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Abstract
Background The diagnosis of indeterminate lesions of the thyroid is a challenge in cytopathology practice. Indeed, up to 
30% of cases lack the morphological features needed to provide definitive classification. Molecular tests have been developed 
to assist in the diagnosis of these indeterminate cases. The first studies dealing with the preoperative molecular evaluation 
of FNA samples focused on the analysis of BRAFV600E or on the combined evaluation of two or three genetic alterations. 
The sensitivity of molecular testing was then improved through the introduction of gene panels, which became available for 
clinical use in the late 2000s.
Two different categories of molecular tests have been developed, the ‘rule-out’ methods, which aim to reduce the avoidable 
treatment of benign nodules, and the ‘rule-in’ tests that have the purpose to optimize surgical management. The genetic 
evaluation of indeterminate thyroid nodules is predicted to improve patient care, particularly if molecular tests are used 
appropriately and with the awareness of their advantages and weaknesses. The main disadvantage of these tests is the cost, 
which makes them rarely used in Europe. To overcome this limitation, customized panels have been set up, which are able 
to detect the most frequent genetic alterations of thyroid cancer.
Conclusions In the present review, the most recent available versions of commercial molecular tests and of custom, non-
commercial panels are described. Their characteristics and accuracy in the differential diagnosis of indeterminate nodules, 
namely Bethesda classes III (Atypical follicular lesion of undetermined significance, AUS/FLUS) and IV (Suspicious for 
follicular neoplasm, FN/SFN) are fully analyzed and discussed.
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Introduction

Although fine-needle aspiration (FNA) is the gold-stand-
ard technique for the preurgical diagnosis of thyroid nod-
ules, around 25% of cases lack the features needed for a 

definitive diagnosis and are classified as indeterminate [1]. 
Most of the indeterminate cases are submitted to surgery, 
though only the minority of cases (10–40%) will be found 
to be malignant [2]. In the last decades, with the aim to 
improve the presurgical diagnosis in indeterminate thyroid 
nodules, thus reducing the number of unneeded operations, 
and the consequent expenses and risks, attention has been 
focused on the preoperative molecular characterization 
of the nodules. Accordingly, different tests have been 
developed taking advantage of the major advancements 
in the knowledge of the genetic bases of thyroid cancer 
(TC). In this context, the Thyroid Cancer Genome Atlas 
[3] recently reported the extensive characterization of the 
most prevalent TC, namely papillary thyroid cancer (PTC), 
significantly reducing the number of tumors without 
known genetic driver. Those findings allowed to reclassify 
PTCs into 2 molecular subtypes, identified as BRAF-like 
and RAS-like. Genetic alteration associated to BRAF-like 

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s4061 8-019-01164 -w) contains 
supplementary material, which is available to authorized users.

 * L. Fugazzola 
 laura.fugazzola@unimi.it

1 Division of Endocrine and Metabolic Diseases, IRCCS 
IstitutoAuxologicoItaliano, 20149 Milan, Italy

2 Department of Pathophysiology and Transplantation, 
University of Milan, P.le Brescia 20, 20149 Milano, Italy

3 Department of Endocrinology, 401 Military Hospital, 
11525 Athens, Greece

http://orcid.org/0000-0001-5372-0982
http://crossmark.crossref.org/dialog/?doi=10.1007/s40618-019-01164-w&domain=pdf
https://doi.org/10.1007/s40618-019-01164-w


704 Journal of Endocrinological Investigation (2020) 43:703–716

1 3

gene expression profile, such as BRAFV600E mutation and 
RET fusions are virtually diagnostic of cancer. On the con-
trary, RAS-like mutations, such as RAS, PTEN, EIF1AX 
mutations and PPARG  fusions, are associated with either 
malign or benign follicular neoplasms [4, 5]. Mutations in 
TP53 or in TERT promoter, in particular when associated 
with other tumor driver alterations, are frequently found 
in clinically aggressive thyroid cancer, including poorly 
differentiated and anaplastic thyroid carcinoma [6]. Dif-
ferently, copy number alterations (CNA) and mutations 
in mitochondrial DNA are characteristic of Hürthle cell 
carcinoma [7].

The first studies dealing with the preoperative molecu-
lar evaluation of FNA samples, focused on the analysis 
of BRAFV600E, which is the most common PTC mutation 
[8–46]. However, since many TCs are driven by other muta-
tions, testing for BRAFV600E alone did not provide sufficiently 
high negative predictive value (NPV) to avoid surgery for 
nodules negative for this mutation. In the same years, other 
Authors proposed the combined evaluation of two or three 
genetic alterations, such as BRAFV600Eand RET fusions [47, 
48], or BRAFV600E, RET and TRK fusions [49]. The sen-
sitivity of molecular testing was further improved through 
the introduction of gene panels, which became available 
for clinical use in the late 2000s. In addition to BRAFV600E, 
they tested for several other common genes mutated in TC, 
and these typically “rule-in” tests panels were able to iden-
tity as mutated ~ 70% of cases. The first panel contributed 
by Nikiforov et al. in 2011, was a 7-genes molecular test 
 (ThyroSeq® v0) composed of a panel of mutations (BRAF, 
N-, H-, K-RAS) and gene fusions (RET/PTC, PAX8/PPARG ). 
In this seminal study they prospectively analyzed 247 AUS/
FLUS and 214 FN/SFN nodules with histological follow-
up, reporting a high specificity (97–99%) and a PPV of 
88%, but a low sensitivity (57–63%) and a NPV of 86–94%, 
associated to a cancer prevalence of 14–27% and a residual 
cancer risk of 6–14% in samples with negative result [50]. 
The advent of the next-generation sequencing technology 
promoted the expansion of genotyping panels for thyroid 
FNA cytology [51] with novel  ThyroSeq® panels testing for 
a progressively increasing number of genetic alterations, 
with a resulting higher sensitivity [52, 53]. In 2012, a “rule-
out” test was introduced, namely the  Afirma® test, which 
does not rely on detecting gene mutations but is based on the 
analysis of expression changes in 167 genes. The  Afirma® 
test evaluates the gene expression profiles, reports the result 
as either “benign” or “suspicious”, and has a high NPV [54].

