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Abstract
Purpose Fibrosis is the only histological feature reflecting the severity and prognosis of nonalcoholic steatohepatitis (NASH). 
We aim to explore novel genes associated with fibrosis progression in NASH.
Methods Two human RNA-seq datasets were downloaded from the public database. Weighted gene co-expression network 
analysis (WGCNA) was used to identify their co-expressed modules and further bioinformatics analysis was performed to 
identify hub genes within the modules. Finally, based on two single-cell RNA-seq datasets from mice and one microarray 
dataset from human, we further observed the expression of hub genes in different cell clusters and liver tissues.
Results 7 hub genes (SPP1, PROM1, SOX9, EPCAM, THY1, CD34 and MCAM) associated with fibrosis progression 
were identified. Single-cell RNA-seq analysis revealed that those hub genes were expressed by different cell clusters such 
as cholangiocytes, natural killer (NK) cells, and hepatic stellate cells (HSCs). We also found that SPP1 and CD34 serve as 
markers of different HSCs clusters, which are associated with inflammatory response and fibrogenesis, respectively. Fur-
ther study suggested that SPP1, SOX9, MCAM and THY1 might be related to NASH-associated hepatocellular carcinoma 
(HCC). Receiver operating characteristic (ROC) analysis showed that the high expression of these genes could well predict 
the occurrence of HCC. At the same time, there were significant differences in metabolism-related pathway changes between 
different HCC subtypes, and SOX9 may be involved in these changes.
Conclusions The present study identified novel genes associated with NASH fibrosis and explored their effects on fibrosis 
from a single-cell perspective that might provide new ideas for the early diagnosis, monitoring, evaluation, and prediction 
of fibrosis progression in NASH.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) currently affects 
about 25% of the global population and is likely to become 
the leading cause of end-stage liver disease in the coming 
decades, with nearly a quarter of NAFLD patients progress-
ing to NASH [1]. As a progressive inflammatory phenotype 
of NAFLD, NASH is closely associated with hypertension, 

obesity, dyslipidemia, type 2 diabetes and metabolic syn-
drome, and its progression involves multiple pathogenic 
pathways [2–4].

Fibrosis is an important concern in the NASH field and a 
major determinant of patient clinical outcomes [5–8]. Pro-
gressive fibrosis reflects the ongoing regrowth of repeated 
useless liver frameworks, and these defective liver regrowth 
increases the risk of cirrhosis and primary liver cancers [9]. 
Apart from lifestyle interventions, more and more treat-
ment options are expected to be used to limit fibrosis and 
NASH. As a peroxisome proliferator-activated receptor 
agonist, Lanifibranor improves NASH by regulating metab-
olism, inflammation, and fibrogenesis [10]. In addition, 
GLP-1 RAs is considered a promising treatment option for 
NASH and deserves further investigation [11, 12]. How-
ever, it is also necessary to find new biomarkers, therapeu-
tic targets, and ideas for fibrosis progression in NASH and 
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NASH-associated HCC. As a common bioinformatics analy-
sis method, WGCNA can effectively explore the relationship 
between genes and clinical characteristics. The significant 
advantage of WGCNA is that it links sample characteristics 
with changes in gene expression by clustering genes into 
co-expression modules so as to identify modules related to 
phenotype, and finally identify genes in disease pathway for 
further verification [13].

In this study, we aimed to identify susceptibility modules 
and genes associated with fibrosis. We used two RNA-seq 
datasets from the Gene Expression Omnibus (GEO) data-
base to select gene expression data associated with NASH. 
The GEO database is an international public repository, 
which provides valuable high-throughput microarray and 
next-generation sequence functional genomic datasets that 
can be downloaded free of charge in a variety of formats 
and for further integration analysis [14]. WGCNA was used 
to construct gene co-expression network, select important 
modules, and screen hub genes through protein–protein 
interaction (PPI) network. Single-cell RNA-seq analysis was 
integrated to observe the expression of hub genes in different 
cell clusters and we further analyzed whether these genes 
are involved in the malignant progression of NASH based 
on another microarray dataset.

