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Abstract
Cadmium (Cd), a highly toxic heavy metal, is found in soil, environment and contaminated water and food. Moreover, 
Cd is used in various industrial activities, such as electroplating, batteries production, fertilizers, while an important non-
occupational source is represented by cigarette smoking, as Cd deposits in tobacco leaves. Since many years it is clear a 
strong correlation between Cd body accumulation and incidence of many diseases. Indeed, acute exposure to Cd can cause 
inflammation and affect many organs such as kidneys and liver. Furthermore, the attention has focused on its activity as 
environmental pollutant and endocrine disruptor able to interfere with metabolic and energy balance of living beings. Both 
in vitro and in vivo experiments have demonstrated that the Cd-exposure is related to metabolic diseases such as obesity, 
diabetes and osteoporosis even if human studies are still controversial. Recent data show that Cd-exposure is associated with 
atherosclerosis, hypertension and endothelial damage that are responsible for cardiovascular diseases. Due to the large envi-
ronmental diffusion of Cd, in this review, we summarize the current knowledge concerning the role of Cd in the incidence 
of metabolic and cardiovascular diseases.
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Introduction

Cadmium (Cd) is a nonessential heavy metal purified for the 
first time in 1817 by Friedrich Stromyer[1]. In nature, it is 
found mainly associated with other ores to form many inor-
ganic salts (i.e., CdS,  CdCl2,  CdSO4,  CdCO3) [2]. The ability 
to constitute various compounds makes Cd a useful element 
for industries employed in electroplating (estimated around 
83%), alloy production, pigments, production of nickel-
Cd batteries and fertilizers. Moreover, Cd is contained in 
cigarettes, as it accumulates in tobacco leaves, and in soil, 
leading to contamination of water and food, such as cereals, 
grain and potatoes [2, 3]. The wide spread presence of this 

element has brought researchers to evaluate its level of toxic-
ity and, nowadays, Cd (Cas no: 7440-43-9) is classified as a 
highly toxic metal and, thus, hazardous to human health by 
the International Agency for Research on Cancer [4] which 
has included Cd in group I of human carcinogens along with 
other chemical substances such as formaldehyde, benzene 
and nickel [5]. Moreover, as already described for other pol-
lutants, it has an endocrine disruptor activity [6] due to its 
ability to interfere with hormonal homeostasis by binding 
to the receptors or altering intracellular pathways [7]. Con-
sidering the high rate of Cd gathering, it is not surprising 
that the onset of several serious illnesses is linked with Cd 
accumulation, since its well-described pro-inflammatory and 
carcinogenic effect, cell damage induction, that culminate in 
cell death either by apoptosis or necrosis, with consequent 
tissue inflammation and fibrosis [8]. Hence, Cd can affect 
the kidneys, liver, lung, pancreas, testis, placenta and bone 
(Fig. 1). Moreover, this metal is related with cardiovascular 
and metabolic diseases (i.e., obesity, diabetes, osteoporosis) 
and impaired reproduction activity [9–12].

Due to the large environmental diffusion of Cd, the aim of 
this review is to potentially clarify the correlation between 
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Cd exposure and pathological risks of some metabolic dis-
eases in humans.

Cadmium tolerability, absorption 
and excretion

The current tolerable level of Cd exposure appears to be 
25 μg/kg body weight per month (62 μg/day for a 70-kg per-
son) [13]. Its toxic effects depend on both length and route 
of exposure, that could be acute (i.e., single exposure at high 
doses) or chronic (i.e., repeated exposure at low doses) [14], 
but it might also differ due to the impairment of the daily 
system of excretion [15]. Individuals can uptake Cd through 
inhalation and ingestion [2] and it is then transported from 
the absorption site through the blood to the body organs. In 
blood stream, it is found mainly in blood cells but also in 
plasma where it tightly binds to both high molecular mass 
proteins such as albumin and low molecular mass molecules 
such as the metallothionein (MT) [16, 17]. However, Cd has 
a long half-life (20–40 years), leading to its accumulation 
in body organs, mainly in the kidneys, for many years [18]. 
The accumulation, that could be irreversible, depends on the 
specific organ. In particular, it has been established that the 
liver (1–3 mg/kg) and, mostly, the kidneys (12–40 mg/kg) 
are the body districts with highest Cd level concentration 
since these two organs express large amounts of MT, known 
to establish tight bindings with this metal, as discussed ear-
lier [2]. The accumulation of Cd is due to constant exposure 
to it, in particular, it has been reported that smokers have 

about three times more Cd in their bodies than non-smokers 
[19, 20].

Cadmium as Endocrine disruptor

The expression Endocrine Disruptors (EDs) indicates a 
number of chemicals with a specific effect on the endocrine 
system interfering with the receptor-mediated hormone 
activity [21]. Thus, EDs may cause the alteration of cel-
lular metabolism leading to long-term and harmful effects. 
EDs are substances of natural origin or man-made products 
including over 350 synthetic compounds such as insecticides 
(i.e., dichlorodiphenyltrichloroethane DDT and metabolites, 
pyrethroids), herbicides (i.e., atrazine, nitrofen), fungicides 
(i.e., zineb, ziram), pharmacological agents (i.e., bisphenol 
A—BPA), chemicals such as the plasticizers polybromi-
nated diphenyl ethers (PBDEs) and polychlorinated biphenyl 
(PCB) [22–27], dioxins, dioxin-like compounds, phthalates 
and heavy metals as lead, mercury and Cd [22]. Due to this 
peculiarity, there is a rising concern about Cd effect on the 
endocrine system since it has been demonstrated that this 
heavy metal might mimic the activity of natural hormones 
such as estrogens and androgens leading to the activation of 
specific signaling pathways [7] or blocking the interaction of 
these hormones with their natural receptors [28, 29].

