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Abstract
Purpose  The prevalence of diabetes is increasing worldwide. The associations between the lipid profile and glycated hemo-
globin (HbA1c), fasting glucose, and diabetes remain unclear, so we aimed to perform a cohort study and a two-sample 
Mendelian randomization (MR) study to investigate the causality between blood lipid profile and HbA1c, fasting glucose, 
and diabetes.
Methods  A total of 25,171 participants from the Taiwan Biobank were enrolled. We applied a cohort study and an MR study 
to assess the association between blood lipid profile and HbA1c, fasting glucose, and diabetes. The summary statistics were 
obtained from the Asian Genetic Epidemiology Network (AGEN), and the estimates between the instrumental variables 
(IVs) and outcomes were calculated using the inverse-variance weighted (IVW) method. A series of sensitivity analyses 
were performed.
Results  In the cohort study, high-density lipoprotein cholesterol (HDL-C) was negatively associated with HbA1c, fasting 
glucose, and diabetes, while the causal associations between HDL-C and HbA1c (βIVW = − 0.098, p = 0.003) and diabetes 
(βIVW = − 0.594, p < 0.001) were also observed. Furthermore, there was no pleiotropy effect in this study using the MR-Egger 
intercept test and MR-PRESSO global test.
Conclusions  Our results support the hypothesis that a genetically determined increase in HDL-C is causally related to a 
reduction in HbA1c and a lower risk of diabetes.
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Abbreviations
MR	� Mendelian randomization
IVW	� Inverse-variance weighted
HbA1c	� Glycated hemoglobin
HDL-C	� High-density lipoprotein cholesterol
LDL-C	� Low-density lipoprotein cholesterol
RCTs	� Randomized controlled trials
IVs	� Instrumental variables
SNPs	� Single nucleotide polymorphisms
WHR	� Waist-hip ratio
BMI	� Body mass index

PRESSO	� Pleiotropy residual sum and outliers
MBE	� Mode-based estimate

Introduction

Hyperglycemia and diabetes are common diseases with an 
increasing prevalence worldwide. In 2021, the International 
Diabetes Federation (IDF) Diabetes Atlas Tenth edition 
reported approximately 537 million adults with diabetes 
increasing to 783 million by 2045 [1]. In addition, the esti-
mated number of diabetes in South-East Asia will increase 
up to 152.8 million in 2045 [2]. It is a disease that often has 
complications due to chronic hyperglycemia, which causes 
long-term functional damage and failure of the eyes, kid-
neys and blood vessels [3]. With the increasing prevalence 
of diabetes, an increased use of medical resources and higher 
medical expenses will become the focus of attention in all 
countries.
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Diabetes is a disease related to multiple risk factors 
including age, race, family history of diabetes, alcohol 
abuse, tobacco abuse, metabolic syndrome, genetic factors, 
and so on [4–9]. Diabetes is affected both by genes and envi-
ronmental factors. Currently, several observational studies 
have suggested an association between the blood lipid profile 
and glycated hemoglobin (HbA1c) [10, 11], fasting glucose 
[12, 13] and diabetes [14, 15]. However, several Mende-
lian randomization (MR) studies have indicated inconsist-
ent causal evidence between serum lipid profile and fasting 
glucose and diabetes [16–26]. Until now, no MR study has 
discussed the associations between high-density lipoprotein 
cholesterol (HDL-C) and low-density lipoprotein cholesterol 
(LDL-C) and HbA1c. A European MR study indicated that 
genetically increased HDL-C levels were associated with 
decreased fasting glucose levels [16]. One bidirectional 
two-sample MR study in India indicated that there was no 
causal relationship between LDL-C and fasting glucose and 
there was also no evidence for reverse causality of LDL-C 
affected by fasting glucose [17], while another European 
two-sample MR study showed lower LDL-C concentra-
tion was associated with higher fasting glucose based on 
PCSK9 variants [18]. Furthermore, several MR studies in 
European demonstrated that HDL-C levels had protective 
effects against diabetes [19–24], but a Copenhagen General 
Population Study showed that the levels of HDL-C were 
not causally associated with the risk of diabetes [25]; nev-
ertheless, some European MR studies have indicated that a 
negative causal association between LDL-C and diabetes 
has been observed [18–20, 26], but a recent MR study in 
European demonstrated that genetically increased LDL-C 
level was associated with the risk of diabetes [23].

Mendelian randomization uses genetic variants as instru-
mental variables (IVs) to make inferences about causality 
based on observational studies [27]. The concept of MR 
is that when meiosis produces gametes, it is also random, 
not the result of human manipulation, so it is considered as 
natural randomized control trials (RCTs). In MR studies, 
researchers used IVs as a proxy for exposure and examined 
the causality between the exposure and outcome [28]. There 
are three assumptions of Mendelian randomization: first, the 
genetic instrument variables are related to exposure (rele-
vance assumption); second, the genetic instrument variables 
are not associated with other factors (independence assump-
tion); and third, the genetic instrument variables influence 
the outcome only through exposure (exclusion restriction 
assumption) [27].

