque lesions 
in the sporadic variants [120]. These lesions are distinct 
from “brown tumors” typically occurring in severe PHPT 
(reviewed in Jha et al.) [1].

The management of cemento-ossifying fibromas requires 
complete surgical resection of the jaw based on the symp-
toms, size, and site of the lesion, along with bone recon-
struction and grafting [1]. Patients with a history of jaw 
tumors should be monitored closely because of the possi-
bility of recurrence.

HPT-JT is also associated with renal lesions in about 
25%–30% of patients, with cystic disease being the most 
common [1, 111, 114]. Patients may also develop benign 
and malignant renal tumors such as adenomas, hamartomas, 
mixed epithelial stromal tumor (MEST), Wilms tumors, and 
carcinomas [1, 111, 112, 121].

Uterine tumors are the most common clinical feature and 
affect up to 90% of women [1, 111, 114, 122]. The majority 
are benign, namely endometrial hyperplasia, polyps, benign 
leiomyomas and adenofibromas, and, very rarely, adenosar-
coma or tumors arising from the Mullerian duct system [1, 
111, 114]. It was recently suggested that patients with HPT-
JT harboring variants at the Met1 residue of parafibromin 
may have a predisposition to solid kidney tumors [111].

No treatment guidelines for uterine manifestations associ-
ated with HPT-JT syndrome are currently available. From a 
clinical perspective, patients with a uterine tumor should be 
managed by a gynecologist on a case-by-case basis.

Other manifestations potentially related to HPT-JT are 
thyroid, and colon carcinoma [123]. The question as to 
whether there is an association between these less common 
tumors and HPT-JT syndrome remains unclear.

Heterozygous germline mutation of the CDC73 tumor 
suppressor gene, encoding parafibromin, is the major genetic 
alteration and is detectable in about 75% of classically 
affected families [124, 125]. Most patients harbor CDC73 
germline mutations in the coding regions [126]. Large 
deletions/ duplications of the entire gene or whole exon(s) 
are not uncommon, and account for as many as one-third 
of all mutations [127]. The remaining families may have 
other CDC73 anomalies, such as mutations in the promoter, 
untranslated regions, or small noncoding mutations. The 
concomitant presence of a somatic mutation in tumor tissue 
from a patient with germline CDC73 mutation is consistent 
with a biallelic inactivation and a putative tumor suppressor 
function in accordance with a classical two-hit tumor sup-
pressor mechanism [1]. Loss of parafibromin expression at 
immunohistochemistry can be a marker of biallelic CDC73 
inactivation in parathyroid tumors [128]. About 20%-30% of 

cases with apparently sporadic parathyroid carcinoma [126, 
129, 130] and 5%–10% of probands presenting with FIHP 
harbor a germline mutation of CDC73 [131].

Surveillance

In view of the lack of published guidelines from a consensus 
of experts, according to the literature subjects who harbor a 
CDC73 mutation should undergo to: (1) evaluation of fasting 
albumin-corrected and/or ionized calcium and plasma PTH 
for PHPT screening, possibly starting at the age of five, and 
neck ultrasound yearly; (2) panoramic jaw X-ray every five 
years; (3) imaging of the kidney by periodic renal ultrasound 
examination every 5 years, starting at the age of diagno-
sis; (4) regular gynecologic care, including transvaginal or 
abdominal ultrasound examination with possible further 
imaging studies if clinically indicated every 5 years [1, 112].

Familial non‑syndromic primary 
hyperparathyroidism

Familial isolated hyperparathyroidism (FIHP)

FIHP (MIM#145000) is a rare hereditary form of PHPT. It is 
diagnosed if the patient and at least one first-degree relative 
have PHPT, in the absence of clinical or radiologic evidence 
of other endocrine tumors or disorders related to other PHPT 
syndromic diseases (Table 1) [1]. The diagnosis of FIHP at 
the time of patient referral might only be provisional. Clini-
cians thus need to re-evaluate the patient during the long 
follow-up periods, and be ready to change the diagnosis if 
one or more extraparathyroidal features occur.