Cadmium and the thyroid

A thyrotoxicity, leading to either hyper- or hypothyroidism, 
due to Cd exposure, alone or in combination with other EDs, 

Fig. 1  Schematic representation of the environmental sources of Cd and Cd exposure-related diseases
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has been described in both animal and human studies. In par-
ticular, this metal might alter serum hormone levels such as 
thyroxine (T4), triiodothyronine (T3) and thyroid stimulat-
ing hormone (TSH) [30]. Moreover, Cd has also been linked 
to structural damage of thyroid tissue leading to hypertrophy 
or hyperplasia [31–33]. Interestingly, some recent data by 
Chung and colleagues suggest a sex gender-specific correla-
tion between Cd exposure and thyroid dysfunction, reporting 
a male-related hypothyroidism in a Korean population [34].

Estrogen activity of Cadmium

Interestingly, Cd is described as a metalloestrogen due to 
its ability to bind the estrogen receptor (ER), replacing the 
natural estrogen steroid hormone and affecting the homeo-
stasis of estrogen responsive tissues [35]. A frequent over-
expression of ERs and/or overexposure to estrogens may 
lead to the progression of neoplastic breast epithelium [36]. 
Considering the estrogen-like activity of Cd, its role in the 
development of breast cancer has been evaluated in many 
studies [37, 38]. Our group demonstrated that Cd can bind to 
and interfere with ER intracellular pathways in MCF7 breast 
cancer cells contributing to cancer progression by stimulat-
ing cell proliferation [7]. Moreover, in the same cell line, low 
levels of Cd enhanced cancer cells’ adaptability and their 
malignancy [39]. Another study reported that long-term 
Cd exposure led to invasion and migration of human breast 
cancer cells by inducing the TG-interacting factor-matrix 
metalloproteinase-2 (TGIF-MMP2) signaling pathway [40]. 
In conclusion, put together these data describe how Cd expo-
sure can contribute to breast cancer incidence.

Androgen activity of Cadmium

It has been established that androgens are strong promot-
ers of prostate cancer cells proliferation (PC) and there 
is growing evidence about the role of Cd exposure in PC 
incidence [41, 42]. This has been observed both in in vitro 
models, in LNCaP human prostate cells expressing the 
androgen receptor (AR), thus androgen sensitive, and in 
animal studies. In particular, it has been demonstrated 
that Cd might mimic androgens by binding the AR and 
acting on both cell growth stimulation [43–45] and gene 
expression modulation [46]. Moreover, it might induce an 
acquisition of apoptotic resistance in malignant transfor-
mation in LNCaP cells and in other cell lines such as the 
primary adenocarcinoma 22Rv1 and CWR-R1 [47] and 
in the benign prostatic hyperplasia-1 cells (BPH1) [48]. 
Despite a recent study reporting that animals exposed to 
low doses of Cd during gestational stage had histopatho-
logical damages in adulthood, without significant changes 
in prostate weight, cell proliferation or alteration in hor-
mone levels [49], experiments on adult castrated animals 

(mice and rats) have demonstrated contradictory results 
[50]. Similar data obtained in 2002 by Martin and col-
leagues demonstrated that animals treated with T propi-
onate, a PC promoter in rodents, or with Cd, increased 
prostate glands and seminal vesicle complex wet weight 
of in a similar manner. Moreover, this effect was blocked 
using an anti-androgen compound, strongly demonstrating 
that the effect of Cd was mediated by AR [45] and further 
indicating that Cd is involved in PC progression likely for 
its androgen-like activity.

Obesogenic effect of Cadmium

Obesity is a multifactorial, metabolic chronic disease 
characterized by an excess of adipose tissue, and nowa-
days it represents an important health issue with global 
diffusion [51, 52]. This pathological condition is marked 
by several and complex clinical manifestations, leading 
to a significant increase in the risk of developing chronic 
metabolic consequences such as type 2 diabetes mellitus 
(T2DM), cardiovascular diseases (CVD), cancers, altera-
tions of musculoskeletal metabolism [53, 54]. Recently, 
attention has been focused on the environmental pollut-
ants able to interfere with metabolic and energy balance 
of living beings, including humans. However, data from 
human studies on the interaction between Cd exposure 
and obesity, diabetes mellitus and bone diseases are still 
controversial [2, 11].

Interestingly, a correlation between Cd exposure and the 
incidence of obesity has been hypothesized and this heavy 
metal, along with other EDs (i.e., DDT, heavy metals, pthta-
lates, PBDEs), is included in the group of factors that might 
increase the incidence of obesity through various mecha-
nisms such as increasing the number and the size of fat cells, 
altering endocrine homeostasis, modifying appetite and 
satiety processes regulation, shifting insulin sensitivity and 
metabolism rate [11, 55]. The main mechanism triggered 
by EDs appears to be the peroxisome proliferator-activated 
receptor γ (PPAR-γ), a regulatory gene of pre-adipocyte pro-
liferation and adipocytes differentiation [56–60]. Moreover, 
several other intracellular targets and pathways have been 
described as potential factors [60–62] often acting in a gen-
der-specific manner [63]. In experimental animal models, 
an early exposure to EDs alters pluripotent mesenchymal 
cells differentiation, favoring the adipocyte lineage [57] and 
gestational exposure increases the risk of juvenile obesity in 
the next generation [64].