Materials and methods

Data download and processing

The framework of this study was shown in Fig. 1. Two RNA-
seq datasets (GSE135251 and GSE162694), one microarray 
dataset (GSE164760), and two single-cell RNA-seq datasets 
(GSE166504 and GSE182365) were systematically extracted 
from the GEO database (Supplementary file 1). The data-
sets we selected were described in Table 1. GSE135251, 
GSE162694 and GSE164760 were sequenced from human 
liver tissues, while GSE166504 and GSE182365 were from 
mice fed with high fat diet. The clinical characteristics of 
the human samples were described in the datasets upload-
er's articles [15–17]. GSE135251 included 51 NAFL, 155 
NASH and 10 controls. GSE162694 comprised of 31 normal 
and 112 NASH liver tissues. We selected gene expression 
and clinical information related to NASH in GSE135251 
and GSE162694 to prepare for further analysis. One out-
lier sample (548nash100) was removed by cluster analysis 
(Supplementary file 2). Finally, 155 NASH samples from 
GES135251 and 111 NASH samples from GSE162694 
were identified. We used the ClusterProfiler R package to 
perform gene symbol conversion on the downloaded counts 
data [18]. According to the suggestions of WGCNA, we 
processed the data with variance-stabilizing transformation 
and logarithmic transformation, screening out the top 5000 

genes of variance variation in NASH samples respectively 
for WGCNA analysis.

WGCNA analysis and identification of modules

We used WGCNA R package to construct a co-expression 
network for the top 5000 genes mentioned above [13]. 
Firstly, the R function pickSoftThreshold was used to cal-
culate soft threshold power from 1 to 20. Secondly, hierar-
chical clustering and dynamic tree cut package were used to 
divide modules (abline = 0.25). Thirdly, correlation between 
module eigengenes and clinical traits was analyzed to iden-
tify modules of interest. Finally, excluding the grey mod-
ules that did not cluster successfully, we selected modules 
in two networks that are significantly positively correlated 
with fibrosis progression.

PPI network construction and hub genes

The common genes within the modules were displayed by 
Venn diagram. To further understand the biological func-
tions of common genes, ClusterProfiler R package was used 
for Gene Ontology (GO) enrichment, and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analysis as 
well as ReactomePA R package was used for Reactome path-
way analysis [19–21]. GO annotations include biological 

Fig. 1  Flow diagram of this study
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processes (BP), molecular functions (MF), and cellular 
components (CC). We presented the results of the top ten 
BP analysis, all KEGG and Reactome pathway analysis. 
Adjusted P < 0.05 indicates significant differences. We 
also used the STRING database to construct PPI network 
for overlapping genes and imported data with interaction 
score > 0.4 (medium confidence) into Cytoscape 3.8.2 soft-
ware for visualization [22, 23]. Finally, CytoHubba and 
MCODE plugins were used to analyze the functional mod-
ules of PPI network and identify hub genes. CytoHubba 
plugin obtained top ten genes through MMC algorithm. 
MCODE plugin parameters were set as follows. Degree 
cut-off: 2, node score cut-0.2, cut-style: haircut, K-core: 2, 
Max. Depth: 100. Pearson’s correlation coefficient was used 
to evaluate correlations between hub genes.

Integrating single‑cell RNA‑seq analysis based 
on hub genes

Based on another dataset GSE166504, single-cell sequenc-
ing results of hepatocytes and liver non-parenchymal cells 
(NPC) in mice, we selected NPC during high-fat feeding 
and analyzed them using Seurat R package with default set-
tings (Supplementary file 3) [24]. At the same time, we also 
performed cluster analysis on HSCs from high-fat fed mice 
in another dataset GSE182365 to observe gene expression 
in different cell clusters (Supplementary file 4). Combined 
with the CellMarker database and relevant literature, cell 
clusters were annotated [25–28].

Expression of hub genes in different liver tissues

GSE164760 is a human RNA-seq dataset including normal, 
cirrhotic, adjacent non-tumor NASH, and NASH-associ-
ated HCC liver tissues. Based on GSE164760, we further 

analyzed whether it was involved in NASH-HCC transfor-
mation. ROC analysis was performed using the R software 
package pROC to evaluate their accuracy in predicting HCC 
according to the expression of differential genes [29]. We 
also used the human protein atlas (HPA) database to com-
pare differences at protein levels of corresponding genes 
(paired by antibody, sex, and age). HPA is a protein database 
which is committed to providing tissue and cell distribu-
tion information of a variety of human proteins and provides 
free public inquiries [30]. Finally, consensus clustering was 
performed for 53 NASH-associated HCC to compare the dif-
ferences between different subtypes. Consensus Clustering, 
a common approach to the classification of cancer subtypes, 
allows for the discovery of new disease subtypes or compar-
ative analysis of different subtypes by dividing samples into 
several subtypes based on different omics datasets [31]. The 
potential KEGG signaling pathway of HCC was explored by 
GSVA analysis [32]. The comparison between groups was 
performed by limma [33]. Benjamini & Hochberg was used 
for multiple comparison correction and adjusted P < 0.05 
was considered statistically significant (Supplementary file 
5).