Up to now, no Mendelian randomization (MR) study has 
been applied to investigate the causal associations between 
lipid profile and HbA1c while the causal relationship 
between lipid profile and fasting glucose and diabetes still 
remains unclear. Although there are many MR studies based 
on European ancestry populations, few are MR studies based 

on Asian populations. It is important because the frequency 
and distribution may have differences between each ethnic-
ity, so it might not be appropriate to generalize the findings 
of European individuals to Asian individuals. Accordingly, 
there are three purposes of this study: first, we examined the 
association between HDL-C and LDL-C and HbA1c, fasting 
glucose, and diabetes based on a cross-sectional study and 
a cohort study; second, we evaluated the causal relationship 
between HDL-C and LDL-C and HbA1c, fasting glucose, 
and diabetes using one-sample Mendelian randomization 
and two-sample Mendelian randomization in Asian ancestry; 
and finally, we performed a series of sensitivity analyses to 
validate our results.

Methods

Observational analyses

Study population

The Taiwan Biobank (TWB) study conducted from 2012 to 
2019 included 27,737 participants (13,834 men and 13,903 
women) of Taiwan Han Chinese ethnicity without a history 
of cancer. The participants who enrolled in TWB were fol-
lowed up within 2–4 years. The TWB collected question-
naires, physical examinations, genomic information, and 
urine and blood samples at the first recruitment and second 
follow-up [29]. In this study, individuals with missing lipid 
profiles and HbA1c data (N = 3) and failure in quality con-
trol (N = 2563) (Fig. 1) were excluded, so 25,171 partici-
pants were involved in cross-sectional and MR analysis. In 
addition, we also conducted a cohort study that excluded 
participants without a second follow-up, and a total of 
10,570 participants were used in further analysis.

Ethical approval for the study was granted by the Institu-
tional Review Board of Kaohsiung Medical University and 
Chung-Ho Memorial Hospital and the Ethics and Govern-
ance Committee (EGC) of the Taiwan Biobank. Written 
informed consent of participation was obtained from all 
participants when joining TWB and the personal informa-
tion of each participant was fully encrypted for protection.

Covariates assessment

The covariates in our study included age, sex, education 
status (below high school graduate, college graduate or 
below, or above college graduate), marriage status (mar-
ried or unmarried), sports habit (yes or no), drinking habit 
(yes or no), smoking habit (yes or no), body fat percentage, 
waist-hip ratio (WHR), family history of hyperlipidemia, 
and diabetes, and blood lipid profile (high-density lipopro-
tein cholesterol, low-density lipoprotein cholesterol).
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BMI was calculated by dividing the body weight (kg) by 
the square of height (m2). WHR was the ratio of the waist 
circumference to the hip circumference.

Outcomes

HbA1c and fasting glucose were measured from blood sam-
ples after fasting for 8 h by using a Hitachi LST08 analyzer 
at Linkou Chang Gung Memorial Hospital. Diabetes was 
defined as fasting glucose levels higher than 126 mg/dL, 
HbA1c levels higher than 6.5% (48 mmol/mol), or a self-
report of diabetes diagnosed by physicians [30–32].

Principle component analysis (PCA)

Population stratification (PS) is commonly caused by geo-
graphic isolation, which relates to low migration rates and 
gene flow over the course of several generations [33] and 
may operate as a confounder between genotypes and traits in 
genetic studies [34]. As principle component analysis (PCA) 
is a common dimension reduction method and is widely used 
to identify and adjust problems of PS in Genetics [35, 36], 
we visualized the results of PCA and presented these in Fig-
ure E1. In order to eliminate the effects of PS, the first eight 
ancestry principal components were adjusted in our study.

Fig. 1   The flow chart of Taiwan 
Biobank population Dataset: Taiwan Biobank.

27,737 par	cipants and 646,973 variants
(13,834 men and 13,903 women)

27,734 par	cipants and 646,973 variants
 (13,834 men and 13,900 women)

Individual (excluded 2,563 people)
Related samples (n=2,233)
Sample missing rate>5% (n=0)
Individuals with extreme 
heterozygosity rate (without ±3 SD 
of mean) (n=304)
Sex mismatch (n=26)

SNP (excluded 44,250 variants)
Minor allele frequency<0.05 

(n=8,495 variants)
Hardy-Weinberg p-value 

(n=7,422 variants)
Genotype call rate<95% 

(n=28,333 variants)

Par	cipants and variants pass filters and QC
25,171 par	cipants and 602,723 variants

(12,667 men and 12,504 women)

Missing data on blood lipid profile, 
and HbA1c were excluded (n=3)

10,570 par	cipants
 (4,959 men and 5,611 women)

Missing data on follow-up 
(n=14,601)
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Mendelian randomization analyses

In this study, we performed a one-sample MR and a two-
sample MR to examine the causality of the blood lipid pro-
file and fasting glucose, HbA1c, and diabetes. One-sample 
MR was conducted by using individual data. The study 
design of two-sample MR analysis was established on two 
nonoverlapping populations [37]. The SNP-exposure sum-
mary effect size and standard error were obtained from the 
Asian Genetic Epidemiology Network, and we calculated 
the SNP-outcome effect size and standard error from the 
Taiwan Biobank.

