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Abstract
Purpose  Polycystic ovarian syndrome (PCOS) is a multi-faceted endocrinopathy frequently observed in reproductive-aged 
females, causing infertility. Cumulative evidence revealed that genetic and epigenetic variations, along with environmental 
factors, were linked with PCOS. Deciphering the molecular pathways of PCOS is quite complicated due to the availability of 
limited molecular information. Hence, to explore the influence of genetic variations in PCOS, we mapped the GWAS genes 
and performed a computational analysis to identify the SNPs and their impact on the coding and non-coding sequences. 
Methods  The causative genes of PCOS were searched using the GWAS catalog, and pathway analysis was performed using 
ClueGO. SNPs were extracted using an Ensembl genome browser, and missense variants were shortlisted. Further, the 
native and mutant forms of the deleterious SNPs were modeled using I-TASSER, Swiss-PdbViewer, and PyMOL. MirSNP, 
PolymiRTS, miRNASNP3, and SNP2TFBS, SNPInspector databases were used to find SNPs in the miRNA binding site 
and transcription factor binding site (TFBS), respectively. EnhancerDB and HaploReg were used to characterize enhancer 
SNPs. Linkage Disequilibrium (LD) analysis was performed using LDlink.
Results  25 PCOS genes showed interaction with 18 pathways. 7 SNPs were predicted to be deleterious using different 
pathogenicity predictions. 4 SNPs were found in the miRNA target site, TFBS, and enhancer sites and were in LD with 
reported PCOS GWAS SNPs.
Conclusion  Computational analysis of SNPs residing in PCOS genes may provide insight into complex molecular interac-
tions among genes involved in PCOS pathophysiology. It may also aid in determining the causal variants and consequently 
contributing to predicting disease strategies.
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Introduction

Polycystic ovarian syndrome (PCOS) is a multifactorial endo-
crine disorder with uncertain etiologies among reproductive-
aged females and is a frequent cause of infertility in women 
[1]. It is manifested by several endocrine disturbances such 
as chronic anovulation, hyperandrogenism characterized by 
frontal alopecia, acne and hirsutism, presence of multiple cysts 
in ovaries, and metabolic consequences including a high risk 
of obesity, insulin resistance, type 2 diabetes mellitus (T2DM) 
and cardiovascular diseases [2, 3] and psychological complica-
tions such as increased distress and depression [4]. Although 
not understood completely, this complex disorder is considered 
to be caused due to intricate interplay between various factors 
such as genetic and epigenetic predisposition, ethnicity, envi-
ronmental influences, and lifestyle [5]. It was also conferred 
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as an evolutionary paradox for impairing fertility in women 
without diminishing in disease prevalence. Earlier reports on 
evolutionary dynamics in PCOS encompass only females and 
not the male’s role in the genotype/phenotype distinction. As 
this disease is known to affect only females, yet males might be 
the carrier of PCOS linked features such as hyperandrogenism 
and may contribute to conserving the genetics predisposing to 
PCOS [6, 7]. Further, these factors can significantly influence 
the phenotypic complexity of the syndrome.

The pathophysiology of PCOS is relatively challenging 
due to the involvement of numerous pathways such as insulin 
signaling pathway, androgen synthesis, altered gonadotropin 
ratios, glucose, and lipid metabolism [8]. Despite the chal-
lenge of the multifaceted nature of PCOS, the heritable fac-
tors, including genes and their interaction, gene-environment 
relation, epigenetic modifications, alteration in proteins, and 
metabolites, have been reported through different approaches 
such as genomics, transcriptomics, proteomics, and metabo-
lomics to delineate the molecular pathomechanisms of PCOS 
[9]. Since the significant information in this complex endo-
crinopathy is inadequate; there is a prerequisite to integrate 
the data from Genome-Wide Association Study (GWAS) with 
in silico analysis.