Results

WGCNA and module identification

The top 5000 genes in NASH samples were selected to con-
struct the co-expression network. According to the principle 
of scale-free network, 3 was selected as the soft threshold 
of network 1 and network 2 (scale free R^2 is 0.93 and 0.95 
respectively) (Fig. 2a, b). Network 1 (from GSE135251) and 
Network 2 (from GSE162694) were divided into 11 mod-
ules respectively (Fig. 2c, d). We associated the models with 

Table 1  Description of each dataset

GEO data Platform Total samples Description

GSE135251 GPL18573 (Homo sapiens) Control (10) + NAFL (51) + NASH (155) 216 snap frozen liver biopsies, comprising 206 
NAFLD cases with different fibrosis stages and 
10 controls

GSE162694 GPL21290 (Homo sapiens) Normal liver histology (31) + NASH (112) mRNA-sequencing of NASH patients of various 
fibrosis stages

GSE164760 GPL13667 (Homo sapiens) Health (6) + cirrhotic (8) + NASH (74) + adja-
cent non-tumor NASH (29) + NASH-associ-
ated HCC (53)

53 NASH-associated HCC, 29 adjacent non-tumor 
NASH and 74 NASH liver samples were ana-
lyzed, as well as 6 healthy livers and 8 cirrhotic 
livers

GSE166504 GPL19057 (Mus musculus) NPC (chow/15 weeks/30 weeks) + hepatocytes 
(chow/15 weeks/30 weeks/34weeeks)

Mice were fed a chow diet for 15 weeks, a high-
fat high-fructose diet (HFHFD) for 15, 30 and 
34 weeks

GSE182365 GPL19057 (Mus musculus) Hepatocytes (chow/HFHSD) + stellate cells 
(chow/HFHSD)

Two pairs of mice (one Pair fed a chow, one pair 
fed a high-fat-and-high-sucrose diet (HFHSD) 
for 17 weeks)
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fibrosis stage of NASH, looking for models that were most 
significantly associated with fibrosis progression (Fig. 2e, 
f). Excluding grey module (fail to cluster), we selected 
positive modules with P < 0.01 in NASH F4 and performed 
BP analysis on them. The blue module (GSE162694) is 
associated with the extracellular matrix, the red module 
(GSE162694) with immune inflammation, and the brown 
module (GSE135251) with both (Supplementary file 6).

PPI network construction and functional annotation

There are 234 common genes, and a PPI network was con-
structed (Fig. 3a, b). According to BP, these genes are mainly 
involved in external encapsulating structure organization, 
extracellular structure organization and extracellular matrix 
organization (Fig. 3c). Based on KEGG pathway analysis, 
our results showed that these genes are mainly involved in 
wnt signaling pathway, extracellular matrix (ECM)-receptor 
interaction and viral protein interaction with cytokine and 
cytokine receptors (Fig. 3d). Reactome pathway analysis 
showed that these genes are mainly related to extracellu-
lar matrix organization (Fig. 3e). These results suggested 

that these genes mainly participate in fibrosis repair during 
NASH development.

Hub genes in each fibrosis stage

The results of CytoHubba and MCODE were intersected to 
obtain seven hub genes (SPP1, PROM1, SOX9, EPCAM, 
THY1, CD34 and MCAM) (Fig. 4a). As we can see, there 
is a good correlation between hub genes, and the correlation 
is highly consistent in the two datasets (Fig. 4b). The line 
chart also showed an upward trend (Fig. 4c, d) (Supplemen-
tary file 5).

Hub genes in different liver NPC clusters from mice

Based on the expression of lineage-specific markers, we 
identified B cells, conventional dendritic cells (cDCs), 
cholangiocytes, cycling cells, endothelial cells, HSCs, 
hepatocytes, Kupffer cells, monocyte-derived mac-
rophages (MDMs), NK cells and Plasmacytoid  den-
dritic  cells  (pDCs) (Fig.  5a). As we can see, SPP1, 
PROM1, SOX9 and EPCAM are highly expressed in chol-
angiocytes, THY1 is in NK cells, and CD34 is in HSCs 

Fig. 2  WGCNA analysis (a, b) Scale-free fit index in network 1 and 
2 (x-axis is soft threshold power, y-axis is signed R^2). (c, d) Clus-
tering dendrogram of genes (visual comparison of modules based on 

dynamic tree cutting). (e, f) Heatmaps of correlation between module 
eigengenes and clinical traits
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Fig. 3  PPI network of common genes and functional annotation (a) 
Venn diagrams of overlapping genes. (b) PPI network (Arranged by 
degree, the high degree (dark color) is in the center of the circle). 