FIHP is estimated to account for approximately 1% of 
all PHPT cases [131]. PHPT has a later onset and a slightly 
reduced penetrance compared to MEN1 (98% and 100% at 
40 and 69 years of age, respectively [132]. However, the 
number of true FIHP cases might be overestimated due to 
a possible contamination of sporadic PHPT occurring in 
familial siblings by chance, or other familial PHPT disor-
ders whose syndromic manifestations have not yet become 
evident [126, 131, 133]. Most of the studies involving the 
largest series of FIHP have reported a median of only two 
cases of PHPT in each kindred [131, 134–136].

No single driver gene is exclusively responsible for 
FIHP, since it is characterized by genetic heterogeneity, 
i.e., about 30% of kindreds carried germline mutations 
of genes, namely MEN1 (25%), CDC73 (7%–26%), or 
CASR (up to 18%) classically associated with other famil-
ial PHPT disorders, such as MEN1, HPT-JT syndromes, 
or FHH, respectively [60, 132, 137]. This would seem to 



2168	 Journal of Endocrinological Investigation (2024) 47:2157–2176

suggest that FIHP could represent an incomplete pheno-
type expression of such familial forms of PHPT (Table 1). 
Nevertheless, most FIHP kindreds lack germline mutations 
in known PHPT-susceptibility genes.

Using next-generation technologies, activating muta-
tions of the GCM2 gene, were identified in a subset (18%) 
of FIHP (Table 1) [138]. GCM2 is a gene that is primar-
ily expressed in the parathyroid glands and encodes a 
transcription factor required for their development [139]. 
GCM2 mutations are mainly missense variants located in 
the C-terminal conserved inhibitory domain (CCID) of 
the encoded protein within the amino acid 379–395 [140].

The most recurrent GCM2 variant (p.Tyr394Ser) was 
found to be prevalent in a large group of Ashkenazi Jew-
ish (AJ) ancestry with FIHP or sporadic PHPT (41% 
and 27%, respectively) [141]. The presence of GCM2 
germline mutations in FIHP has been confirmed in 
later studies with a prevalence ranging from 4 to 20% 
[140, 142–146]. Although p.Tyr394Ser and other mis-
sense variants located in CCID were found to enhance, 
at various degree, the transcriptional activity of GCM2 
in functional assays, proposing for GCM2 the role of 
proto-oncogene, some concerns about its involvement in 
the etiology of parathyroid tumors have been raised [140, 
147]. Specifically, Vincze et al. suggested that GCM2 
might represent a modifier rather than a driver gene for 
PHPT considering the reduced penetrance of GCM2 
alterations in familial settings due to the high frequen-
cies of altered alleles in the general population [145]. 
Furthermore, an in vivo study observed that the knock-in 
mouse model of the Gcm2 variant p.Y392S (analogous to 
human p.Y394S) did not develop PHPT [148].

Minor rare variants in PHPT-related genes were 
CDKN1B and CDKN2C [68]. On the other hand, private 
or low-prevalence germline mutations in CNGB3, FAT3 
PARK2, HDAC4, ITPR2, and TBCE genes identified in a 
whole exome sequencing study may indicate a predisposi-
tion to FIHP development [133, 144].

Management can vary according to the genetic status 
of the patients. FIHP linked to MEN1 or CDC73 mutation 
should be treated in the same way as MEN1 or HPT-JT, 
respectively [133]. A more severe clinical phenotype, 
i.e., a high rate of multigland disease and a low success 
rate of biochemical treatment, seems to be associated 
with CDC73 and GCM2 variant-positive FIHP cases 
[149]. Preoperative genetic screening could thus guide 
the surgeon to using a subtotal PTX to minimize the need 
for reoperation.

