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Abstract
Purpose  Adversity in early life can induce metabolic defects in exposure to stress in adulthood. Therefore, the exploration of 
involving mechanisms can be helpful in the treatment of metabolic disorders. So, the present study was conducted in terms 
of exploring the effects of interaction between early postnatal stress and young adulthood psychological stress on insulin 
secretion and pancreatic GLUT-2 levels in male rats.
Methods  Footshock as a model of early life stress (at 2 weeks of age) and psychological stress induced by communication 
box as a model of young adulthood stress (at 8–10 weeks of age) were induced in male Wistar rats for five consecutive days 
(2 times/day). Blood samples were drawn to measure glucose, insulin, homeostatic model assessment of insulin resistance 
(HOMA-IR) and homeostasis model assessment of β-cell dysfunction (HOMA-B), before and after stress protocol in young 
adult rats. Corticosterone was measured on days 1 and 5 of stress induction. The day after the stress period, factors including 
glucose tolerance, TNF-alpha, isolated islets’ insulin output and levels of pancreatic GLUT-2 protein via western blotting 
were determined.
Results  The combination of early footshock exposure and psychological stress during adulthood did not affect plasma cor-
ticosterone, but increased plasma insulin, HOMA-IR, HOMA-B and TNF-alpha levels. Plasma TNF was not only increased 
by the combination of both stressors, but also after only E STR exposure. HOMA-IR was increased in both Psy STR and 
E + Psy-STR groups. Plasma glucose just increased in Psy STR group. The combination of these two life stressors further 
increased the in vitro insulin secretion from isolated islets in response to 16.7-mM glucose. The level of Glut2 was increased 
in Psy STR and decreased in both E STR and E + Psy STR groups. Finally, glucose tolerance was impaired and glucose-
stimulated insulin secretion was increased in E + Psy STR group.
Conclusions  In conclusion, inducing stress in early life makes the organism more susceptible to metabolic defects in exposure 
to psychological stress later in life.
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Introduction

Metabolic dysregulations are outcomes of stress being 
programmed by hyperactivity of the hypothalamic–pitui-
tary–adrenal (HPA) axis induced by negative experiences 
in early life [1, 2]. Early postnatal stages of life are critical 
times to develop long-lasting alternations in health status 
throughout adulthood [1]. Furthermore, early life stress in 
combination with chronic psychological stress in adult-
hood induces the changes in neuroendocrine and metabolic 
responses [3–5].

Stress hormones such as glucocorticoids and catecho-
lamines induce insulin resistance, produce hyperglycemia 
via increasing glucose release from the liver. Consequently, 
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impaired insulin secretion from pancreatic islets and hyper-
insulinemia are the most important outcomes of insulin 
resistance [6–8]. Many factors such as proinflammatory 
cytokines are involved in the development of reduced insu-
lin sensitivity in peripheral tissues [9, 10]. Furthermore, it 
has been reported that early life stressors have an impact on 
the inflammatory factors such as tumor necrosis factor-alpha 
(TNF-alpha) that can be influenced by stress during adult-
hood [11]. To compensate for insulin resistance in the early 
stages, beta cells of Langerhans islets secrete more insulin 
to establish glucose homeostasis [7]. One of the key glucose 
sensors in insulin secretion from pancreatic beta cells is glu-
cose transporter-2 (GLUT-2) [12] which can be affected by 
stress hormones [13].

Both human and animal studies showed that early life 
stress alters the metabolic responses to stressors later in life 
[14, 15]. Considering metabolic disorders as an important 
mortality factor in today’s world and the existence of many 
psychological stressors throughout today’s lifestyle (both 
early life and adulthood), few studies have been done so far 
in this context. So, further studies are needed to explore fac-
tors and mechanisms involving metabolic disorders induced 
by the combination of early life stress and adulthood psy-
chological stress. So, the effect of interaction between early 
postnatal stress and young adulthood psychological stress 
on glucose metabolism aspects such as insulin resistance, 
glucose tolerance, insulin secretion from isolated islets, pan-
creatic GLUT-2 levels, and TNF-alpha and blood metabolic 
parameters was examined.