A gene and its products are controlled by numerous mecha-
nisms that comprise interaction between various genes, path-
ways, and factors [10]. The most predominant form of genomic 
variation is Single-nucleotide polymorphisms (SNPs), where 
two substitute bases exist at a noticeable frequency in humans 
[11]. Researchers were accustomed to focusing on the SNPs in 
the coding region of the genome, particularly non-synonymous 
SNPs (nsSNPs), as they are expected to significantly change 
the function of encoded proteins [12]. Besides, the unpredicted 
discovery of the GWAS revealed that > 90% of disease-linked 
SNPs reside in the non-coding sequence, which is also respon-
sible for contributing to complex diseases [11], and confirms 
that SNPs can serve as a valuable biomarker to investigate the 
heritability that influences individuals to specific phenotype 
including diseases [10]. In the present study, we intended to 
determine the impact of SNPs in the selected GWAS genes 
using bioinformatics tools and evaluate their detrimental 
effects on the structure and function of a protein, miRNA con-
trollers, transcription factor binding elements, and enhancers, 
which may play a critical role in PCOS susceptibility and assist 
in delineating the precise pathomechanisms of PCOS.

Methods

Identification of genes involved in the pathogenesis 
of PCOS

A comprehensive literature screening was conducted using 
the GWAS catalog (https​://www.ebi.ac.uk/gwas/). A manual 

curation procedure was implemented using the search key 
term "polycystic ovary syndrome" to identify the causative 
genes at genome-wide significance (P < 5 × 10E−8) involved 
in PCOS pathogenesis.

Pathway interaction among PCOS genes

The identified PCOS GWAS genes were imported to the 
Cytoscape tool, and a plug-in named ClueGO v2.5.7 [13] 
was used for biological and functional interpretation of a 
large number of genes to constitute the networks. Molecular 
function, cellular components, biological process, KEGG, 
and reactome pathways were the different ontologies used 
in the framework. Kappa statistics were used to connect the 
terms, and the network was visualized in the circular layout.

Data retrieval and SNPs characterization

The identified genes and their symbols were subjected to 
SNP search in the Ensembl genome browser (m.ensembl.
org) using the option variant table. The list of SNPs identi-
fied was further categorized into 5′-UTR SNPs, synonymous 
SNPs, intronic SNPs, missense SNPs, 3′-UTR SNPs, splice 
region SNPs, splice donor SNPs, splice acceptor SNPs, 
stop retained SNPs, stop-gained SNPs, stop-lost SNPs, and 
non-coding transcript exon SNPs. Among these SNPs, non-
synonymous SNPs (nsSNPs) were subsequently used for 
downstream analysis.

Prediction of nsSNP functional impacts by in silico 
analysis

The retrieved nsSNP were analyzed using six different 
tools with mutation score available in the Ensembl genome 
browser, namely PolyPhen-2 (Polymorphism Phenotyping), 
SIFT (Sorting Intolerant from Tolerant), CADD (Combined 
Annotation-Dependent Depletion), Revel (Rare exome vari-
ant ensemble learner), MetaLR, and Mutation assessor. 
Finally, the SNPs categorized as “deleterious” in all 6 tools 
were selected and analyzed to influence the protein structure 
and stability.

Protein modeling and impact of the mutation 
on protein structure

The native and mutant forms of deleterious SNPs were mod-
eled to predict the mutation’s effect on protein structure and 
function. We tabulated the hydropathy index proposed by 
Jack Kyte and Russell F Doolittle [14], which revealed the 
modification in hydrophilicity or hydrophobicity due to 
amino acid change in the protein. The proteins structures 
were computed using Iterative Threading ASSEmbly Refine-
ment (I-TASSER) [15] using an amino acid template from 

https://www.ebi.ac.uk/gwas/
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the Uniprot database. Further mutation analysis and energy 
calculations were performed on the Swiss-Pdb viewer. 
PyMOL software’s align function was used to calculate the 
root-mean-square deviation (RMSD) value of mutant type 
from native protein.

Functional microRNA target SNPs prediction

The identified genes involved in PCOS pathogenesis were 
subjected to functional microRNA binding SNP prediction 
using the miRNA-related SNPs (MirSNP) database [16], the 
PolymiRTS database [17], and the microRNA related Sin-
gle Nucleotide Polymorphisms v3 (miRNASNP3) database 
[18]. The gene symbols of the shortlisted genes were used 
in the MirSNP database to search the miRNA binding SNP 
sites and their effects on the target site. In the PolymiRTS 
database, the search options containing gene symbol was 
used to retrieve the SNPs and their associated miRNAs at 
ancestral and mutant allele. The miRNASNP3 database was 
used to retrieve microRNA related SNPs with their impact 
on the target gain/loss in the 3′-UTR region.