Familial hypocalciuric hypercalcemia (FHH)

FHH (MIM#145980) is an autosomal dominant disorder 
with a reported prevalence of 1.3/100,000 [150]. It is char-
acterized by lifelong non-progressive mild to moderate 
hypercalcemia, mild hypermagnesemia, normal or mildly 
elevated PTH concentrations, and typically low urinary cal-
cium excretion. Hypercalcemia is due to an increase in the 
parathyroid “set-point” for PTH release and possibly also to 
low renal calcium excretion [151]. FHH is genetically het-
erogeneous. It includes three distinct variants, termed FHH 
types 1–3, which are caused by loss-of-function mutations 
of genes involved in calcium signaling (i.e., CASR), guanine 
nucleotide-binding protein subunit alpha- 11(GNA11), and 
adaptor protein complex-2 subunit sigma (AP2S1) genes, 
respectively [1, 152, 153].

From a clinical perspective, FHH has a similar bio-
chemical phenotype to PHPT, but FHH does not require 
surgical treatment. Thus, some clinical and laboratory 
findings should alert the physician to the possibility of 
FHH at the time the patient presents for treatment. This 
suspicion has clinical benefits because an unnecessary 
PTX can be avoided. The degree of hypercalcemia does 
not differentiate between the two disorders due to the 
marked variation in calcium values in FHH, overlapping 
with that of PHPT [152, 154]. Patient medical charts 
should be checked to ascertain the presence of lifelong 
persistent hypercalcemia, which is a key trait of FHH. 
Serum magnesium may be mildly elevated or in the nor-
mal range, and does not help differentiate FHH from 
PHPT [155, 156]. PTH levels overlap between FHH and 
PHPT [156, 157]. However, PTH concentrations greater 
than 2-swsfold above the upper limit of reference range 
are suggestive of PHPT [157]. Vitamin D insufficiency 
should be treated with vitamin D supplements before 
interpreting PTH concentrations.

Urine calcium excretion should be evaluated using 
the calcium to creatinine clearance ratio (CCCR), which 
requires a concomitant blood sample and 24-h urinary col-
lection [152]. A CCCR < 0.01 is seen in 80% to 95% of 
patients with FHH [158]. However, a CCCR  < 0.01 can be 
present in up to 10% of patients with sporadic PHPT, high-
lighting the important role of genetic testing. In addition, 
some patients diagnosed as FHH based on the CCCR do not 
harbor an identifiable mutation in any of the known genes 
causing the disease.

An important feature that physicians need to con-
sider is that CCCR has not been validated for diagnos-
ing FHH in patients with renal impairment, vitamin D 
insufficiency, or pregnancy [152]. The use of thiazide 
diuretics can cause low CCCR values, as these drugs 
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stimulate proximal tubular sodium reabsorption result-
ing in enhanced proximal passive calcium transport. 
Thus, for a correct interpretation of CCCR values these 
drugs must have been discontinued for at least a week 
beforehand [152]. During pregnancy the CCCR may 
be of less help in diagnosing FHH given the absorptive 
hypercalciuria caused by placental and breast production 
of lactogen and PTH-related peptide (PTHrP), stimulat-
ing 1-alphahydroxylase activity and increasing levels of 
1,25(OH)2D3 [159].

FHH type 1 (FHH1)

FHH1 (MIM#145980) is the first and main type (approxi-
mately 65%) with an estimated genetic prevalence of 
74.1/100,000 [160] and is generally asymptomatic, although 
some patients have been reported to have features such as 
chondrocalcinosis, osteoporosis, and nephrolithiasis [155].

FHH1 is caused by germline heterozygous loss-of-func-
tion mutations of CASR, which is located on chromosome 
3-q21.1 (Table 1). Most (> 85%) mutations are missense, 
and the remaining nonsense, deletion, insertion and splice 
site mutations result in truncated CaSR protein [161]. Inac-
tivating mutations affect all regions of the CaSR protein, 
although they are most common within the first 350 amino 
acid residues of the extracellular domain [161]. The off-
spring of FHH1 parents may carry homozygous or com-
pound heterozygous CASR mutations that lead to NSHPT 
(see below). Some patients who have the clinical features of 
FHH1, but do not carry CASR mutations, may have autoim-
mune hypocalciuric hypercalcemia (AHH), which is associ-
ated with the presence of autoantibodies against the CaSR 
and also lymphocytic infiltration [162–165]. The hypercal-
cemia caused by AHH may be responsive to glucocorticoids 
or cinacalcet, a positive allosteric modulator of CaSR which 
targets its transmembrane domain [162–165],