(c) Bar chart of BP analysis results. (d, e) Bubble diagram of KEGG 
and Reactome analysis results
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(especially in late period), while MCAM is not specifi-
cally expressed (Fig. 5b). The total expression of these 
hub genes increased gradually in NPC apart from MCAM 
(Fig. 5c).

Hub genes in different HSCs clusters from mice

HSCs is the main source of ECM [34]. Through the cluster-
ing of HSCs from mice during high-fat feeding, we divided 
seven HSCs clusters (Fig. 6a, b). Cluster 7 is the mixed 
cholangiocytes based on annotation, which expresses most 
markers of cholangiocytes and has a small number of cells. 
We found that SPP1 and CD34 are markers of cell cluster 2 
and 5, respectively (Fig. 6c). According to the BP analysis 
of their respective markers of cluster 2 and 5, they may have 
different biological functions. Cluster 2 expresses various 
cytokines, chemokines and receptors and is mainly involved 
in inflammation (Fig. 6d). Cluster 5 is mainly associated 
with extracellular matrix formation (Fig. 6e).

Correlation between hub genes 
and NASH‑associated HCC

We further analyzed whether these hub genes were also 
involved in NASH-HCC transformation through another 
human dataset GSE164760. Four hub genes, SPP1, SOX9, 
MCAM and THY1, showed significant differences between 
NASH and NASH-associated HCC tissues, suggesting that 
they are likely to be associated with NASH-HCC, while 
no differences were observed in PROM1, EPCAM and 
CD34 (Fig. 7a). At the same time, ROC analysis indicated 
that the high expression of these differential genes (SPP1, 
SOX9, MCAM and THY1) can well predict the occur-
rence of HCC (Fig. 7b). Finally, we verified differences at 
protein levels using the HPA database. The results showed 
that the protein levels of these four genes in tumor tissues 
were higher than those in normal tissues (Fig. 7c). Taken 
together, these four genes play an important role in the 
transformation of NASH to HCC.

Fig. 4  Expression of hub gens in different fibrosis stages (a) Algo-
rithm of CytoHubba and modules of MCODE. (b) Visualization of 
correlation between hub genes in different datasets. (c, d) Line charts 

of fibrosis stages (false discovery rate was used for multiple compari-
son correction in Deseq2, *adjusted P < 0.05; **adjusted P < 0.01; 
***adjusted P < 0.001)
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Comparison of different NASH‑associated HCC 
subtypes

Through consensus clustering, it was found that 53 NASH-
associated HCC samples from GSE164760 could be 
roughly divided into 2 subgroups (C1 and C2), which was 
well illustrated by PCA analysis (Fig. 8a, b). Compared 
with C1, 96 up-regulated pathways and 14 down-regulated 
pathways were found in C2 (Fig. 8c). Among them, these 
pathways are mostly related to metabolism (Fig. 8d). The 
expression of SOX9 was significantly downregulated in 
C2, while SPP1 and THY1 only showed a downward trend 
(Fig. 8e).

Discussion

NAFLD is represented by nonalcoholic fatty liver (NAFL) 
and NASH. Compared with NAFL, NASH progresses more 
rapidly in fibrosis, which can lead to cirrhosis and HCC 
[7, 34, 35]. Fibrosis is the only histological feature that 
can predict NASH clinical outcome and more and more 
noninvasive biomarkers are being attempted to reflect the 
severity of fibrosis [36–39]. In this study, we performed 
WGCNA on NASH samples from datasets GSE135251 and 
GSE162694, respectively, identified the modules of interest, 
and obtained 234 overlapping genes after intersection. BP 
analysis showed that, 234 overlapping genes are enriched 

Fig. 5  Single-cell RNA-seq analysis of liver NPC from mice during high-fat feeding (a) t-SNE visualization of liver NPC clusters. (b) Violin 
plot of hub genes expression in liver NPC clusters. (c) Dot plot of total expression of hub genes at 15, 30 and 34 weeks during high-fat feeding