SNPs at transcription factor binding site

The identified PCOS genes were utilized to find the SNPs in 
transcription factor binding sites using SNP2TFBS [19]. The 
annotated variant option was used to retrieve the SNPs pre-
sent in the 5′-UTR and upstream regions. The SNPInspector 
(trail access version) in Genomatix Software Suite (https​://
www.genom​atix.de/) was used to predict whether SNPs in 
TFBS create or disrupt the transcription factor binding sites.

SNPs in enhancers

The identified GWAS genes at genome-wide significance in 
PCOS were used to examine the impact of SNPs in enhanc-
ers using EnhancerDB [20] and HaploReg v4.1, which is 
developed by ENCODE laboratories [21]. The search option 
containing gene was used in the EnhancerDB database to 
search the SNPs located in the enhancers of the respective 
genes, and the regulatory motifs that were altered of those 
SNPs were reported using HaploReg.

Linkage disequilibrium analysis of functional SNPs

The identified SNPs that may be functional, obtained by 
analysing SNPs in coding region, 3′-UTR, 5′-UTR, upstream 
region and introns of selected GWAS genes in PCOS were 
further evaluated by performing Linkage disequilibrium 
(LD) analysis. These SNPs were further correlated with 
reported PCOS GWAS SNPs using LDlink [22] to examine 
their impact on disease progression.

Results

Identification of genes associated 
with the pathogenesis of PCOS

We shortlisted 25 GWAS genes linked with PCOS pathogen-
esis. The details of the genome-wide significant SNPs used 
to identify the in/nearest genes associated with PCOS were 
tabulated from the reported studies (Online Resource 1, 2). 
The shortlisted genes were mapped them using Idiographica. 
The representation showed the distribution of genes across 9 
autosomes including chromosome 2, 5, 8, 9, 11, 12, 16, 19, 
20 all over the genome (Fig. 1). The schematic representa-
tion of in silico workflow is depicted in the Fig. 2 (Fig. 2).

Pathway interaction among PCOS genes

The association between PCOS genes using the molecular 
function, cellular components, biological process, KEGG, 
and reactome pathways displayed a network showing the 
interaction of 9 out of 25 shortlisted genes and their path-
ways after performing enrichment/depletion (Two-sided 
hypergeometric test) (Fig. 3). The framework also showed 4 
Kappa score groups such as hormone ligand-binding recep-
tors, peptide hormone metabolism, cardiac muscle tissue 
regeneration, and positive regulation of phosphatidylinositol 
3-kinase signaling (Fig. 3). It was found that ERBB4, GATA4 
and, YAP1 genes contributed 60 percent in cardiac muscle 
tissue regeneration (Fig. 3).

Characterization of SNPs

A total of 16,71,896 SNPs were retrieved by a search using 
the Ensembl genome browser (GRCh38.p13). As 1000 
Genomes Project was recognized with ample account of 
genetic variations in humans, these SNPs were filtered 
for the 1000 Genomes Project lead to the identification of 
1,04,034 SNPs. Further, these SNPs were categorized based 
on their function. 260 SNPs were present in the 5′-UTR 
region, 436 were synonymous SNPs, 1,00,494 were intronic 
SNPs, 1702 were 3′-UTR SNPs, 86 were splice variants 
(splice region, splice donor, splice acceptor), 1 stop retained 
SNP, 16 stop-gained SNPs, 1 stop-lost SNP, 77 were non-
coding transcript exon SNPs, and 961 were missense vari-
ants of the genes involved in the PCOS (Figs. 4, 5).

Selection of deleterious nsSNPs

Among 961 missense variants, 285 (29.65%) were reported 
as “deleterious” by SIFT, while the frequency of mutation 
was reduced to 159 (16.54%) as “probably damaging” by 

https://www.genomatix.de/
https://www.genomatix.de/
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PolyPhen-2, 21 (2.18%) as “likely deleterious” were ana-
lysed by CADD, and 123 (12.79%) as “likely disease-caus-
ing” by Revel, 150 (15.60%) as “damaging” by Meta LR 
and 21 (2.18%) as “high” by Mutation Assessor (Fig. 6). 
Six different bioinformatic tools (SIFT, PolyPhen-2, CADD, 
Revel, Meta LR, Mutation Assessor) collectively high-
lighted 7 deleterious nsSNPs (Fig. 7) which included ERBB4 
rs192066345 and rs528780505, GATA4 rs180765750, INSR 

rs79312957, LHCGR​ rs121912525, SUOX rs575660698, 
and YAP1 rs199505545 (Online Resource 3).