FHH type 2 (FHH2)

FHH2 (MIM#145981) is the rarest type caused by germline 
heterozygous loss-of-function mutations of the GNA11 
gene on chromosome 19p13.3, which encodes the Gα11 
protein (Table 1) [6]. To date, FHH2 has been reported in 
four probands [6, 166, 167]. Affected individuals display 
mild hypercalcemia (serum adjusted-calcium concentra-
tions  < 11.2 mg/dL), normal serum PTH levels, and normal 
or low urinary calcium excretion [6, 166, 167].

Mutations of the GNA11 gene identified in FHH2 
patients include three missense substitutions (p.Thr54Met, 
p.Leu135Gln and p.Phe220Ser), and an in-frame isoleu-
cine deletion at residue 200 (p.Ile200del) located in vari-
ous regions of the protein. Interestingly, the p.Phe220Ser 
mutation is located in the Gα11 switch region and disrupts 

PLC‐mediated signaling. In fact, in vitro and in vivo stud-
ies have shown that cinacalcet can rectify these signal-
ing disturbances, and be used successfully to treat the 
patient’s hypercalcemia [167].

FHH type 3 (FHH3)

FHH3 (MIM#600740) has an estimated prevalence of 
7.8/100,000 and represents a more severe form of FHH 
[168]. It is characterized by significantly higher concentra-
tions of both serum calcium and magnesium than FHH1, and 
by a lower calcium urine excretion [156, 168]. A relatively 
high proportion of patients have hypercalcemic symptoms, 
a lower bone mineral density, osteomalacia, recurrent pan-
creatitis or cognitive dysfunction [156, 168, 169].

FHH3 is caused by germline heterozygous loss-of-
function mutations of the AP2S1 gene on chromosome 
19q13.3, which encodes the AP2σ, a subunit of a multi-
meric complex involved in clathrin-related endocytosis 
of G-protein coupled receptors (Table 1). It is notable 
that  > 99% of affected individuals carry a AP2S1 mis-
sense mutation affecting the Arg15 residue of the protein 
(e.g., p.Arg15Cys, p.Arg15His or p.Arg15Leu), except 
in one case affecting Met117 residue [6, 156, 170–174]. 
Patients carrying the p.Arg15Leu mutation have higher 
serum calcium, with an earlier age of presentation com-
pared to probands with p.Arg15Cys or p.Arg15His muta-
tions [168]. Crystal structure analyses have predicted that 
these Arg15 mutations disrupt an interaction between the 
AP2 complex and the intracellular region of the CaSR, 
thereby reducing the endocytosis of CaSR [168, 175].

Symptomatic hypercalcemic FHH3 patients may benefit 
from treatment with cinacalcet [167].

Neonatal severe primary hyperparathyroidism 
(NSHPT)

NSHPT (MIM#239200) is a rare autosomal recessive dis-
order with approximately 100 reported cases [176]. It is a 
potentially life-threatening disorder presenting as severe 
hypercalcemia (often  > 20 mg/dL), a marked increase in 
PTH levels early in life with respiratory distress, rib cage 
deformities, hypotonia and bone demineralization caus-
ing fractures, marked parathyroid hyperplasia, and gener-
ally requires urgent total PTX [177, 178]. NSHP is most 
often caused by biallelic (homozygous or compound het-
erozygous) loss-of-function CASR mutations. Infrequently, 
NSHPT may be caused by sporadic heterozygous CASR 
mutations that have a dominant negative effect on CaSR 
function despite the presence of a wild-type allele [179].