Even if the mechanism is not completely clear, it appears 
that Cd might lead to obesity likely through epigenetic modi-
fications, altering adipose tissue physiology and metabolic 
profile [11, 52].
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Clinical studies

Due to the preclinical data, several studies have evaluated 
a potential correlation between Cd exposure and obesity in 
humans as well, with contradictory results.

A study demonstrated that indigenous women of Torres 
Strait Island (Australia) revealed a significant direct correla-
tion between urinary Cd (UCd) levels and increase in waist 
circumference (WC) [65].

Padilla et al., used the National Health and Nutrition 
Examination Survey (NHANES) 1999–2002 data to ana-
lyze 3816 participants and evaluate the correlation of Cd 
exposure with either BMI or WC. The analysis showed a 
direct correlation between BMI, WC and UCd levels. In par-
ticular, the regression models reported that the level of Cd 
was inversely associated with the anthropometric indices of 
obesity. However, when the analysis was restricted to ado-
lescents (6–18 years of age) or to adults (≥ 19 years), the 
association in adolescents was not significant [66]. Notably, 
blood Cd (BCd) levels significantly correlated with BMI in 
T2DM patients [67].

A cross-sectional SPECT-China study on 5544 adults 
found that BCd levels were negatively associated with the 
prevalence of overweight [68]. Equally interesting are the 
results Skalnaya et al. where they analyzed the correlation 
between BMI and Cd content in hair. The study examined 
1229 people (719 women and 510 men) showing how BMI 
was positively correlated with high Cd content in women’s 
hair, while no significant alteration of Cd concentration in 
males’ hair was observed [69]. Moreover, a study performed 
on 65 Obese Egyptian Children (11–14 years of age) that 
followed a diet rich in antioxidants and micronutrients, 
showed how BMI reduction was associated with a significant 
reduction in UCd levels, suggesting that a proper diet might 
reduce the toxic effects of heavy metals in obese children, 
likely controlling body weight increase [70].

Moreover, NHANES (1999–2011) data were recov-
ered from 6602 American children, adolescents and adults 
(6–19 years of age). Here, a negative association between 
Cd [Odds Ratio (OR) 0.46; 95% Confidence Interval (CI) 
0.33–0.64; P < 0.001)] and obesity was observed. This asso-
ciation was strongest among the 6–12-year-old children [71].

Interestingly, a recent study established the association 
between prenatal Cd exposure and obesity in children. First 
trimester maternal blood samples recorded in the Newborn 
Epigenetics Study (NEST) were collected, analyzed for the 
presence of Cd and then cross-analyzed with the weight gain 
course of children up to 5 years of age. The analysis showed 
that the presence of Cd in maternal blood during pregnancy 
was associated with an increased risk of juvenile obesity in 
the offspring, independently from all other variables, further 
indicating that Cd could be considered as a potential human 
obesogenic factor [64].

Another interesting result supporting the role of Cd as 
potential obesogenic factor is the result reported by Jiang 
and colleagues who used UCd as biomarker for Cd long-
term exposure considering the NHANES data (2007–2012). 
The authors evaluated the potential correlation of Cd expo-
sure with overweight/obesity as a risk of pre-diabetes among 
adults (n = 3552; > 20-year-old) demonstrating that over-
weight/obesity status might significantly increase the Cd-
related predisposition to develop-diabetes with higher risk 
in male adults [72].

Noor et al., obtained data from NHANES (2001–2014; 
n = 3982; 20– < 80 years old) about UCd levels adjusted for 
creatinine using spot urine samples and evaluated them in 
quintiles (Q). In the general population, higher UCd levels 
were associated with a reduction in the odds of additional 
obesity (adj. OR for Q5 versus Q1: 0.5; 95% CI: 0.3–0.7). 
When stratified by gender, both men and women looked at 
similar reduced odds of additional obesity [men (adj. OR for 
Q5: 0.4; 95% CI: 0.2–0.7) and women (adj. OR for Q5: 0.5; 
95% CI: 0.3–0.8)] [73]. Another stratified analysis by smok-
ing status, found higher Cd concentrations in smokers com-
pared to the overall study population. Moreover, among the 
non-smokers group, the researchers found significant inverse 
associations between UCd and central obesity (adj. OR for 
Q5 versus Q1: 0.4; 95% CI: 0.3–0.7) [73].

However, other studies have failed to identify any sig-
nificant association between BCd levels and excessive body 
weight [74–77]. Correspondingly, a study based on data 
from the 2008–2010 Korean National Health and Nutritional 
Examination Survey (n = 4522, aged ≥ 20 years), showed no 
significant relationship between BCd and body fat [78]. In 
addition, no effect of obesity on hair Cd levels was found 
in a healthy population of the Canary Islands[79] and in 
the Korea National Health and Nutrition Examination Sur-
vey 2010–2013 [80]. Equally, a cross-sectional analysis of 
adult males in Poland (250 overweight/obese and 61 normal 
weight) with and without Metabolic Syndrome (MS) identi-
fied no association between BCd and obesity [81].