Materials and methods

Animals

Male (250 ± 10  g) and female (180 ± 20  g) Wistar rats 
(Pasture Institute, Tehran, Iran) were mated overnight 
and separated at 9 A.M. The pregnant rats were kept until 
delivery in a temperature-controlled room (22 ± 2 °C) with 
a 12-h light/dark cycle (light on at 07:00). Standard food 
produced by Pars Company (animal food producer, Iran) 
and tap water were provided on demand throughout the 
experimental period. For this experiment, male Wistar rat 
pups were randomly selected from eight litters; four male 
pups from each litter were randomly allocated into four 
different groups (n = 8/group): the N STR; non-stress (just 
placed inside the communication box at both level of age); 
E STR; early stress (received footshock in communication 
box at 2 weeks of age but not receiving psychological stress 
in adulthood); Psy STR; psychological stress (received 
psychological stress during young adulthood but without 
footshock at 2 weeks of age); E + Psy STR; early + pshy-
chological stress (received both footshock stress at 2 weeks 

of age and psychological stress during young adulthood). 
All procedures were approved by the Animal Care and Use 
Committee of the Diabetic Research Center, Mazandaran 
University of Medical Sciences (IR.MAZUMS.IMAMHOS-
PITAL.REC.1397.3069).

Psychological stress induction protocol

A communication box (48 × 48 × 50 cm) [16] as the appara-
tus stressor, consisting of nine chambers (16 × 16 cm) was 
used to induce stress. The chambers are designed so that the 
rats can have visual, auditory, and olfactory communication 
with each other. The floor of five of the chambers was made 
from metal wire composed of stainless steel and connected 
to electricity, enabling the animals to receive electrical 
shocks. The floors of the other four chambers were covered 
by a plexiglas plate to avoid rats from sensing footshock for 
induction of psychological stress.

The rat pups at two weeks of age received electrical 
shocks (0.8 mA, 1 Hz) lasting five seconds, every 30 s for 
30 min, twice daily, for five consecutive days [17]. During 
footshock induction, the pup rats screamed and exhibited 
an increased rate of urination and defecation. Moreover, the 
rats tried to escape from the shock by fore and hind paw 
withdrawal at postnatal age. The pups of all groups were 
kept alone in a cage for 5 min after removal from the com-
munication box [17], and then they were returned to their 
home cages.

The young adult rats (at 8–10 weeks of age) received psy-
chological stress twice daily for five consecutive days [18]. 
For induction of psychological stress, animals were placed 
in the chambers covered by a plexiglas plate at floors with-
out receiving footshock and therefore, they were exposed to 
various emotional stimuli (jumping, struggling, vocalizing, 
defecating and urinating) arising from animals into the other 
five chambers receiving footshock which was applied only 
to induce psychological stress. During psychological stress 
exposure, the rats at a young adult age showed an increased 
rate of grooming, urination, and defecation. To omit the 
impact of a novel environment, the rats of all groups were 
placed in the communication box (2 times/day) for five con-
secutive days before the experiment commenced.

After removal from the communication box, the young 
adult rats were kept alone in a cage for 15 min before being 
returned to the animal facilities. Stress at both two levels of 
age was induced between 10:00–12:00 and 13:00–15:00, but 
the N STR group was kept in the communication box for the 
same period without receiving footshock or psychological 
stress.
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Experimental design

The day before exposure to stress, glucose, insulin, homeo-
static model assessment of insulin resistance (HOMA-IR), 
and homeostasis model assessment of β-cell dysfunction 
(HOMA-B) were measured (basal before). Corticosterone 
was determined immediately after second session exposure 
to stress (after 3 p.m.) on days 1 and 5. Moreover, 1 day 
after the termination of stress, TNF-alpha in the plasma 
was determined and the plasma glucose, insulin, HOMA-
IR, and HOMA-B were measured after stress (basal after). 
Finally, after performing the intraperitoneal glucose toler-
ance test (IPGTT), the anesthetized young adult rats were 
decapitated and dissected to remove the pancreas tissue for 
measuring insulin secretion from isolated islets and detect-
ing the GLUT-2 level (Fig. 1).