Asian Genetic Epidemiology Network (AGEN)

AGEN is an Asian-based population consortium of genetic 
epidemiology studies of type 2 diabetes and cardiovascular 
disease-related phenotypes. This consortium aims to iden-
tify new loci by conducting genome-wide meta-analyses, 
replicate studies with similar phenotypes, and conduct other 
genotyping to discover novel loci. Variants were genotyped 
using Affymetrix or Illumina genome-wide genotyping 
arrays and imputed using a Hapmap Project Phase II refer-
ence panel and the 1000 Genomes Project Phase 3 of the 
University of Michigan imputation server reference panel 
[38]. Our study used summary data of HDL-C and LDL-C 
from two-stage GWAS meta-analyses based on 34,421 
East Asian participants from 13 studies (CAGE-Network, 
CLHNS, GenSalt, KARE, KCPS II, SBCS, SCES, SiMES, 
SP2, SWMHS, TWSC, BES, and CHNS). The levels of 
blood lipid profiles were measured in mg/dL by standard 
biomedical methods. Participants with lowering cholesterol 
medication use were excluded from this study.

Genetic instrumental variables

In our research, summary data related to the blood lipid 
profile were obtained from AGEN. Firstly, we selected 
SNPs with a genome-wide significance threshold (P < 5 
× 10–8) associated with high-density lipoprotein choles-
terol and low-density lipoprotein cholesterol; secondly, 
we removed the SNPs when they restricted linkage dis-
equilibrium (R2 > 0.1); thirdly, when the F statistic was 
less than or equal to 10, it was treated as a weak instru-
mental variable and removed; fourthly, we excluded IVs 
directly associated with the outcome to meet assumption 
three of MR, so we included 161 SNPs as instrumental 
variables (IVs) for HDL-C on HbA1c, fasting glucose, 
and diabetes and included 81, 91, and 89 SNPs as IVs for 
LDL-C on HbA1c, fasting glucose and diabetes (criteria 
2); and fifthly, according to independence between lipid 
profiles as exclusion of instrumental variables (IVs) asso-
ciated with other lipid profiles based on the hypothesis of 

their independence, we searched the GWAS catalog and 
Phenoscanner to find the genome-wide significant vari-
ants that were related to other blood lipid profiles then 
we conducted MR analysis between HDL-C and HbA1c 
excluding 129 variants related to LDL-C, total choles-
terol, or triglycerides. We also excluded 88 variants for 
MR analysis between LDL-C and HbA1c to reduce any 
possible pleiotropy effects for the Asian population [39, 
40]. Finally, we included 40, 38, and 44 SNPs as IVs for 
HDL-C on HbA1c, fasting glucose, and diabetes to meet 
assumption three of MR where IVs did not directly associ-
ate with the outcome; thus, we included 8 SNPs as IVs for 
LDL-C on three outcomes (criteria 1) (Figure E2, Tables 
E1–E6) [41, 42].

Taiwan Biobank (TWB)

Genotyping was performed using a TWB chip based on an 
Axiom Genome-Wide CHB 1 Array plate (Affymetric, Inc., 
Santa Clara, CA, USA) and the Human Exome BeadChip 
(Illumina, Inc., San Diego, CA, USA) in TWB study [29].

Quality control and strength of the instrumental 
variables

Quality control is an indispensable step in genetic research 
to avoid false-positive or false-negative results [43], so we 
had several exclusion criteria, as follows: For individuals, 
we checked for data integrity (missing rate > 5%), kinship 
less than second-grade relatives, out of the heterozygosity 
rate (without ± 3SD of mean), and gender mismatches. For 
SNPs, we excluded low minor allele frequency (< 0.05), 
low call rate (< 95%), and violations of Hardy–Weinberg (P 
values < 0.0001). After quality control, 25,171 participants 
and 602,723 variants remained for the final analysis (Fig. 1).

The strength of the instrument variable was evaluated 
by the F value. It represents the magnitude and quality of 
the effect on the SNP and exposure [44]. The calculation of 
the F value was a linear regression between GRS and expo-
sure traits and it was adjusted for age, sex, and population 
stratification. To avoid weak instrumental variable bias, an 
F value above 10 was expected to provide sufficient strength 
for further analyses [45].

Data harmonization

In a two-sample MR study, inappropriate data harmonization 
can lead to distortion of the MR results. Harmonizing the 
data is necessary when combining two independent datasets 
according to the guidelines provided by Fortier et al. [37, 
46]. First, we standardized the direction of all variants in 
the AGEN dataset, which meant that we adjusted all beta 
values of the effect size to be positive. Second, we matched 
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the alleles in two datasets; that is, if the effect allele was dif-
ferent, we changed the effect allele and the reference allele 
in dataset 2 and multiplied the effect size by − 1, and the 
allele frequency was subtracted by 1. Finally, we removed 
the alleles that did not match in both datasets (n = 0).

One‑sample Mendelian randomization

We conducted a one-sample Mendelian randomization (MR) 
using individual-level data to investigate the causal associa-
tion between HDL-C and LDL-C and HbA1c, fasting glu-
cose, and diabetes by 2-stage least-square regression [47]. 
In the first stage, we constructed the linear regression of the 
risk factors (e.g. HDL-C or LDL-C) on the IVs, resulting in 
the predicted value of risk factors by GRS, then in second 
stage, the HbA1c or fasting glucose was regressed on the 
predicted value by using linear regression, and diabetes was 
regressed on the predicted value by using logistic regression.