Patients may be responsive to bisphosphonate and cina-
calcet in order to manage the marked hypercalcemia and 
skeletal demineralization prior to PTX [1, 180–182]. In 
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NSHPT pairings (homozygosity vs. heterozygosity for 
pathogenic germline-inactivating CASR mutation(s)), the 
homozygotes show higher serum calcium and PTH lev-
els than heterozygotes. Serum calcium levels  > 20 mg/dL 
among NSHPT are frequent and detected only in homozy-
gotes. This cutoff supports early and robust diagnosis of 
CASR dosage promoting an early and definitive total PTX 
in most homozygotes [176].

Genetic analysis of familial PHPT

DNA testing for predisposing mutations is helpful in clinical 
practice. In index cases or in individuals with a high suspi-
cion of clinical MEN1, MEN2 or HPT-JT, the screening for 
MEN1, RET or CDC73 gene mutations, respectively, is rec-
ommended [3, 162]. The search for germline RET mutations 
is of great importance for the clinical and surgical manage-
ment of MEN2, especially for the treatment of MTC [79]. 
In addition, RET testing during childhood can provide pre-
ventive or curative thyroidectomy. The search for germline 
CDC73 may be useful for managing HPT-JT, particularly for 
the early diagnosis of parathyroid carcinoma [183].

In individuals with suspicion of clinical MEN1 but muta-
tion-negative for MEN1 gene, screening for CDKN1B should 
be carried out for the diagnosis of MEN4 [69]. Notably, due 
to the relative late onset of MEN4 clinical manifestations, 
the genetic testing could be considered in patients even if the 
disease presents in the sixth decade of life. Genetic testing 
for CDKN1B could be considered in specific clinical settings 
as reported above.

Since FHH1 is the most frequent type of FHH, CASR 
mutation analysis is recommended for confirming the clini-
cal diagnosis, particularly in sporadic cases or in those with 
inconclusive clinical evaluation of the kindred. In CASR 
mutation-negative cases, possible mutations in GNA11 and 
AP2S1 genes should be searched for in order to diagnose 
FHH2 and FHH3, respectively [152].

In cases with mutation-negative genetic testing for the 
disease-related genes and in index cases with FIHP, it is 
recommended to use a combination of targeted next-gen-
eration sequencing (NGS) analysis of a multi-gene panel 
(namely MEN1, CDC73, CDKN1B, RET, CASR, CDKN2B, 
CDKN2C, CDKN1A, GNA11, AP2S1, GCM2), with a mul-
tiple ligation-dependent probe amplification (MLPA) assay 
for the detection of large deletion/duplications, which are 
mostly identified in MEN1, HPT-JT and CDC73-associated 
FIHP [115].

Conclusions

The familial forms of PHPT show different levels of PHPT 
penetrance. However, PHPT generally represents the initial 
clinical manifestation of the disease, usually developing 
earlier and with multiglandular involvement compared to 
sporadic PHPT. Following the biochemical and clinical diag-
nosis of PHPT, early age of onset and/or a positive family 
history should alert the clinician to search for other tumors 
and manifestations associated with each specific syndrome.

Genetic testing for germline mutations in known genes 
involved in familial PHPT may help to: (1) diagnose or con-
firm the clinical diagnosis of the disease; (2) identify family 
members who may be asymptomatic carriers of the muta-
tion; (3) relieve family members at risk from the burden of 
long-life surveillance in cases of a negative test; (4) access 
to preimplantation/prenatal diagnosis; (5) lead to screen-
ing for other extra-parathyroid syndrome-related tumors; 
and (6) offer the most appropriate surgical planning and 
surveillance.

Few driver genes are involved in hereditary forms of 
PHPT, some of them, i.e., MEN1, CDC73, CASR, are not 
exclusive to one syndrome, in fact may be altered in more 
than one disease. The clinical presentation of PHPT may dif-
fer in correlation with the altered gene. In particular, MEN2 
shows the mildest and HPT-JT the most aggressive form of 
familial PHPT due to a more severe hypercalcemia and a 
higher prevalence of parathyroid carcinoma.
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