Protein modeling and impact of the mutation 
on protein structure

The structures of the proteins were modelled using 
I-TASSER (Fig. 8). Out of 7 nsSNPs identified, change in 

Fig. 1   Chromosome-wide dis-
tribution of PCOS GWAS genes

Fig. 2   Schematic representation of in silico workflow
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amino acid in ERBB4 (rs528780505) suggested a change in 
polarity and hydrophobicity/hydrophilicity (Online Resource 
4). The polarity and hydropathy index for all the polymor-
phisms are listed in Online Resource 4. The rs528780505 
showed altered amino acid from isoleucine to asparagine 

at 362nd position, which resulted in a change in polarity 
from non-polar to polar and the hydropathy index from 4.5 
to  − 3.5. There was an observed difference in the total free 
energy of the wild type (− 33,905.453 kJ/mol) and mutant 
type (− 34,064 kJ/mol) protein (Online Resource 5). The 

Fig. 3   Pathway interaction of 
PCOS genes

Fig. 4   Schematic representation of in silico SNP search and characterization
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Fig. 5   Circos plot represent-
ing SNP distribution across 
25 genes involved in PCOS 
pathogenesis showing (outer 
ring) all the chromosomes, 25 
genes (from outer ring inwards), 
5′-UTR SNPs, synonymous 
SNPs, missense variants, 
3′-UTR SNPs, splice variants 
(splice region, splice donor, 
splice acceptor), inner most ring 
constitutes stop retained, stop-
gained and stop-lost SNPs

Fig. 6   Functional characterization of SNPs in PCOS genes
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root-mean-square deviation calculated between the wild 
types and mutants was 0.001 Ǻ for ERBB4 rs528780505. 
The RMSD value of all the proteins are tabulated (Online 
Resource 5).

Prediction of functional microRNA target SNPs

In the study, we used 3 different tools (MirSNP, PolymiRTS, 
miRNASNP3) which concordantly showed 3 SNPs (Online 
Resource 6) in the microRNA target binding sites, namely, 
rs1042725, rs7312910 in the HMGA2 gene, and rs242538 
in the MAPRE1 gene with the minor allele frequency 
(MAF) > 0.1. The table also showed whether miRNAs 
associated with SNPs within the target site would create or 
break or decrease or enhance a miRNA-mRNA binding site 
(Online Resource 6).

SNPs at transcription factor binding siteSsec2

Using SNP2TFBS, a total of 10 SNPs with MAF > 0.1 were 
identified in TFBS, out of which 9 SNPs are present in the 
upstream and 1 SNP in the 5′-UTR region. Among these, 
SNPInspector predicted that rs8191514 in the NEIL2 gen-
erated a binding site for twenty transcription factors, and 
rs62579216 in the DENND1A gene deleted the binding 
site for nine transcription factors. The impact of 10 SNPs 
at TFBS reported whether SNPs would generate or delete 

the sites for the binding of transcription factors (Online 
Resource 7).

SNPs in enhancers

In the present study, we used 2 databases (EnhancerDB 
and HaploReg), which collectively reported 8 intronic 
SNPs in the enhancers with MAF > 0.1. Among these, 
rs11670022 in the INSR gene showed 5 altered regulatory 
motifs which included E2A, HEN1, Lmo2, Myf, ZEB1 fol-
lowed by rs73488786 in the INSR gene had shown 4 altered 
regulatory motifs namely, AP-1, BDP1, CTCF, SMC3 and 
rs56394135 in the RAD50 gene showing 4 altered regulatory 
motifs namely, Dbx2, Maf, Pou2f2, THAP1. The details of 
enhancer SNPs and their altered regulatory motifs are tabu-
lated (Online Resource 8).