As a result, all data suggest that between Cd levels and 
the overweight/obesity condition, both negative and positive 
correlations may exist, or Cd may have no significant impact 
on weight gain. According to Tinkov et al., the contradiction 
among the results of these studies could be due to differ-
ences in Cd exposure levels in different parts of human body 
(urine, hair, nails) [11].

In vivo studies

The first study performed in an experimental animal model 
showed that oral Cd administration (9.7 mg/L) for 6 weeks 
did not lead to an increase in BMI and adipocytes size, but 
significantly increased serum glucose and insulinemia, due 
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to a reduction (~ 50%) of both number and density of insulin 
receptors in target cells [82].

In a consequent study, healthy female rats were ran-
domly divided into three groups with a daily Cd oral dose 
(1–0.25 mg/kg weight), 5 days a week, for 6 weeks show-
ing that the high-dose group had a lower body weight than 
the control group [83] and similar data were obtained more 
recently by Singh et al. [84]. Likewise, Treviño demon-
strated that Cd increased insulin release, and altered both 
glycemic and lipid metabolism, without influencing body 
weight [85].

MT is known to have protective effects against the tox-
icity of heavy metals such as Cd. One of the first studies 
by Kawakami et al., showed that the administration of Cd 
(0–0.75 mg/kg weight per day) for 7 days, reduced the size of 
adipocytes in MT-null mice and it modulated the expression 
of some adipokines, such as adiponectin, leptin and resistin 
[86]. Furthermore, after Cd exposure, the gene expression 
of the monocyte chemoattractant protein-1 (MCP-1), which 
has a role in the recruitment of macrophages into adipose 
tissue, increased in the white adipose tissue (WAT). When 
mice were not exposed to Cd, the adipocyte recovered its 
size in 6 weeks, but the expression of adiponectin and leptin 
remained at low levels. In addition, it was suggested that the 
reduction of the size of the adipocytes by Cd could derive 
from an imbalance between lipid synthesis and lipolysis 
[86].

Another study evaluated the effects of subchronic expo-
sure (10 weeks) in mice with low doses of Cd (10 mg/L) on 
energy metabolism and intestinal microbiome [87]. Expo-
sure to Cd caused a significant increase in liver GluT2, glu-
cokinase, carbohydrate responsive element binding protein 
(Chrebp) and pyruvate kinase mRNA. There was also an 
increase in hepatic triacylglycerols (TG), serum free fatty 
acid (FFA) and TG levels. Moreover, the alteration of the 
intestinal microbiome led to an increase in serum lipopoly-
saccharide (LPS). LPS caused liver inflammation through 
the elevation of interleukin-1β (IL-1β), tumor necrosis fac-
tor α (TNFα) and interleukin-6 (IL-6) mRNA. Therefore, 
this study indicated that sub-chronic Cd exposure caused 
the deregulation of energy metabolism and altered the gut 
microbiome composition in mice [87].

More recently, Green et al., confirmed also in zebrafish 
that Cd increases lipid accumulation, leading to obesity. The 
zebrafish prenatal exposure to Cd showed a significantly 
higher lipid accumulation compared to the unexposed con-
trols. Zebrafish that were followed until sexual maturity 
exhibited reduced lipid accumulation [64].

In vitro studies

Early in vitro studies showed that the adipocytes exposed 
to Cd were characterized by an increase in the formation 

of carbon dioxide  (CO2) and in the rate of lipogenesis from 
glucose [88]. Subsequently, it was demonstrated that the 
exposure of 3T3-L1 fibroblasts to 10 and 25 μM of  CdCl2 for 
12 h led to a 5–6 times increase of the absorption of 2-deox-
yglucose or 3-O-methylglucose. Furthermore, the authors 
demonstrated that Cd-induced glucose uptake in adipocytes 
is related to impaired  Ca2+ signaling in place of insulin sign-
aling [89]. Another study showed how exposure of 3T3-L1 
fibroblasts to Cd (5–10 μM) increases glucose uptake medi-
ated by the modulation of GluT1 activity [90]. This result 
is sustained by another study that reported an increase in 
GluT4 activity [91, 92]. A subsequent study showed that 
adipocytes extracted from rats exposed subcutaneously to 
 CdCl2 (2 mg/kg weight—4 days) were characterized by a 
significant dose-dependent reduction in GluT4 both in terms 
of proteins and mRNA, while neither glucose transporter 
type 1 (GluT1) nor glucose transporter type 2 (GluT2) were 
affected [93].

The viability of 3T3-L1 adipocytes treated with Cd 
(30 μM for 24 h) was significantly decreased (28.3%) in a 
concentration-dependent manner. Hence, Cd disrupted mul-
tiple metabolic pathways [94]. Accordingly, another in vitro 
study in 3T3-L1 adipocytes showed that fat cells exposed 
to Cd presented a significant reduction in cell viability, in a 
dose-dependent manner, and a decrease of adiponectin and 
resistin expression. This demonstrated the toxicity of Cd 
[95].