Blood sampling

After overnight fasting, drawing blood was done (at 
8–8:30 a.m.) after pentobarbital (Sigma, USA) anesthesia 

60 mg/kg; ip [19] by technic of tail cut. The blood sampling 
method was the same at all times. The plasma obtained by 
centrifuging (664×g) was separated and kept at − 70 °C to 
determine the blood parameters.

The plasma samples were analyzed for the insulin, corti-
costerone and TNF-alpha concentrations by the rat insulin 
Elisa kit (Mercodia, Sweden), corticosterone Elisa kit (DRG, 
Germany) and TNF-alpha Kit (Biolegend, CA, USA). The 
plasma glucose concentrations were determined using the 
glucose oxidase method (Pars Azmoon, Iran).

The IPGTT profile

For the assessment of glucose tolerance, the IPGTT was car-
ried out. One day after the last exposure to the stress (day 6 
immediately after blood drawing to measure the parameters 
of basal after) anesthetized young adult rats were injected 
with glucose intraperitoneally (20% solution in water, 2 g/
kg BW) to detect the glucose and insulin at 10, 15, 30, 60, 
and 90 min after glucose injection [20].

Fig. 1   A timeline demonstrating the induction of early footshock 
stress during days after birth and psychological stress during young 
adulthood. The day before psychological stress glucose, insulin, 
HOMA-IR, and HOMA-B were measured. Corticosterone was 
measured on days 1 and 5 immediately after second-session expo-

sure stress and one day after that. One day after last stress exposure 
glucose, insulin, HOMA-IR, HOMA-B, TNF-alpha, corticosterone, 
amount of GLUT2, insulin secretion, and glucose tolerance were 
measured
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The HOMA‑IR index

To determine the HOMA-IR index, the values of the 
fasting plasma glucose and insulin levels were used; the 
formula is: HOMA-IR = (ci × cg)/22.5, where ci is fast-
ing insulin level (μU/ml) and cg is fasting glucose level 
(mmol/L) [21].

The HOMA‑B index

To calculate the HOMA-B as an index of the β-cell func-
tion, the values of fasting plasma glucose and insulin lev-
els were used.

The formula is: HOMA-B = (20 × fasting insulin)/(fast-
ing glucose –3.5) [22].

The islet isolation

The islet isolation was done using the collagenase tech-
nique suggested by Lacy and Kostianovsky [23] with slight 
modification. The entrance of common bile duct to duode-
num was clamped, the duct was cannulated with a polyeth-
ylene catheter (Portex Intravenous Cannula 2.5 F, 0.75-mm 
OD) and 10-ml cold Hank’s buffer, in which collagenase P 
(Roche, Cat. # 11 213 865 001, Germany, 0.45 mg/ml) was 
diluted and then, it was gently injected into the duct. The 
inflated pancreas was removed and placed into a Petri dish 
and cleaned from non-pancreatic tissue. Then, the pan-
creas was placed into a 50-ml falcon tube and incubated in 
a 37 °C water bath for 17 min. Digestion was terminated 
by adding cold Hank’s solution up to 40 ml. The tube was 
shaken for 1 min and the suspension was dispensed into a 
glass container (7.5-cm diameter and 4.5-cm height). Cold 
Hank’s solution was added and aspirated after precipita-
tion. The supernatant was removed, a process that was 
repeated three times. After the last aspiration, the islets 
were handpicked (Blue Light stereomicroscope, USA) 
(first-picking).