Two‑sample Mendelian randomization

Compared to one-sample Mendelian randomization (MR), 
which uses individual-level data from the same sample for 
estimating the effect sizes of exposure and outcome, two-
sample MR can be performed using not only individual data 
but also summary data, which can increase statistical power 
[48]. The effect size of exposure and outcome comes from 
separate datasets instead of using the same dataset, in order to 
avoid overfitting, and can also enlarge the study sample size 
[49]. Between two study designs, weak instruments bias can 
be avoided when using two independent samples (Fig. 2) [50].

The common approach is to examine this correlation 
through the inverse-variance weighted (IVW) method, which 

provides a causal estimate from summary data on multiple 
instrument variables [51]. The following is the formula of the 

estimate: �
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 [52]. The estimates of SNP-expo-
sure and SNP-outcome were obtained from the two separate 
datasets for each SNP. For each SNP-exposure, we extracted 
information, such as effect size and standard error, from the 
AGEN consortium. For each SNP-outcome, we conducted a 
multiple linear regression or multiple logistic regression 
adjusted for age, sex, one to eight population stratifications and 
other covariates including education status, marriage status, 
sport habit, drinking habit, smoking habit, body mass index, 
family history of hyperlipidemia and a family history of dia-
betes from the Taiwan Biobank to obtain the estimates.

Sensitivity analyses

We used a less strict standard (criteria 2) to select instru-
mental variables and conducted an MR analysis. Weighted 
median, MR-Egger, MR Pleiotropy Residual Sum and Out-
lier (MR-PRESSO), the mode-based estimate (MBE), and 
the contamination mixture method were used in our sensitiv-
ity analyses. Weighted median regression provided consist-
ent causal estimates from the summary data, even if up to 
50% of variants did not conform to the Instrument Strength 
Independent of Direct Effect (InSIDE) assumption [53]. 
MR-Egger also provided causal estimates, even though there 
were no valid instrumental variables, and the intercept term 

Instrumental variables

(Gene�c variants)

Exposure traits

(e.g. HDL-C, LDL-C)

Outcome variables
(e.g. Diabetes, HbA1c, fas�ng 

glucose)

Other factors
(e.g. confounding factors)

(1) Relevance assump�on:
gene�c variants are associated with the exposure

(3) Exclusion restric�on assump�on:
gene�c variants are associa�on with the outcome only via the exposure

(2) independence assump�on: 
gene�c variants are not associated with other factors

(AGEN) (Taiwan Biobank)

Fig. 2   The directed acyclic graph for the Mendelian randomization causal inference and assumption
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of this method is often used to assess pleiotropy [53]. The 
MBE method and the contamination mixture method were 
used when we included multiple instrumental variables, and 
it could provide a consistent estimate when we had some 
invalid instrumental variables. However, the contamination 
mixture method could further distinguish whether there were 
different mechanisms between the exposure and outcome 
from different genetic variant groups that had similar esti-
mates [54, 55]. To test the directional pleiotropy and deter-
mine the outlier, we also used the MR-PRESSO method. 
Leave-one-out analysis was performed to detect whether a 
single SNP could affect the results [56]. Heterogeneity could 
be regarded as an index related to potential violation of MR 
assumption and was tested using Cochran’s Q statistics [57].

Statistical analyses

Continuous variables are represented by means and stand-
ard deviations, and categorical variables are expressed as 
values and percentages. The relationships between the lipid 
profiles, demographic characteristics, glycated hemoglobin 
(HbA1c), and fasting glucose are presented as beta values 
( � ) and 95% confidence intervals (95% C.I.) analyzed by 
linear regression. We used logistic regression, odds ratios 

(ORs), and 95% confidence intervals (95% C.I.) to evaluate 
the risk of HDL-C and LDL-C on diabetes. We conducted 
multiple linear regression and multiple logistic regression 
adjusted for age, sex, one to eight principal components, 
education status, marriage status, sports habit, drinking 
habit, smoking habit, body mass index, family history of 
hyperlipidemia, and a family history of diabetes. General-
ized estimating equations (GEE) were performed to ana-
lyze repeat measurement data and have robustness against 
deviations from normality. This method can also be used to 
analyze continuous or binary data, is insensitive to missing 
values, and considers the intraindividual correlation between 
measurements [58, 59]. Hence, we used multivariate gen-
eralized estimating equations (GEE) regression to examine 
longitudinal relationships between HDL-C and LDL-C and 
HbA1c, fasting glucose, and diabetes. A two-tailed test p 
value < 0.05 was regarded as statistically significant. Bonfer-
roni correction was made (p value was multiplied by 6) for 
avoiding type 1 error resulting from multiple comparisons 
(2 traits × 3 outcomes = 6). Observational analyses were per-
formed with SAS version 9.4 software, and Mendelian ran-
domization analyses were performed on Plink version 1.90 
and R version 3.5.1 using the “MendelianRandomization” 
and “MRPRESSO” packages.