1386 Journal of Endocrinological Investigation (2022) 45:1379–1392

1 3

Fig. 6  Single-cell  RNA-seq analysis of HSCs from mice during 
high-fat feeding (a) Umap visualization of HSCs clusters. (b) Heat-
map based on the top five markers of each cluster. (c) Violin plot of 

hub genes expression in HSCs clusters. (d, e) Circle diagrams of BP 
enrichment results of cluster 2 and 5
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in several biological terms, including external encapsulat-
ing structure organization, extracellular structure organi-
zation and extracellular matrix organization, confirming 
their association with NASH fibrosis progression. The 
most prominent KEGG and Reactome pathways are ECM-
receptor interaction and extracellular matrix organization, 
respectively. NASH is associated with sustained activation 
of chronic HSCs (from stationary vitamin A-rich cells to 
fibrogenic, hyperplastic, and pro-inflammatory cells), result-
ing in accumulation of ECM and gradual replacement of 

liver parenchyma by fibrous tissue [5, 6, 34]. Taken together, 
these results suggested that these overlapping genes are well 
involved in the progression of NASH fibrosis.

Based on these overlapping genes, we constructed a PPI 
network and identified seven hub genes (SPP1, PROM1, 
SOX9, EPCAM, THY1, CD34 and MCAM) through 
Cytoscape plugins. According to single-cell RNA-seq analy-
sis of hub genes, we found that they are expressed primarily 
in different cell clusters such as cholangiocytes, NK cells, 
and HSCs. NAFLD with cholestasis is characterized by 

Fig. 7  Expression of hub genes in different liver tissues (a) mRNA 
expression of hub genes in normal, cirrhotic, adjacent non-tumor 
NASH, and NASH-associated HCC liver tissues (**adjusted 

P < 0.01). (b) ROC analysis to evaluate expression of differential 
genes in predicting HCC. (c) Immunohistochemical staining of SPP1, 
SOX9, MCAM and THY1 in normal and HCC liver tissues
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ductal inflammation, bile duct loss and swelling and bile 
duct hyperplasia, and more prone to bridging fibrosis and 
cirrhosis [40]. Cholangiocytes injury is an important fac-
tor to reflect the severity of NAFLD [41, 42]. At the same 
time, persistent biliary fibrosis can create an environment of 
liver tissue that promotes regeneration of hepatocytes [43]. 
SPP1 is located on human chromosome 4 and encodes a 

protein called osteopontin (OPN), OPN is closely related 
to chronic liver disease and involved in liver steatosis, 
inflammation, and fibrosis [44, 45]. A clinical trial found 
that serum OPN level increased progressively with the pro-
gression of NAFLD fibrosis [46]. SOX9 is a transcription 
factor involved in ECM production during liver fibrosis, 
which regulates the wnt pathway and its downstream target 

Fig. 8  Difference between NASH-associated HCC subtypes (a) con-
sensus clustering to divide subtypes. (b) PCA diagram of NASH-
associated HCC samples. (c) Volcanic map of differential KEGG 

pathways. (d) Bar chart to show the top 50 most significant pathways. 
(e) Expression of SPP1, SOX9, MCAM and THY1 in C1 and C2