Glucose‑stimulated insulin secretion

Glucose-stimulated insulin secretion was examined at dif-
ferent glucose concentrations (5.6 and 16.7 mM). From 
the isolated islets of each young adult rat, five groups of 
ten islets for each glucose concentrations were picked ran-
domly (second-picking) and placed in the plastic cups (a 
total of 20 cups for each condition). All procedures for 
islets separation were performed on the ice tray. After 
removing the excess hank’s solution, 1 ml of Krebs Ringer 
Solution (pH 7.4) [19] containing 5.6- or 16.7-mM glucose 
was added to the cups and incubated for 90 min (at the 

beginning the cups were gassed with 95% O2/5% CO2 for 
5 min) at 37 °C. Then, the supernatant part was removed 
and stored at − 70 °C for insulin assays.

Western blotting

The whole extract of rat’s pancreas tissue was lysed and the 
protein concentration was determined similar to previous 
study [24]. The proteins were electrophoresed in 12% SDS-
PAGE gels, transferred to polyvinylidene fluoride (PVDF) 
membranes, and probed with rabbit polyclonal to GLUT-2 
(ab104622, Abcam) at 1:1000 dilution, in TBST-Tween buffer 
overnight at 4 °C. After washing, membranes were incubated 
for 90 min at room temperature with secondary antibody 
(Anti-rabbit IgG, Cell signaling). Blots were revealed by ECL 
advanced kit (Amersham Biosciences, USA). Quantification 
of the obtained data was carried out by a densitometry scan of 
films. Data analysis was done by Image J software.

Statistical analysis

All data are expressed as mean ± SEM. Analysis of variance 
(ANOVA) with repeated measures was performed by Graph-
Pad Prism Version 5 program package (by considering time as 
a repeated factor and stress as an independent factor). Moreo-
ver, one-way and two-way ANOVA were performed and fol-
lowed by post hoc multiple comparison tests with consider-
ing stress, time and/or glucose and insulin concentrations as a 
factor(s). A P value below 0.05 was considered to be statisti-
cally significant.

Results

The effect of interaction between early postnatal 
and young adulthood psychological stress 
on plasma corticosterone concentration

The two-way repeated-measures ANOVA analysis showed 
that adult psychological stress alone did not produce consid-
erable changes in plasma corticosterone on day 1 or 5 of stress, 
while in combination with early life footshock exposure non-
significantly increased the level of corticosterone on days 1 
and 5 (Fig. 2). However, a downward trend in corticosterone 
levels was observed on days 1 and 5 that indicate an adaptation 
response to repeated stress during 5 consecutive days (Fig. 2).

The effect of interaction between early postnatal 
and young adulthood psychological stress 
on basal plasma glucose, insulin and TNF‑alpha 
concentrations

The two-way repeated-measures ANOVA indicated that 
the day before the beginning of the stress procedure, basal 
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plasma glucose levels did not show any significant difference 
between the present groups. While, after placing the animals 
of the Psy STR group in the communication box after expo-
sure to psychological stress, basal plasma concentrations of 
glucose enhanced significantly in comparison with before 
stress (P = 0.001) at the same group; while, this impact was 
not observed in the E + Psy group (Fig. 3a).

Performing the two-way repeated-measures ANOVA 
the day before and after placing the young adult rats of all 
groups in the communication box with or without exposure 
to stress, showed no significant difference in basal insulin 
concentrations of plasma among study groups. On the other 
hand, after exposure to psychological stress in young adult 
rats which received stress in early life (the E + Psy STR 
group), basal plasma insulin levels enhanced significantly as 
compared with before exposing to stress at the same group 
(P = 0.03) but not with the other groups (Fig. 3b).

Performing the one-way ANOVA has demonstrated that 
exposure to early stress alone significantly increased TNF-
alpha in plasma compared to N STR (P = 0.009); while, 
psychological stress in adult life alone did not show any dif-
ference. But psychological stress in young adult rats exposed 
to early stress could increase TNF-alpha in plasma in com-
parison with N STR (P = 0.02) (Fig. 3c).