Table 1   General characteristics 
of the initial Taiwan Biobank 
cohort

a Values are expressed as the mean ± standard deviation (SD)
b BMI body mass index, WHR waist-hip ratio, HDL-C high-density lipoprotein cholesterol, LDL-C low-
density lipoprotein cholesterol, TC total cholesterol, HbA1c glycated hemoglobin

All participants (n = 25,171) Cohort 
participant 
(n = 10,570)

Age (year)a 48.87 ± 11.06 50.04 ± 10.73
Sex (male, n (%)) 12,667 (50.32%) 4959 (46.92%)
Education
 Below high school graduate 3180 (12.64%) 1665 (15.77%)
 College graduate or below 7370 (29.30%) 3459 (32.76%)
 Above college graduate 14,607 (58.06%) 5435 (51.47%)

Married 21,798 (86.67%) 8460 (80.11%)
Sport habit (yes, n (%)) 10,303 (40.96%) 4723 (44.70%)
Drinking habit (yes, n (%)) 2521 (10.02%) 740 (7.00%)
Smoking habit (yes, n (%)) 2612 (10.38%) 984 (9.31%)
BMI (kg/m2)a 24.34 ± 3.70 24.25 ± 3.56
Body fat rate (%)a 27.21 ± 7.36 27.52 ± 7.34
WHRa 0.87 ± 0.07 0.87 ± 0.07
Blood lipid profile (mg/dL)a

 HDL-C 52.90 ± 13.09 53.32 ± 13.02
 LDL-C 120.90 ± 31.69 121.52 ± 31.89
 TC 193.56 ± 35.51 194.12 ± 35.61
 TG 116.88 ± 90.78 117.37 ± 88.27

Diabetes (yes, n (%)) 2,176 (8.64%) 976 (9.23%)
HbA1c (%)a 5.73 ± 0.80 5.76 ± 0.79
Fasting glucose (mg/dL)a 96.32 ± 20.93 96.71 ± 20.19
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Data and resource availability

Summary data of HDL-C and LDL-C GWAS were used 
in our study is available at the AGEN consortium website 
(https://​blog.​nus.​edu.​sg/​agen/​summa​ry-​stati​stics/​lipids/). 
Summary data (effect size and SE) of HbA1c, fasting glu-
cose, and diabetes is available in Tables E1–E6.

Results

Participants

The distribution of the demographic characteristics for the 
study population is presented in Table 1. A total of 25,171 
participants were enrolled from the Taiwan Biobank in 
a cross-sectional analysis and 10,570 participants were 
included in a cohort study. The median follow-up period was 
3.35 years (range 2.85–3.88 years), and the number of inci-
dent diabetes was 976 in the cohort study. The average age 
of all participants in the cross-sectional study was 48.89 ± 
11.06 years old, men accounted for 50.32%, and the average 
BMI was 24.34 kg/m2. The average values of HDL-C, LDL-
C, TC, and TG were 50.9, 120.9, 193.56, and 116.88 mg/dL, 
respectively. In the cohort study, participants were younger, 
had lower BMI, there were fewer males, and higher values 
of HDL-C, LDL-C, TC, and TG.

Cross‑sectional study and cohort study

After adjusting for age, sex, first eight ancestry principal 
components, education status, marriage status, smoking 
habit, drinking habit, sports habit, BMI, family history of 
diabetes, and family history of hyperlipidemia, a negative 
association between HDL and HbA1c (βHDL-C = − 0.0051, 
p < 0.0001), and a positive association between LDL-C 
and HbA1c was observed (βLDL-C = 0.0004, p = 0.0046). 
When we adjusted for the same covariates, HDL-C 
(βHDL-C = − 0.131, p < 0.0001) and LDL-C (βLDL-C = − 0.01, 
p = 0.0136) were negatively associated with fasting glucose. 
Furthermore, we adjusted for the above covariates to exam-
ine the association between HDL-C, LDL-C, and diabetes. 
We found that HDL-C (ORHDL-C = 0.961, p < 0.0001) and 
LDL-C (ORLDL-C = 0.992, p < 0.0001) were negatively asso-
ciated with diabetes. In Multivariate GEE models for the 
cohort study, we observed similar results, where HDL-C 
had a protective effect on HbA1c (β = − 0.006, p < 0.0001), 
fasting glucose (β = −  0.14, p < 0.0001) and diabetes 
(OR = 0.967, p < 0.0001). LDL-C revealed a negative rela-
tionship with diabetes (OR = 0.99, p < 0.0001), and had no 
association with HbA1c (β = 0.0002, p = 0.4814) and fasting 
glucose (β = − 0.011, p = 0.0587). The results are presented 
in Table 2.