Lee et al., demonstrated, for the first time, the capacity 
of Cd to inhibit preadipocyte 3T3-L1 differentiation. This 
effect was mediated by the downregulation of the expres-
sion of CCAAT-enhancer-binding protein alpha (C/EBPα) 
and PPAR-γ, two main adipogenic transcriptional activators. 
In addition, this study reported that exposure to 0.3–3 μM 
 CdCl2 resulted in a significant dose-dependent decrease in 
lipid accumulation in differentiating 3T3-L1 cells on the 
stage of preadipocyte differentiation. It was also specified 
that Cd exposure significantly altered the expression of adi-
pogenesis activators [96].

Levy et   al . ,  showed how exposure to Cd 
(0.01–0.1–1–10 mM) induced a dose-dependent reduction 
of leptin levels [97]. Accordingly, Kawakami described how 
the in vitro exposure of the adipocytes to Cd (0–100 M for 
6–48 h) induced a significant reduction in the expression 
of leptin, adiponectin and resistin, being associated with a 
reduced synthesis of fatty acids and lipid degradation medi-
ated by perilipine [86].

According to Planchart, laboratory studies clearly demon-
strated the correlation between Cd and adipose tissue. These 
data showed the anti-obesogenic activity of Cd in adult ani-
mals by promoting the release of lipids from the liver and 
adipose tissue, causing dyslipidemia. Conversely, prenatal 
exposure to Cd could increase the risk of lipid accumula-
tion [98].
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Cadmium and diabetes

T2DM is a metabolic chronic disorder with an increas-
ing incidence worldwide presenting, to date, an important 
issue of global diffusion [99].

The factors involved in this dramatic increase have been 
extensively studied to further understand and character-
ize possible prevention strategies. Taking into account the 
potential mechanisms that contribute to the development 
of the disease, recent studies have hypothesized a role of 
EDs, including Cd. It is in fact known that the pancreas, 
along with the kidneys and liver, is one of the organs with 
prominent Cd build-up. Thus, several studies have evalu-
ated the correlation between EDs and glucose metabolism 
alterations [100–102].

Clinical studies

Following preclinical results, clinical cross-sectional stud-
ies were performed showing a strong relationship between 
Cd, as measured with UCd and T2DM [2, 11].

These interesting data corroborated previous results by 
Lei et al., demonstrating that a long exposure to Cd could 
induce a reduction of serum levels of insulin and amylase, 
biomarkers of both endocrine and exocrine toxic effects 
[2, 103].

Moreover, Nie et  al., through multinomial logistic 
regression analysis demonstrated a positive correlation 
between pre-diabetes and BCd [68].

Tinkov et al., completed a meta-analysis regarding the 
risk of prevalence and incidence of diabetes and pre-dia-
betes, remarking the similarities and differences between 
the highest Cd exposure categories and the lowest intake 
categories. They used random-effect models to account for 
heterogeneity in specific study results, and they performed 
stratified analyses by diabetes or prevalence and incidence 
of pre-diabetes, type of sample (blood or urine), sex of the 
participants. Not all studies were adjusted for gender, age 
and smoke, but they performed stratified analyses for smok-
ers and non-smokers [11]. Two studies were accomplished in 
Europe (Sweden), three in America (United States and Mex-
ico) and six in Asia. ORs for prevalence of pre-diabetes and 
diabetes were 1.60 (95% CI 1.25–2.06) and 1.04 (95% CI 
0.99–1, 10), respectively, and the risk of diabetes incidence 
was 1.38 (95% CI 1.12–1.71) [11]. These analyses showed 
that the highest OR was observed in studies focused on UCd 
in both pre-diabetes prevalence and diabetes incidence, but 
not in diabetes prevalence. Higher risk of prevalent diabetes 
was found in men respect to females, while for diabetes inci-
dence studies women showed a higher risk of Cd exposure, 
however only one study was conducted in men [11].

A recent case–control study by Lei et al., (166 cases and 
427 controls), demonstrated the association between UCd 
and T2DM. Regression analysis data showed how UCd 
appeared to be a risk factor for T2DM (OR = 1.61, 95% CI: 
1.08–2.41) [104].

Guo et al., in a recent meta-analysis, despite the pres-
ence of heterogeneity among studies, showed an associa-
tion between Cd exposure and T2DM. The results showed a 
positive association between individual Cd levels and T2DM 
(OR = 1.27; 95% CI, 1.07–1.52) [105].

Another recent study was carried out on 2749 middle-
aged adults from the cross-sectional ELISABET survey 
to analyze the relationship between the levels of BCd and 
Hemoglobin A1c (HbA1c) separately in never-, previous- 
and current smokers. Even though the effects observed in the 
non-smoking population with low Cd exposure suggested 
that the risk attributable to this metal is not high, the impact 
of exposure to high Cd levels (such as occupational expo-
sure) on diabetes risk might be of concern [106].

Another recent study, involving 3140 adults from the 
Wuhan-Zhuhai cohort, explored a potential relationships 
between UCd, plasma C-reactive protein (CRP) and T2DM 
using multivariate logistic regression demonstrating that 
individuals with high levels of UCd and plasma CRP poten-
tially have a significant higher risk of T2DM [107].