The effect of interaction between early postnatal 
and young adulthood psychological stress 
on HOMA‑IR and HOMA‑B index

The two-way repeated-measures ANOVA indicated that 
after exposure to psychological stress in the Psy STR and 
the E + Psy STR groups, there was an increase in the level of 

HOMA-IR index in comparison with the same group before 
stress exposure (P = 0.05), (Table 1). But there was no differ-
ence between groups before or after stress exposure. 

Also, after exposure to psychological stress in the E + Psy 
STR group, the HOMA-B index was increased just com-
pared to the same group before stress (P = 0.02). However, 

Fig. 2   The effect of early life stress and/or young adulthood chronic 
psychological stress on plasma corticosterone. Each column repre-
sents the mean ± SEM of 6 young adult male rats. Day 1, the first day 
of exposure to psychological stress. Day 5, the last day of exposure 
to psychological stress. Day 6, one day after stress duration. N STR 
none stress, E STR early life footshock stress, Psy STR young adult-
hood psychological stress, E + Psy STR early life + young adulthood 
psychological stress

Fig. 3   The effect of early life stress and/or young adulthood chronic 
psychological stress on basal plasma glucose (a) and insulin (b) 
before and after exposure to psychological stress and on TNF-alpha 
(c). Each column represents the mean ± SEM of 8 young adult male 
rats. N STR none stress, E STR early life footshock stress, Psy STR 
young adulthood psychological stress, E + Psy STR early life + young 
adulthood psychological stress. *P = 0.03 versus respective basal 
before (a), *P = 0.001 versus respective basal before (b). *P = 0.03, 
**P = 0.009 versus N STR group (c)



282	 Journal of Endocrinological Investigation (2021) 44:277–286

1 3

there were no significant differences between groups before 
or after exposure to stress (Table 1).

The effect of interaction between early postnatal 
and young adulthood psychological stress on IPGTT​

The two-way repeated-measures ANOVA showed that the 
levels of plasma glucose in the E STR group peaked at 
about 203.75 mg/dl at 15 min and 60 min were significantly 
higher than the N STR group (P = 0.0002). We expected 
that amount of glucose at 90 min to approach to the baseline 
level, while that was significantly greater than the N STR 
group (P = 0.009). Plasma glucose levels in the E + Psy STR 
group peaked at approximately 228.75 mg/dl at 15 min and 
remained slightly higher than the baseline level, but there 
was a significant difference between this group and the E 
STR group at 10 min (P = 0.01) (Fig. 4a).

The two-way repeated-measures ANOVA was conducted 
to determine insulin changes during glucose tolerance. The 
peak of plasma insulin levels in the E + Psy STR group was 
approximately 3.93 µg/l at 15 min and remained slightly 
higher than the baseline level. The plasma insulin levels 
in this group were significantly higher than those of the N 
STR group at 15 min (P = 0.01) and E STR group at 60 min 
(P = 0.04) (Fig. 4b).

The effect of interaction between early postnatal 
and young adulthood psychological stress 
on insulin secretion from pancreatic isolated islets 
and pancreatic GLUT‑2 levels

The two way ANOVA analysis revealed that insulin secreted 
from isolated islets of all groups in the presence of 5.6 mM 
glucose concentration was markedly lower than 16.7-mM 
glucose (P < 0.0001) (was not demonstrated in Fig. 5a). The 
insulin secretion from isolated islets showed a significant 

increase in response to 5.6-mM glucose concentration in 
the E + Psy STR group as compared to the E STR group 
(P = 0.02) (Fig. 5a). However, in response to 16.7-mM glu-
cose concentration, the islets’ insulin output significantly 
enhanced in the E-STR group compared to the N STR 
group (P = 0.005) (Fig. 5a). Moreover, the combined early 
life stress and psychological young adulthood stress in the 
E + Psy STR group significantly increased the insulin release 
at the presence of 16.7-mM glucose as compared to the N 
STR group (P = 0.04) (Fig. 5a). However, insulin secretion 
in the response to 16.7-mM glucose level did not differ sig-
nificantly in the Psy STR group in comparison with the N 
STR group (Fig. 5a).