1389Journal of Endocrinological Investigation (2022) 45:1379–1392 

1 3

protein OPN [47, 48]. PROM1 is considered as a marker of 
endothelial progenitor cells, hematopoietic stem cells and 
other stem cells and participates in the expansion of cholan-
giocytes known as the ductular reaction [49, 50]. PROM1 
also has a strong correlation with the expression of biliary 
fibrosis related genes, such as KRT19 and COL1A1 [51]. 
It was found that HSCs expressing stem/ progenitor cell 
marker PROM1 exist in the liver, show the characteristics 
of progenitor cells, and participate in the process of liver 
injury and fibrosis [52]. EPCAM is a type I transmembrane 
glycoprotein, which is also a marker of cholangiocytes [26, 
53]. It is involved in a variety of biological processes such as 
cell adhesion, signal transduction, migration and prolifera-
tion [53]. In the mouse model of alcoholic hepatitis, silenc-
ing EPCAM can inhibit liver fibrosis and HSCs prolifera-
tion [54]. CD34 is considered a marker of microvascular 
formation [55]. In this study, we found that the expression 
of CD34 was significantly increased in HSCs during high-
fat feeding. HSCs is the main source of ECM. When the 
liver is damaged, HSCs is activated and transformed into 
fibroblasts to participate in liver fibrosis and reconstruction 
of intrahepatic structure [34]. Our results suggested that 
CD34 is likely to influence the formation of NASH fibro-
sis by participating in the activation of HSCs. A study also 
found that CD34 positive microvessels were more common 
in areas with higher fibrosis and significantly associated with 
fibrosis in NASH [56]. As an important regulator of cell–cell 
and cell–matrix interactions, THY1 plays an important role 
in nerve regeneration, inflammation, metastasis, and fibro-
sis [57]. Through the single-cell analysis of liver NPC in 
high-fat diet-induced mice, we found that THY1 is a marker 
of NK cells. NK cells usually have anti-fibrosis properties 
including killing activated HSCs by IFNγ and inducing 
HSCs apoptosis by expressing death receptor ligands [58]. 
NK cells also help clear senescent activated HSCs to reduce 
fibrosis [59]. However, there have been no studies linking 
THY1 to NASH fibrosis, but THY1 has been shown to be 
involved in fibrosis formation in a mouse model of choles-
tatic liver injury, and a bioinformatics study has found that 
THY1 may be a potential key regulator of NAFLD progres-
sion [60, 61]. MCAM is an adhesion molecule of immu-
noglobulin superfamily [62]. Cell adhesion molecules are 
excellent biosensors with specific contributions to the liver, 
including leukocyte recruitment, cell differentiation and sur-
vival, matrix remodeling or angiogenesis, and are unique 
anti-fibrosis therapeutic targets [63]. Interestingly, we found 
that the total expression of MCAM was decreased in liver 
NPC, which may be because we did not consider the influ-
ence of liver parenchymal cells and MCAM may only be 
activated in specific cell clusters. Together, we discovered 
that the expression of these hub genes may be involved in the 
progression of fibrosis and verified them from a single-cell 
perspective. However, the progression of NASH fibrosis is 

affected by a variety of clinical characteristics (age, gender, 
diabetes, etc.), and the effect of these factors on gene expres-
sion remains to be further explored [64–66].

HSCs are the central driver of fibrosis in liver injury [58]. 
Based on the cluster analysis of HSCs in another dataset, we 
found that SPP1 and CD34 are highly expressed on cluster 2 
and 5, respectively. Further BP analysis of clusters 2 and 5 
suggested that they might be closely related to the progres-
sion of fibrosis. Cluster 2 is closely associated with inflam-
mation, showing leukocyte chemotaxis and the release of 
cytokines and receptors. HSCs need to strictly regulate auto-
crine and paracrine crosstalk to rapidly respond to changes 
in extracellular matrix content [67]. Cytokines are important 
for the initiation and duration of HSCs activation, causing 
ECM production and contractility, respectively [68]. In 
addition, cluster 5 showed the properties of myofibroblasts 
(activated HSCs), participating in the formation of hepatic 
fibrosis and reconstruction of intrahepatic structure through 
proliferation and secretion of extracellular matrix.

Finally, NASH has resulted in a dramatic increase in HCC 
prevalence [34]. We found that SPP1, SOX9, MCAM and 
THY1 were differentially expressed in NASH and NASH-
associated HCC, suggesting that these four genes are 
involved not only in NASH fibrosis, but also in the malignant 
progression of NASH. In addition, further studies suggested 
that SOX9 may be associated with changes in metabolism-
related aspects in NASH-associated HCC. However, this 
study also has some limitations. Firstly, due to the absence of 
clinical characteristics of the samples, we could not exclude 
the influence of clinical confounding factors on the expres-
sion of these genes that might be involved in the progression 
of fibrosis. Similarly, we did not correct these factors in ROC 
analysis for predicting the occurrence of HCC. Secondly, 
we did not explore whether these genes are associated with 
other forms of fibrosis, so it is not clear whether they share a 
common pathway. Finally, we also need to further verify the 
role of these hub genes in the progression of NASH through 
molecular biology experiments in the future.

Conclusion

To investigate the association of gene expression with 
NASH fibrosis, WGCNA and single-cell RNA-seq analysis 
were used. Finally, we found seven related hub genes (SPP1, 
PROM1, SOX9, EPCAM, THY1, CD34 and MCAM), and 
single-cell RNA-seq analysis showed that cholangiocytes 
seemed to play an important role in NASH fibrosis. Fur-
ther studies suggested that SPP1 and CD34 were highly 
expressed in different clusters of HSCs which perform 
different functions. Further studies suggested that SPP1, 
SOX9, MCAM and THY1 were associated with NASH-
associated HCC, and that SOX9 may be related to changes 
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in metabolism-related pathways between different subtypes 
of HCC.
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