In vivo studies

Studies performed on experimental animal models indicated 
that an acute and sub chronic Cd exposure induces a diabe-
togenic effect. Initial studies in early 1990, demonstrated 
that an acute exposure to Cd (intraperitoneal injection of 
Cd 0.84 mg/Kg weight) induced an increase in plasma glu-
cose levels in non-fasted rats [108]. Moreover, a Cd chronic 
exposure (oral gavage for 45 days) exhibited a significant 
elevation of fasting blood glucose levels [109] as well as in 
other studies which showed that a subcutaneous injection 
of Cd led to a compelling increase of blood glucose levels 
[110, 111].

Moreover, Lei et al., showed that an oral Cd administra-
tion (0, 50, 100, 200 mg/L) with water (30–60–90 days) pro-
moted a reduction of insulin levels both in mice treated with 
100–200 mg/L for 30 days and with 100 mg/L for 60 days. 
Also, Cd could be accumulated in the pancreas, inducing the 
alteration of genes and proteins, hence; this influenced the 
endocrine and exocrine functions [112, 113].

Edwards et al., using a model of chronic 8 weeks Cd 
exposure, demonstrated a notable increase in fasting blood 
glucose levels following, a reduction of serum insulin and an 
accumulation of Cd in the pancreas [114]. The latter was in 
agreement with Lei et al., who detected that Cd accumula-
tion in the pancreas caused changes in insulin genes expres-
sion. Therefore, it appears that Cd can influence insulin 
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biosynthesis, but not its secretion [111], suggesting a direct 
toxic effect of Cd on the pancreas [114] and an impairment 
of glucose homeostasis as recently suggested [115].

In vitro studies

Interestingly, old studies showed that pancreatic β-cells are 
targets of Cd toxicity. Yau and Mennear demonstrated that 
Cd significantly reduced insulin secretion and increased MT 
pancreatic concentration after 6 h of exposure [116]. Moreo-
ver, pancreatic β-cells isolated by mice after Cd-exposure, 
showed a reduction of insulin secretion in the presence of 
high glucose levels [109].

Muayed et  al., showed that pancreatic β cell line 
MIN6 accumulated Cd in a dose-dependent manner 
(0.1–1.0 μmol/L) and over time (over 72 h). Cd uptake led 
to a selective activation of MT and inhibition of glucose-
stimulated insulin secretion. Hence, Cd accumulation caused 
a functional impairment of β-cell function, but did not affect 
either cell viability or gene expression and did not induce 
oxidative stress [117].

Moreover, Cd-induced phophosphorylation of several 
kinases such as c-jun N-terminal kinases (JNK), extracel-
lular signal-regulated kinases (ERK) 1/2, and p38-mitogen-
activated protein kinase (MAPK), leading to pancreatic 
β-cell death by oxidative stress downstream-mediated by 
JNK activation triggering mitochondria-regulated apoptotic 
pathway [118].

The importance of oxidative stress was further confirmed 
by the demonstration that this pollutant decreased islets via-
bility along with an increase in the formation of both ROS 
and apoptosis markers. Interestingly, β-estradiol appears to 
have a protective role against Cd toxicity, in particular sug-
gesting a protective role for the Cd-induced β-cells damages 
[119].

Cadmium and bone and mineral metabolism

It is a known that too much exposure to Cd might affect bone 
mineral metabolism leading to skeletal alterations. In par-
ticular, osteoporosis is a skeleton metabolic disease charac-
terized by a reduction of bone strength leading to increased 
risk of traumatic and/or spontaneous fracture. The decrease 
in strength of bone tissue is caused by changes in its quan-
tity, in terms of reduction of bone mineral density, and its 
quality, in terms of alterations of the micro- and macro-
architecture of the bone [120].

Clinical studies

Interestingly, it has been established that prolonged exposure 
to Cd can induce skeleton fragility with higher fracture risk 

and high incidence of osteoporosis for both direct bone dem-
ineralization and renal dysfunction, even if critical exposure 
levels and underlying mechanisms are still unknown [2, 12, 
121, 122].

Likely, high Cd levels might induce greater urinary cal-
cium excretion and lack of vitamin D activation in the kid-
neys [123–125]. Furthermore, it is interesting to note that 
some recent published results also demonstrated that Cd 
exposure might alter parathyroid hormone (PTH) secretion 
likely linked to kidneys dysfunction [126–128]. Interest-
ingly, a recent study indicated that exposed workers had 
higher Cd concentration in serum and urine than controls 
subjects. Further, Cd exposed group had PTH, serum phos-
phorus and magnesium levels significantly lower vs control 
and, also, experienced musculoskeletal complaints, bone 
ache, joint pain and muscle spasm as compared to controls 
[126]. In addition, it also appears that, as demonstrated by 
some Authors, a potential gender-specific negative effect of 
Cd on PTH and skeletal metabolism [127, 128].

Moreover, several studies also identified a direct action 
of this ED on bone cells [125, 129, 130]. Akesson et al., 
demonstrated the negative effects of low-level Cd exposure 
on the bone; these effects could be caused by an increase in 
bone resorption, which intensified after menopause [130].

A recent study evaluated the association between cumula-
tive Cd intake and osteoporosis and fracture risk in a Chi-
nese population. The results indicated that a high level of 
cumulative Cd intake was associated with an increase in the 
rate of osteoporosis and fracture among women [131]. Fur-
thermore, another study showed that Cd chronic exposure 
during early childhood could affect bone remodeling and 
prepubertal growth [132].