One-way ANOVA showed that the GLUT-2 protein level 
was decreased in the E STR group significantly compared to 
the N STR group (P < 0.0001) (Fig. 5b). Whereas, exposure 
to psychological stress in the Psy STR group significantly 
increased the level of the GLUT-2 protein in the pancreas as 
compared to the N STR group (P = 0.002) (Fig. 5b). Interest-
ingly, early life stress in combination with young adulthood 

Table 1   The effect of early life stress and/or young adulthood chronic 
psychological stress on basal HOMA-IR and HOMA-B indexes

Values are expressed as the mean ± SEM of 8 young adult male rats
N STR non stress, E STR early life footshock stress, Psy STR young 
adulthood psychological stress, Early + Psy STR early life + young 
adulthood psychological stress, BB basal before psychological stress 
or placing in the communication box, BA basal after psychological 
stress or placing in the communication box.*P < 0.05 versus BB of 
the same group

Groups HOMA-IR HOMA-B

BB BA BB BA

N STR 1.96 ± 0.32 2.6 ± 0.46 21.05 ± 3.78 30.87 ± 3.62
Psy STR 1.79 ± 0.29 3.59 ± 0.38* 24.53 ± 4.12 27.97 ± 1.53
E STR 2.25 ± 0.3 2.65 ± 0.46 29.55 ± 4.14 27.06 ± 4.34
E + Psy STR 2.26 ± 0.29 4.05 ± 0.83* 25.99 ± 4.15 42.18 ± 7.97*

Fig. 4   The effect of early life stress and/or young adulthood chronic 
psychological stress on plasma glucose (a linear curve) and insulin 
(b linear curve) levels during IPGTT performance. Each point repre-
sents the mean ± SEM of 8 young adult male rats. N STR none stress, 
E STR early life footshock stress, Psy STR young adulthood psycho-
logical stress, E + Psy STR early life + young adulthood psychologi-
cal stress. ***P = 0.0002, **P = 0.009 versus N STR group, $P = 0.01 
versus E STR group
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psychological stress in the E + Psy STR group, considerably 
decreased the amount of GLUT-2 as compared to the Psy 
STR (P < 0.0001) and N STR groups (P = 0.005), whereas 
significantly increased GLUT-2 levels in comparison with 
the E STR group (P < 0.01) (Fig. 5b).

Discussion

The present study results indicated that early stress in rats 
that exposed to psychological stress during young adulthood 
did not affect plasma corticosteron but it could increase 
plasma insulin and HOMA-IR, HOMA-B, TNF-alpha, 
impair the glucose tolerance, increase the in vivo glucose-
stimulated insulin secretion and also could increase the 
in vitro insulin secretion from pancreatic isolated islets 

in response to 16.7-mM glucose but decrease pancre-
atic GLUT-2 levels. On the other hand, early stress alone 
increased the plasma TNF-alpha and the in vitro insulin 
secretion but decreased the GLUT-2 levels. Psychological 
stress during young adulthood alone increased the plasma 
glucose, HOMA-IR and GLUT-2 levels.

In this study, plasma corticosterone levels among groups 
showed no considerable changes immediately after second 
exposure to stress on days 1 and 5, although a downward 
trend was shown during the protocol of stress. In opposition 
to our study, maternal separation during 2 weeks of post-
natal days (3 h/day) increased the corticosterone levels in 
exposure to acute psychological stress in adult animals [25, 
26], while decreased it in response to chronic psychological 
stress [27]. In agreement with our results, Eiland et al. [28] 
and Fascolo et al. [29] found that postnatal stress did not 
change the serum corticosterone after induction of chronic 
psychological stress (restricted movement) in adult rats. It 
seems that mild or short-time early postnatal stress produces 
a persistent reduction in the HPA axis activity in response to 
stress later in life, while intense or long-term early postnatal 
stress persistently increases the HPA axis activity in a nega-
tive feedback circuit [25].