Table 2   Association between HDL-C and LDL-C and diabetes, HbA1c and fasting glucose in Taiwan biobank cohort using multivariate logistic 
regression, multivariate linear regression and multivariate generalized estimating equations regression

Prevalent diabetes: 2176 diabetes; incident diabetes: 976 diabetes
HbA1c glycated hemoglobin, OR odds ratio, C.I. confidence interval, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipopro-
tein cholesterol
a Adjusted age, sex, PC1-8, education status, marriage status, sport habit, smoking habit, drinking habit, family history of diabetes, family history 
of hyperlipidemia and BMI

Traits Prevalent diabetes HbA1c Fasting glucose

ORa 95%C.I p-value βa 95%C.I p-value βa 95%C.I p-value

Cross-sectional study: multivariate logistic regression and linear regression
 HDL-C 0.961 (0.957, 0.966)  < 0.0001 − 0.0051 (− 0.0060, − 

0.0043)
 < 0.0001 − 0.1305 (− 0.1524, − 

0.1087)
 < 0.0001

 LDL-C 0.992 (0.991, 0.994)  < 0.0001 0.0004 (0.0001, 0.0007) 0.0046 − 0.0101 (− 0.0180, − 
0.0022)

0.0122

Traits Incident diabetes HbA1c Fasting glucose

ORa 95%C.I p-value βa 95%C.I p-value βa 95%C.I p-value

Cohort study: Mul-
tivariate general-
ized estimating 
equations (GEE) 
regression

 HDL-C 0.967 (0.960, 0.973)  < 0.0001 − 0.0061 (− 0.0072, 
− 0.0049)

 < 0.0001 − 0.1400 (− 0.1701, 
− 0.1099)

 < 0.0001

 LDL-C 0.990 (0.988, 0.991)  < 0.0001 0.0002 (− 0.0003, 0.0006) 0.4814 − 0.0111 (− 0.0226, 0.0004) 0.0587

https://blog.nus.edu.sg/agen/summary-statistics/lipids/
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Instrumental variables

In our study, we calculated the F value to evaluate the 
strength of the IVs. F values for IVs of HDL-C were 102.02 
to 103.98 and F values for IVs of LDL-C were 13.29 to 
13.96, respectively. The F values of all IVs were greater than 
10, indicating that the strength of IVs was sufficient. The 
detailed information was shown in Tables E1–E6.

One sample Mendelian randomization analyses

In assessment of one-sample MR using individual-level 
data for causal association between HDL-C and LDL-C 
and HbA1c, fasting glucose and diabetes, we found that 
HDL-C was causally associated with HbA1c (βIVW = − 0.11, 
p = 0.05), fasting glucose (βIVW = − 3.67, p = 0.02) and dia-
betes (βIVW = − 0.02, p = 0.03), and there was no evidence 
between LDL-C and HbA1c, fasting glucose and diabetes.

Two sample Mendelian randomization analyses

We conducted a two-sample MR to examine the causal-
ity between HDL-C and LDL-C and HbA1c, fasting glu-
cose, and diabetes. We found that the increase in HDL-C 
caused a decrease in the HbA1c value (βIVW = − 0.098, 
p = 0.003), and the increase in LDL-C led to an increase 
in HbA1c (βIVW = 0.213, p = 0.034), as shown in Fig. 3 and 
Table E8. For fasting glucose, we found that neither HDL-C 
nor LDL-C had a significant causal effect on the value of 

fasting glucose, as shown in Fig. 4 and Table E9. In addition, 
we detected that higher HDL-C (βIVW = − 0.532, p = 0.002) 
reduced the risk of diabetes, but there was no genetic effect 
of LDL-C on the risk of diabetes in Fig. 5 and Table E10.

Sensitivity analyses

In our study, we applied the weighted median, MR-
PRESSO, MBE, and contamination mixture method to 
check the robustness of the results from the IVW method 
and the intercept of the MR-Egger method to inspect the 
horizontal pleiotropy. We found that the effects of HDL-C 
on HbA1c in all methods had consistent negative direc-
tions, and all four sensitivity analyses were consistent. 
The effect of LDL-C on HbA1c in all methods had the 
same direction, but only the IVW, MR-PRESSO and 
contamination mixture methods had positive causal rela-
tionships (βIVW = 0.213, p = 0.034; βMR-PRESSO = 0.213, 
p < 0.001; βcontamination mixture method = 0.216, p = 0.034), 
as shown in Fig. 3 and Table E8. For fasting glucose, 
although HDL-C had the same direction in all MR meth-
ods, there was no causal association for IVW methods 
(βIVW = − 0.856, p = 0.387). In sensitivity analyses, the 
results of MBE and the contamination mixture method 
for the associations between HDL-C and fasting glu-
cose were significant (βmode-based = − 5.331, p = 0.044; 
βcontamination mixture method = − 3.782, p = 0.004). The asso-
ciation between LDL-C and fasting glucose had no causal 
relationship, except for using the MR-PRESSO method 

aMR-Egger intercept test for pleiotropy for HDL p-value=0.273
bMR-PRESSO global test for for pleiotropy for HDL p-value=0.985
cMR-Egger intercept test for pleiotropy for LDL p-value=0.910
dMR-PRESSO global test for for pleiotropy for LDL p-value=1.000

a

b

c

d

Fig. 3   The association between high-density lipoprotein cholesterol and low-density lipoprotein cholesterol and HbA1c using Mendelian rand-
omization analyses
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(βMR-PRESSO = 2.718, p = 0.002). These results are shown 
in Fig. 4 and Table E9. The causal relationship between 
HDL-C and diabetes was estimated in the same direction 
in all methods, but LDL-C was not associated with diabe-
tes in Fig. 5 and Table E10. After Bonferroni correction, 

we observed that HDL-C still has a causal association with 
diabetes.