Linkage disequilibrium analysis of functional SNPs

Using LDlink, a total of 28 SNPs that may be functional 
were further examined to correlate with reported PCOS 
GWAS SNPs. Out of which 4 SNPs were in LD, namely, 
rs8191514 in the NEIL2 gene is correlated with rs804279. 
rs242538 in the MAPRE1 gene is correlated with rs853854. 
rs12237685 in the DENND1A gene is correlated with 
rs9696009 and rs2479106. rs3846732 in the RAD50 gene 
is correlated with rs13164856. R2, D′, and p value of the 

Fig. 7   Functional prediction 
of common non-synonymous 
SNPs by six pathogenicity 
predictions
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selected SNPs with reported PCOS GWAS SNPs were cal-
culated and cataloged (Table 1).

Discussion

Exertions intended to interpret the molecular mechanisms 
of multifaceted diseases like PCOS are supported by high-
throughput approaches to identify genetic variations result-
ing in the generation of large amounts of data [10]. To man-
age these vast amounts of data and to provide insight into 
PCOS development, researchers have used a variety of in sil-
ico prediction tools [23]. In the present study, after review-
ing publications from the GWAS catalog, the potential 
causal genes at genome-wide significance were shortlisted 

and subsequently examined to identify and predict the del-
eterious SNPs and their impact on disease progression. Pre-
diction of SNPs was made using six different tools, namely, 
SIFT, PolyPhen-2, CADD, Revel, Meta Lr, and Mutation 
assessor. The interpretation of these data should be evaluated 
accurately to address the significance of gene and should 
be verified whether the genetic variants are deleterious and 
impact protein structure or not [24]. Hence evaluation of 
these genetic variations is carefully performed with the use 
of different SNP prediction tools by selecting the overlap-
ping predictions to mitigate the false-positive interpretation 
[10].

Our computational approach has identified 7 deleterious 
nsSNPs from 6 SNP prediction tools. These genetic vari-
ations reside in different genes such as ERBB4, GATA4, 

Fig. 8   Native, mutant, and 
superimposition of native and 
mutant modeled structures of 
the ERBB4 (1) rs192066345 
and (2) rs528780505, (3) 
GATA4 rs180765750, (4) 
INSR rs79312957, (5) LHCGR​ 
rs121912525, (6) SUOX 
rs575660698, and (7) YAP1 
rs199505545. a Structure of 
native protein. b Enlarged 
structure of native protein (c) 
Structure of mutant protein. d 
Enlarged structure of mutant 
protein (e) Superimposed model 
of native and mutant protein 
structures. f Enlarged super-
imposed model of native and 
mutant protein structures
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INSR, LHCGR, SUOX, and YAP1. So far, minimal inves-
tigations have been carried out to predict the effect of 
nsSNPs. Despite, few studies have been reported the role 
of INSR rs79312957, LHCGR​ rs121912525, in complex 
traits. An in silico study conducted by Mahmud et al. 2016 
identified that mutation in INSR (rs79312957) caused type 
A insulin resistance, which is a prominent feature observed 
in PCOS females [25]. During adolescence, the type A 
insulin resistance in PCOS females shows higher insulin 
levels in the bloodstream which interacts with the different 
hormones and induce aberrations in menstruation, pres-
ence of multiple cysts in the ovaries, and other related fea-
tures of the syndrome [26]. Interestingly, the mutation in 
LH receptor (rs121912525) has a higher chance of causing 
partial ovarian failure manifested by defects in ovarian fol-
liculogenesis, anovular menstruation, luteal phase defects, 
imperfect feminization at adolescence, amenorrhoea and, 
infertility in females [27], which are again the character-
ized features of PCOS.

The effect of nsSNP, rs79312957 in INSR, can cause 
numerous insulin-resistant diseases. An earlier computa-
tional study by Mahmud et al., 2016 showed the struc-
tural modification between the native and mutant forms 
of protein INSR rs79312957, based on the value of Gibbs 
free energy [25]. The variation in free energy, when it 
deviates from native to mutant type, the variation in free 
energy indicates protein stability [10]. The authors also 
provided computational evidence for the destabilizing 
effect of nsSNP rs79312957 on the insulin receptor which 
is considered to impact protein structure and function [25]. 
Hence, we used a structural-based method to determine the 
influence of 7 deleterious nsSNPs on its protein structure. 
We have assessed changes in polarity, hydrophobicity/
hydrophilicity, and hydropathy index in the present study. 
Besides, we have also calculated change in energy from 
native to mutant protein type and RMSD value for all the 7 
nsSNPs, which might contribute strength to assess the pro-
tein function. Our study also confirms the expected effects 
of INSR rs79312957 by depicting the deviation of RMSD 
value from native to the mutant form of protein.