Perhaps, the first reason for unchanged corticosterone 
between the groups on the first day of stress (acute stress 
response) is due to the effect of injection of anesthetic com-
pound on response to stress. The extra stress is produced by 
injection itself and this ceiling effect might be the reason 
why we did not see differences between the groups in plasma 
corticosterone levels [31]. The second possible reason for 
unchanged corticosterone on the first day of stress is an ear-
lier adaptation of neuronal pathways is related to repeated 
psychological stress because we measured the level of cor-
ticosterone after the second exposure to psychological stress 
on the first day (stress was induced 2 times/day). De Boer 
et al. showed that the HPA axis response to second and third 
exposures to psychological stress was lower than the first 
exposure [32]. The development of a visible downward trend 
(on days 1 and 5) of corticosterone during days of stress 
indicates a habituation response to repeated psychological 
stress in adult rats that were exposed to early stress.

In this study, psychological stress alone enhanced basal 
plasma glucose but not insulin. On the other hand, early 
stress alone produced an increase in basal plasma glucose 
but not insulin. While the combination of these two stresses 
in the E + Psy STR group showed that basal plasma level of 
insulin was increased but the basal level of glucose remained 
at a normal level. In the previous studies, the interaction 
between early postnatal and adulthood stresses produced dif-
ferent changes in plasma concentrations of glucose and insu-
lin [29, 32]. It seems that early postnatal stress in response to 
young adulthood psychological stress-induced insulin resist-
ance; so that a more insulin release maintained the plasma 

Fig. 5   The effect of early life stress and/or young adulthood chronic 
psychological stress on the isolated islets’ insulin secretion in 
response to basal (5.6-mM) and high (16.7-mM) glucose concentra-
tions (a) and pancreatic Glut2 protein levels following western blot 
of pancreas tissue (b). Each column represents the mean ± SEM of 
8 young adult male rats. N STR none stress, E STR early life foot-
shock stress, Psy STR young adulthood psychological stress, E + Psy 
STR early life + young adulthood psychological stress. *P = 0.04, 
**P = 0.005 versus N STR group, $P = 0.01 versus E STR group (a). 
**P = 0.002, ***P = 0.0001 versus N STR group, $P = 0.01 versus E 
STR group, фффP = 0.0001 versus Psy STR group (b)
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glucose within the normal range. An increase in HOMA-IR 
as indicator of insulin resistance [21] and impaired glucose 
tolerance in the E + Psy STR group confirmed inducing insu-
lin resistance. This impairment is probably in association 
with the defect of the glucose-stimulated insulin secretion. 
Our findings in this group revealed a significant increase 
in plasma glucose at 10 min after the glucose load. Also in 
this group, insulin secretion at 15 and 60 min after glucose 
load was higher than the other groups. It has been shown 
that stress may develop glucose intolerance [33, 34], which 
is associated with the HPA axis and/or a sympathoadrenal 
system activity [34]. It may be discussed that in the presence 
of both early life stress and young adulthood psychological 
stress, maintenance of plasma glucose within a normal range 
is due to increased insulin secretion in response to insulin 
resistance. There are several mechanisms involved in the 
development of insulin resistance that can be affected by 
stress [35] and impair insulin secretion in response to glu-
cose [36]. Our results indicated that TNF-alpha enhanced 
following both early stress alone and also in combina-
tion with young adulthood psychological stress. It is well 
known that chronic stress exerts pro-inflammatory and/or 
anti-inflammatory effects, depending on the type or dura-
tion of stress [37, 38]. Inflammatory response of peripheral 
tissues to stress increases TNF-alpha as a pro-inflammatory 
cytokine and then it can impair insulin signaling and in turn, 
induce insulin resistance [39]. Impaired insulin signaling 
by TNF-alpha in muscles and adipose tissues is because of 
the impact of TNF-alpha on adipose tissue with the release 
of free fatty acids into the blood [40]. On the other hand, 
negative experiences in early life have reprogramming influ-
ences [41, 42] and epigenetic alterations on the function of 
immune systems and inflammation profiles [9, 43]. Accord-
ing to our results, Veenama et al. demonstrated that maternal 
isolation at 2 weeks after birth in exposure to psychological 
stress (subordinate colony housing) increased the plasma 
level of TNF-alpha [44]. In contrast to our findings, restric-
tion of nesting material, as a kind of early life stress in the 
interaction of painless sound stress in adult Sprague–Daw-
ley rats, showed no changes in TNF-alpha of plasma [45]. 
These variations in the results of various studies may be due 
to different designs of studies. Therefore, early life stress 
both alone and in combination with psychological stress in 
adult rats by increasing TNF-alpha could develop insulin 
resistance that in turn was resulted in a more glucose-stim-
ulated insulin release in both in vivo (following IPGTT) and 
in vitro (insulin output from isolated islets).