In contrast, Li et al., found no positive association of 
prevalence of osteoporosis with Cd exposure. However, pos-
itive UCd interactions on the prevalence of osteoporosis for 
women and non-smoking women and the same interactions 
with BCd for men have been found [133]. In conclusion, 
according to Nordberg, there was an association between 
Cd exposure and the onset of osteoporosis. A correlation 
between UCd, BCd and osteoporosis was noticed. Moreover, 
it would seem that Cd accelerated resorption by promoting 
osteoclastogenesis and inhibiting osteogenesis.

In vivo studies

Female Wistar rats exposed to chronic Cd (1 mg Cd/l in 
drinking water for 24 months), showed a decreased minerali-
zation and determined an alteration in bone formation lead-
ing to deformity and fragility fractures [134]. Cd induced 
a decreased expression of Runt-related transcription factor 
2 (Runx2) and matrix proteins such as osteocalcin (OCN), 
type I collagenase(COL1a2), alkaline phosphatase [ALP 
(enzyme involved in the mineralization process)] [135] and 
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another study demonstrated how Cd chronic oral adminis-
tration (50 mg Cd/L for 3 months) produced marked abnor-
malities in bone biomarkers (OCN, ALP) and increasing risk 
of fracture [136].

In addition, an increase in fat has been found in the bone 
marrow, suggesting that Cd might also affect mesenchymal 
stem cells (MSCs) differentiation by stimulating adipogen-
esis at the expense of osteoblastogenesis [137].

A recent study showed that chronic Cd exposure directly 
acts on MSCs through receptor activator of nuclear factor 
(NF)-kB-ligand/osteoprotegerin (RANKL/OPG) pathway 
and down-regulates genes involved in osteogenic differ-
entiation of MSCs (COL1a2, Osteopontin, ALP, Osterix, 
and RUNX2) [138]. In accordance, He et al., demonstrated 
how Cd increases RANKL expression, but has a lower effect 
on OPG expression in bone marrow cells and bone tissue. 
Therefore, Cd favors the formation of osteoclasts in the bone 
tissue and accelerates the bone resorption. Furthermore, Cd 
has no significant effects on serum ALP activity [139].

In vitro studies

The observations in vivo, were supported by in vitro studies 
that showed how Cd increased RANKL expression and it 
might stimulate osteoclastogenesis [140, 141]. In addition, 
our group published results demonstrating that Cd-induced 
cell apoptosis and homeostasis by cytoskeletal disruption-
and by alteration of Wnt/β-catenin pathway, activation of 
caspases [142]. Further studies also suggested an increase 
in ROS [125, 143, 144].

Moreover, a recent study shows that Cd suppresses the 
osteogenesis from MSCs by inhibiting the Wnt/β-catenin 
pathway [145].

In conclusion, according to Nordberg, there was an 
association between Cd exposure and the onset of osteo-
porosis. A correlation between UCd, BCd and osteoporosis 
was noticed. Moreover, it would seem that Cd accelerated 
resorption by promoting osteoclastogenesis and inhibiting 
osteogenesis.

Cadmium and cardiovascular diseases (CVD)

Cardiovascular diseases (CVD) are a group of disorders that 
affect blood vessels and heart, and they represent one of the 
major causes of morbidity and mortality in the world. The 
risk factors for CVD include sedentary, unhealthy diet, fre-
quent consumption of alcohol, smoke and pollution [146]. 
The environmental distribution of Cd, its strong concentra-
tion in cigarettes, food and water and its effects even at vas-
cular level indicate that this metal correlates with CVD [11, 
147, 148]. The molecular mechanisms by which Cd exerts 
toxic effects in the cardiovascular tissues are associated with 

the induction of oxidative stress, indeed this metal can cause 
alteration of the endogenous antioxidant defense such as glu-
tathione peroxidase (GPx), catalase (CAT) and superoxide 
dismutase (SOD). Furthermore, Cd can indirectly induce 
ROS generation [149]. In particular, it can supply other met-
als, such as iron, in many proteins (i.e., Ferritin), by freeing 
unbound ions that may generate oxidative stress through 
Fenton reactions. Moreover, Cd can impair the mitochon-
drial electron chain transport and it can diminish the antioxi-
dant scavengers such as Glutathione (GSH), thus unbalanc-
ing the cellular redox state and, consequently, causing the 
production of ROS [150–152].