When we used SNPs as IVs that were related to other 
lipid profiles (criteria 2), we observed similar results 
between HDL-C and HbA1c (βIVW = − 0.020, p = 0.002) 

a

b

c

d

aMR-Egger intercept test for pleiotropy for HDL p-value=0.157
bMR-PRESSO global test for for pleiotropy for HDL p-value=0.227
cMR-Egger intercept test for pleiotropy for LDL p-value=0.789
dMR-PRESSO global test for for pleiotropy for LDL p-value=1.000

Fig. 4   The association between high-density lipoprotein cholesterol and low-density lipoprotein cholesterol and fasting glucose using Mendelian 
randomization analyses

aMR-Egger intercept test for pleiotropy for HDL p-value=0.143
bMR-PRESSO global test for for pleiotropy for HDL p-value=0.989
cMR-Egger intercept test for pleiotropy for LDL p-value=0.451
dMR-PRESSO global test for for pleiotropy for LDL p-value=0.999

a

b

c

d

Fig. 5   The association between high-density lipoprotein cholesterol and low-density lipoprotein cholesterol and diabetes using Mendelian rand-
omization analyses
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and diabetes (βIVW = − 0.129, p < 0.001), but the effects 
were attenuated. The causal association between HDL-C 
and fasting glucose (βIVW = −  0.623, p = 0.006) was 
observed in this sensitivity analysis. The causal asso-
ciation between LDL-C and diabetes (βIVW = − 0.108, 
p = 0.03) was observed and the results were shown in 
Tables E11–E13.

In addition, we did not find any horizontal pleiotropy of 
IVs in any blood lipid profile by the intercept test of the 
MR-Egger regression test and the MR-PRESSO global test 
(p > 0.05). The results of pleiotropy and heterogeneity were 
shown in Table E14. Besides, there was no evidence that the 
causal estimation was affected by a single SNP in the leave-
one-out analysis (Figure E4).

Discussion

To date, this is the first two-sample MR analysis to examine 
the causality between HDL-C, LDL-C, and HbA1c. Besides, 
few MR studies have explored the relationship between lipid 
profile and three outcomes of HbA1c, fasting glucose, and 
diabetes concurrently in Asian ancestry. In our study, we 
found that HDL-C had strongly negative causality with 
HbA1c and diabetes with the IVW method and all sensitiv-
ity analyses.

The results between observational studies and MR studies 
might have conflicting findings due to reverse causation and 
confounding. We aimed to overcome the limitation by using 
the MR approach and to provide evidence as to whether 
HDL-C and LDL-C were causally associated with HbA1c, 
fasting glucose, and diabetes. We observed evidence that 
the HDL-C levels had a causal association with HbA1c and 
diabetes in one-sample MR, and two-sample MR. Our find-
ings were robust and consistent across different MR methods 
and various sensitivity analyses. LDL-C was not causally 
associated with HbA1c, fasting glucose, and diabetes in all 
methods and sensitivity analyses, and the results were not 
varying by statistical adjustment.

Up to now, few studies have explored genetically deter-
mined associations between lipid profiles and fasting glu-
cose. A Dutch study found that higher levels of HDL-C 
were causally associated with lower levels of fasting glucose 
using two-sample MR analysis [16]. Inconsistent causality 
between LDL-C levels and fasting glucose had been found, 
where a European MR study indicated increased 1 mmol/L 
LDL-C would decrease 0.09 mmol/L fasting glucose [18]. 
Similar to our findings, an Indian study reported that the 
genetically predicted levels of LDL-C were not causally 
associated with the levels of fasting glucose [17]. Compared 
with other MR findings, we considered the diversity between 
each ethnic group, differences in SNP numbers, varying SNP 

selection criteria, or sample size might cause inconsistent 
results.

Previous MR studies have reported that higher levels of 
HDL-C and LDL-C were causally associated with a lower 
risk of diabetes using over one hundred IVs in European 
ancestry [19, 20]. An MR study using two large commu-
nity-based studies (including UK Biobank) and independent 
case–control studies found a consistent result that demon-
strated increased HDL-C and LDL-C levels would decrease 
the risk of diabetes [21]; furthermore, similar results using 
univariable MR analysis and multivariable MR analysis indi-
cated that HDL-C was negatively associated with the risk 
of diabetes, but LDL-C did not have causal association with 
diabetes [22]. In line with our results, a recent MR study 
among Africans showed that genetically predicted HDL-C 
was associated with a decreased risk of diabetes, and a posi-
tive association between genetically predicted LDL-C and 
diabetes was also found [23]. An MR study from Danish 
populations demonstrated that the reduction of HDL-C 
levels would increase the risk of diabetes [24], but another 
Danish study showed no evidence between HDL-C and dia-
betes [25]. Further consistent results were observed between 
LDL-C and diabetes in previous MR studies where both 
studies found that decreased levels of LDL-C were causally 
associated with increased risk of diabetes [18, 26].