In the present study, insulin output from isolated islets of 
endocrine pancreas following combination of early postna-
tal stress with psychological stress at adulthood in presence 
of both basal (5.6 mM) and high glucose (16.7 mM) con-
centrations was significantly high. Furthermore, HOMA-B 
as an index of β-call function, in the E + Psy STR group, 

was greater. Researchers of this study suggest that the rea-
son for this increase in insulin secretion (secretory capac-
ity) and β-call function may be a compensatory mechanism 
to overcome insulin resistance [6, 46] as was observed by 
increased HOMA-IR, glucose intolerance and high levels of 
basal plasma insulin.

The results of GLUT-2 measurement following west-
ern blotting exhibited that the mentioned transporter was 
increased by psychological stress alone; it was decreased by 
early life stress alone and finally ameliorated by the inter-
action of these two levels of stress. This effect partly cor-
responds to the profile of insulin secretion from Langerhans 
islets in response to the concentration of 5.6-mM glucose. 
Also, it appears that the increase in insulin output from the 
islets in response to 16.7-mM glucose in the E + Psy STR 
group is in the opposite direction of GLUT-2 levels changes. 
Therefore, the results of the present study and few several 
reports have confirmed that the levels of GLUT-2 protein 
and insulin secretion from islets of the pancreas may do not 
always change in the same direction [47–49]. Considering 
the available evidence at this research, it can be suggested 
that the increment of insulin secretion may be independent 
of GLUT-2 protein levels. It is possible that other mecha-
nisms are involved in the biosynthesis of insulin content and 
insulin secretion inducing by early postnatal stress in the 
endocrine function of the pancreas [50, 51].

In summary, our results suggest that the combination of 
early footshock exposure and psychological stress during 
adulthood did not affect plasma corticosterone, but increased 
plasma insulin, HOMA-IR, HOMA-B and TNF-alpha levels. 
Plasma TNF-alpha was not only increased by the combina-
tion of both stressors, but also after only E STR exposure. 
HOMA-IR was increased in both Psy STR and E + Psy-STR 
groups. The combination of these two life stressors further 
increased the in vitro insulin secretion from isolated islets 
in response to 16.7-mM glucose. The level of Glut2 was 
increased in Psy STR and decreased in both E STR and 
E + Psy STR groups. Finally, glucose tolerance was impaired 
and glucose-stimulated insulin secretion was increased in 
E + Psy STR group.

It can be concluded that stress in early life can make the 
organism more susceptible to stressors to develop metabolic 
defects such as dysregulation in glucose homeostasis later in 
life. Further understanding the mechanisms of these changes 
needs more study in the future.
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