Clinical studies

Cd has been identified as a pro-atherogenic factor since it 
largely accumulates in carotid plaques with an increase of 
50 times in vulnerable plaques compared to blood levels 
or plaques where the rupture does not occur [9, 153, 154]. 
Moreover, epidemiological studies have shown that BCd 
level is associated with CVD mortality and carotid plaques 
prevalence in a Swedish population and with CVD risk in 
Korean men [155, 156]. Both longitudinal analyses and 
cross-sectional studies in a group of 64-year-old women 
have demonstrated a correlation between high concentra-
tion of UCd and BCd and plaques formation [157]. The sex 
gender specificity of Cd is currently unclear. Other studies 
reported that Cd accumulation is linked with an increase in 
macrophages content that is a hallmark of symptomatic and 
vulnerable carotid plaques [158, 159]. Moreover, a recent 
paper demonstrates an association between pollutants and 
carotid intima-media thickness (CIMT)in a Canadian popu-
lation sample [160]. However, BCd did not result as a pre-
dictor of juvenile CIMT in Indonesian young adults [161]. 
Bornè and colleagues in 2017 demonstrated that Cd accu-
mulation was associated with incidence of ischemic stroke, 
supporting that this element promotes the vulnerability of 
carotid plaques, by increasing the possibility of rupture 
and ischemic stroke [9]. Cigarette smoke is an important 
risk factor for CVD, and it is one of the main Cd sources 
and many studies tried to explain the Cd-related CVD inci-
dence [162–164]. Another study showed that both cigarette 
smoke and Cd produce vascular damage such as vascular 
plaque inflammation and vasomotor dysfunction[165]. More 
recently, the NHANES realized 5 cross-sectional studies 
including a random sample of the US population, demon-
strating that individuals with higher levels of BCd or UCd 
showed increased risks of, among the other disturbs, hyper-
tension, stroke, heart failure, myocardial infarction, and 
peripheral artery disease [166–169]. A follow-up study for 
16–19 years realized on a Swedish population-based cohort 
of 4304 middle-aged men and women, analyzed BCd levels 
to investigate the effect of smoking on CVD, demonstrating 
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that Cd may play a significant role in smoking-induced 
CVDs [170].

In vitro studies

In vitro studies have identified Cd as a pro-atherogenic factor 
with a cytotoxic effect in macrophages [3]. Our group has 
recently demonstrated that the in vitro exposure of endothe-
lial cells (HUVECs) to Cd modifies AR levels and affects 
pro-inflammatory signaling suggesting a role for this heavy 
metal in cell injury related to cardiovascular diseases, and 
this might partially explain the risk of prostate cancer due to 
this ED [6]. Another process caused by Cd is the endothe-
lial dysfunction, indeed it has been demonstrated that Cd 
increases vascular endothelial permeability, reduces nitric 
oxide (NO) production, inhibits endothelial cell prolifera-
tion, it can lead to the upregulation of Vascular Cell Adhe-
sion protein 1 (VCAM-1) expression level and induce apop-
tosis in endothelial cells [171].

In summary, these findings demonstrate a correlation 
between Cd exposure and CVD incidence, however further 
studies are needed to define the dose–response relationship 
and the possible existence of a specificity dependent on sex.

Future directions and conclusions

Cd is a heavy metal considered harmful for plants, and ani-
mals. Moreover, it is implicated in serious human illnesses 
such as metabolic diseases, osteoporosis, renal dysfunctions 
and CVDs. Equally important are the pro-inflammatory 
activity and the carcinogenic effect of this metal. The pres-
ence of Cd in soil, foods and human sources shows a great 
variability in the geographical distribution as demonstrated 
by many epidemiological studies [2]. It has been calculated 
that, to maintain the strong demand for Cd worldwide, the 
amount of the anthropic emission released into the atmos-
phere each year is approximately 30,000 t [172] and for 
example, every year the utilization of Cd pigments exceeds 
2500 t [173]. Hence, considering the dangerous effects of 
Cd exposition and its high diffusion for many years, there 
is a necessity to identify methods to mitigate Cd toxicity. In 
recent years, several regulations applied on Cd emissions 
have allowed to observe a decreasing trend on Cd release. In 
particular, European countries have recorded that in 2017 Cd 
level represented only the 35% of the same amount detected 
in 1990 [174]. To achieve this aim, a global strategy could be 
the mitigation of Cd in foods and it includes many steps. The 
first one concerns the crops, in particular it should be rec-
ommended to perform preventive measures such as avoid-
ing phosphate fertilizers, recording Cd uptake in the crop, 
selecting, prudentially, plant varieties with low Cd levels 
or doing tests on irrigation water. The second step involves 

industries; indeed, it should be borne by manufacturers who 
produce food equipment, and they should only use material 
with low Cd levels. The last step is in charge of consumers 
who should commit themselves to follow a healthy diet, for 
instance, by consuming foods that can protect against Cd 
toxicity [175]. Other strategies could be the employment 
of plants with a strong resistance to high concentration of 
heavy metals and able to realize a phytoremediation, known 
as hyper accumulators, or the use of compounds known 
to induce protective mechanisms in plants [176]. Indeed, 
despite plants having a strong antioxidant defence, this is 
effective only at low Cd concentration. In 2019, Mostofa and 
colleagues showed that treating rice seedlings with salicylic 
acid (SA) and sodium nitroprusside (SNP), that is a source 
of nitric oxide (NO), could support the defence against Cd 
toxicity. In particular, they reported that this treatment could 
restore plant growth and biomass, revive the colour, reduce 
leaf rolling and ameliorate the phenotypic appearance [177].

Since many years the potential role of chemical com-
pounds, both synthetic and natural, to counteract the det-
rimental Cd effects has been clear. Among synthetic mol-
ecules infliximab, a chimeric immunoglobulin 1 (IgG1) 
monoclonal antibody that targets TNF-a, has been shown 
to protect the testicular tissue of rats from the harmful 
effects of Cd, as it has antioxidant, anti-inflammatory and 
anti-apoptotic activity [178]. Among natural compounds, 
the antioxidants curcumin and tetrahydrocurcumin protect 
vascular endothelium by increasing NO bioavailability and 
improving vascular function in chronic Cd exposure [149].

Despite these findings, there is an urgency to develop new 
studies and research focused on reducing Cd amount to the 
minimum level to ameliorate health-related quality of life.
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