The development of diabetes involves several pathogenic 
processes, including �-cell dysfunction, insulin deficiency, 
and insulin resistance. These factors can cause an increase 
in insulin-mediated glucose production in the liver and a 
reduction in the uptake of insulin-mediated glucose pro-
duction in skeletal muscle and adipose tissue, leading to 
hyperglycemia and then the development of diabetes [7, 
60]. Prediabetes is defined as glycemic variables higher than 
a normal statement but lower than the diabetic threshold 
and plays an important role in the development of diabe-
tes. Recent studies have also demonstrated the importance 
of the association between prediabetes, heart failure, and 
cardiovascular disease [61, 62]. Some studies have pointed 
out that HDL-C may directly influence glucose metabolism 
[13, 63]. There is evidence that HDL-C inhibits caspase 3 
cleavage and blocks the harmful effect of LDL-C to directly 
protect �-cells [64]. Another study reported that HDL-C, 
LDL-C, and TC regulate the function and survival of �-
cells and that HDL-C has antiobesity and insulin-sensitizing 
effects [65]. Moreover, a few studies have demonstrated that 
increasing HDL-C can be used as a treatment for diabetes 
[66, 67]. The influence of HDL-C on pancreatic �-cells and 
skeletal muscle cells in mice was discovered in this study, 
and an elevation of HDL-C in humans was associated with 
a reduction in blood glucose levels [67]. These associations 
might provide evidence for dyslipidemia contributing to pre-
diabetes or diabetes. In addition, cholesterol ester transfer 
protein (CETP) is mainly related to the transfer of lipids 
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in the plasma. It promotes the conversion of HDL to very 
low-density lipoprotein cholesterol (VLDL) and LDL in 
exchange for reverse-transported triglyceride (TG) [68]. In 
other words, CETP inhibitors not only decrease LDL-C but 
also increase HDL-C [66]. As mentioned above, the use of 
CETP inhibitors will increase HDL-C levels and decrease 
LDL-C levels, as well as affect glucose metabolism. There-
fore, CETP inhibitors might not only treat dyslipidemia but 
regulate glucose metabolism as well. The underlying mecha-
nism needs to be verified in the future.

We observed that the effect of HDL-C on HbA1c and 
fasting glucose was inconsistent in our study. The diagnose 
criteria for diabetes were based on fasting plasma glucose 
(FPG) or 2-h plasma glucose (2-h PG) value during a 75-g 
oral glucose tolerance test (OGTT), or HbA1c [69]. FPG is a 
relatively convenient and inexpensive method, but its disad-
vantages are that patients need to fast for 8 h, and FPG value 
will be affected by large diurnal variations, stress, or acute 
diseases [70]. HbA1c level is a stable and consistent indica-
tor because it reflects blood glucose concentrations over the 
past eight to twelve weeks [71]. As a result, we speculated 
that these reasons might have led to our inconsistent results, 
and we believed that the result of HbA1c was more robust 
than fasting glucose.

Our study has several limitations. First, the Taiwan 
Biobank enrolls participants voluntarily, so there may be a 
problem of selection bias. However, the participants them-
selves were not informed of their genotypes and there was 
no significant difference in the ratio of men to women (men: 
50.32%, women: 49.68%), so the problem of selection bias 
was reduced. Second, we did not perform multivariable 
MR because there were no common variants in HDL-C and 
LDL-C after strict exclusion criteria, however, we did not 
observe pleiotropy of IVs by MR-Egger intercept test and 
MR-PRESSO global test. Third, medication could not be 
taken into account in the analysis of our study, since the 
TWB did not collect information on drug use for diabetes (or 
high blood glucose, including insulin), so we were unable to 
obtain such information on treatment for patients. Finally, 
because the proportion of participants with type 1 diabetes 
was low (2.5%), we did not eliminate them from our study. 
We assumed that the small number of people with type 1 
diabetes would not affect our findings.

There were several strengths in our study. First, there is no 
two-sample MR literature to discuss the causality between 
HDL-C, LDL-C and HbA1c in the Asian ancestry popula-
tion. As genetic effects on disease should be different by 
race or ancestry, establishing such specific evidence is very 
important to understand the etiology by different genetic 
backgrounds. Second, the results of Mendelian randomiza-
tion studies are often influenced by linkage disequilibrium 
(LD), horizontal pleiotropy, and population stratification. 
We removed SNPs with a strict criterion of LD ( r2 ≥ 0.1 ) in 

our study. Third, we selected the genetic variants as instru-
mental variables (IVs) with strict criteria (excluded variants 
associated with other lipid traits) so that there was no pleiot-
ropy effect in our study. Fourth, we adjusted the population 
stratification in all analyses by principal component analy-
sis. Fifth, we used the large GWAS consortium from Asian 
countries and an F value > 10 when selecting the IVs. Sixth, 
we used five sensitivity analyses and the Bonferroni correc-
tion method to elevate the robustness of our results. Finally, 
we conducted a cohort study to enhance our findings.

Conclusion

Our results support the hypothesis that an increase in HDL-C 
is causally related to a lower level of HbA1c and a lower risk 
of diabetes in Asian ancestry. It is necessary to investigate 
the mechanism of HDL-C’s effects on HbA1c in the future.
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