Research on miRNAs has shown that miRNAs binding 
at the 3′-UTR region silences the genes and is involved in 
gene regulation at a posttranscriptional level. Also, altera-
tions in the miRNA binding sites can induce impaired bind-
ing of the miRNAs affecting its function [10]. The outcome 
of the GWAS has resulted in the discovery of a massive 
number of SNPs. Although the impact of SNPs in the non-
coding site of the gene is scant, we focussed on 3′-UTR 
SNPs in the present study. Thus, we retrieved the SNP data 
of the genes responsible for PCOS pathology to decipher 
the miRNA sites using MirSNP, PolymiRTS, miRNASNP3 
databases and further investigated whether miRNAs associ-
ated with SNPs within the target site would create or break 
or decrease a miRNA-mRNA binding site. In the current 
approach, LD analysis was performed between selected 
SNPs that may be functional and PCOS GWAS SNPs to 
examine their impact on PCOS pathogenesis. LD analysis 
revealed that MAPRE1 rs242538 was correlated with the 
reported GWAS SNP rs853854 (MAPRE1) in PCOS (R2: 
0.6, D′: 1, p value < 0.0001).

Similarly, the effect of SNPs in TFBS and enhancers were 
also taken into consideration. SNPs at TFBS possibly affect 
gene regulation by changing the binding ability of the cor-
responding TF created by SNP alleles [28]. Our study collec-
tively showed 10 SNPs in the 5′-UTR and upstream region, 
which controls the expression of genes involved in PCOS. 
Out of 10 SNPs, rs8191514 in the NEIL2 gene generated a 
binding site for twenty transcription factors and was found 
to be in LD with the reported GWAS SNP rs804279 (NEIL2) 
in PCOS (R2: 0.4, D′: 0.97, p value < 0.0001). Studies have 
revealed that disease or trait linked non-coding SNPs modify 
the functions of regulatory motifs, such as enhancers that 
classically control gene expression [29]. A sum of 8 SNPs 
in the enhancers with their altered regulatory motifs were 
identified. Out of which, 2 SNPs were found to be LD with 
the reported GWAS SNPs in PCOS namely, DENND1A 
rs12237685, RAD50 rs3846732. Henceforth in the current 
study, a total of 4 SNPs that were correlated with PCOS 
GWAS SNPs which implies these linked SNPs would be 
more likely pathogenic in PCOS than functional SNPs not 

Table 1   Linkage disequilibrium 
analysis showing correlation of 
functional SNPs with reported 
PCOS GWAS SNPs

NEIL2 nei like dna glycosylase 2, MAPRE1 microtubule associated protein rp/eb family member 1, 
DENND1A DENN domain containing 1A, RAD50 RAD50 double strand break repair protein

Sl no Gene rsID MAF Correlation with reported 
PCOS GWAS SNPs

R2 D′ p value

1 NEIL2 rs8191514 0.13 rs804279 0.4 0.97  < 0.0001
2 MAPRE1 rs242538 0.19 rs853854 0.69 1  < 0.0001
3 DENND1A rs12237685 0.36 rs9696009 0.18 0.68  < 0.0001

rs2479106 0.61 0.87  < 0.0001
4 RAD50 rs3846732 0.4 rs13164856 0.79 0.97  < 0.0001
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so linked, thus that are discussed above should be crucially 
taken into account for delineating the precise pathomecha-
nisms of PCOS.

Conclusion

In the present in silico analysis, efforts were taken to unveil 
the remarkable findings to report the genetic markers that 
regulate the expression of genes to portray the pathomech-
anisms of PCOS. The use of computational gene mining 
tactics assists primarily in identifying the causal genes and 
their interaction in PCOS pathway and aid in evaluating 
the impact of SNPs in different regions of the gene. The 
data constitutes a structural foundation to figure out com-
plex molecular connections among genes involved in PCOS 
pathophysiology and consequently contributes to predicting 
disease strategies. However, when an SNP is likely linked 
with a trait or disease, it is commonly assumed that the SNP 
functions through nearby genes. Hence, it is evident that the 
current approach may miss some relevant genes. In addition, 
as we focused on genes, this study will not have identified 
intronic or intergenic SNPs that contribute to the pathophysi-
ology of PCOS. 
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