Additional approaches for molecular testing include the 
analysis of microRNAs (miRNAs) expression. MiRNAs are 
small noncoding RNAs implicated in gene regulation and 
several miRNAs have been found dysregulated in thyroid 
cancer [55–59]. Although different miRNAs have been pro-
posed in different studies, 15 miRNAs could be considered 

as the more accurate to discriminate benign from malign 
lesions with a high sensitivity and specificity [60].

Based on the results obtained by these molecular tests in 
the preoperative evaluation of thyroid nodules, International 
and National guidelines [61, 62] recommend the genetic 
evaluation, whenever possible, for the diagnosis of indeter-
minate nodules. The main disadvantage of these tests is the 
high cost [63], which makes them rarely used in Europe. 
To overcome this limitation, some Authors report data on 
more limited, customized “rule-in” panels which are able 
to detect the most frequent genetic alterations of TC, even 
though with lower sensitivities with respect to the NGS and 
gene expression profile large panels.

In the present review, the most recent available versions 
of commercial molecular tests are reported. The accuracy of 
those test, the pros and cons and their present exploitation 
in clinical practice are fully analyzed. The reliability of cus-
tom panels is described, too. To note, all the data reported 
refer to indeterminate nodules, namely Bethesda classes III 
(Atypical follicular lesion of undetermined significance, 
AUS/FLUS) and IV (Suspicious for follicular neoplasm, FN/
SFN) [1], since the most important indication and appropri-
ateness of these tests is for the differential diagnosis of this 
type of nodules.

Methods

Literature search

We performed a PubMed search for studies published 
between 2009 and 2019 exploring the performance of “rule-
in” and “rule-out” panels and including more than four genes 
and/or miRNAs, exclusively in AUS/FLUS or FN/SFN 
cytology. Meanwhile, we checked the references of each 
included paper to identify additional relevant publications.

Inclusion criteria for studies

1. Indeterminate thyroid results via fine-needle aspiration 
(FNA) that included Bethesda classes AUS/FLUS or 
FN/SFN (more than 20 cases).

2. Histopathologic results diagnosis from surgical speci-
mens as gold reference standard for benign or malignant 
nodules.

Exclusion criteria for studies

1. Opinions, reviews, commentary, case reports, and insuf-
ficient data.

2. Absence of surgical histopathology results.
3. Studies written in languages other than English.
4. Studies on pediatric populations.
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5. Studies in which Bethesda III and IV categories cannot 
be separated from Bethesda classes V.

Commercial tests

Three tests are commercially available in the United States, 
based on the analysis of DNA/RNA sequencing data, of 
mRNA or microRNA expression profiles, or combination 
of these methods:  ThyroSeq® v3 (CBLPath, Inc, Rye Brook, 
New York, and University of Pittsburgh Medical Center, 
Pittsburgh, Pennsylvania),  Afirma® (Veracyte, Inc, South 

San Francisco, California), and ThyGenX/ThyraMIR (Inter-
pace Diagnostics, Inc, Parsippany, New Jersey). The Roset-
taGX Reveal (Rosetta Genomics, Inc, Philadelphia, Pennsyl-
vania) has been recently removed from the market (Table 1).

ThyrosSeq v3

The  ThyroSeq® v3 Genomic Classifier (GC), released for 
clinical use in 2018, is the enhanced version of the previous 
 Thyroseq® v2 [52]. The main advantages of the new ver-
sion of this “rule-in” method are the larger number of genes 
mutation hotspots and gene fusions analyzed, the analysis 

Table 1  Characteristics of the most recent available versions of commercial molecular tests

*This test is not yet available
CNA Copy Number Alterations, NGS Next-Generation Sequencing, GSC Genomic Sequencing Classifier, GEC Gene Expression Classifier, 
LOH Loss Of Heterozygosity; References into brackets; MTC medullary thyroid cancer, NPV negative predictive value, PPV positive predictive 
value, na not available

ThyroSeq® v3 Afirma® GSC ThyGeNEXT/ThyroMIR® RosettaGX Reveal™*

Methodology NGS mRNA gene expression NGS/microRNA expression microRNA expression
Substrate 1–2 drops from first FNA 

pass (if adequate cellular-
ity) or 1 dedicated cell 
pass

2 dedicated FNA passes 1 dedicated FNA pass Routinely stained direct 
smears

Mutations/fusions 112 genes (12,135 vari-
ants)/ > 120 fusions

BRAF mutations/RET-
PTC1, RET-PTC3 
fusions

10 genes (42 variants)/28 
fusions

None

Gene expression 19 genes 1115 genes None None
microRNA expression None None 10 mRNA 24 mRNA
CNA 10 chromosomal regions LOH None None
Assessment of thyroid fol-

licular cell content
Yes Yes Yes Yes

Marker for parathyroid Yes Yes Yes No
Marker for MTC Yes Yes Yes No
Data analysis Local or centralized Centralized Local Local
Price ($) 4056 (v2) 6400 (GEC) 1675 (ThyGeNEXT) 4000 

(ThyroMIR)
3700

Validation studies Steward et al. (2019) [65] Patel et al. (2018) [91] Labourier et al. (2015) [99] Lithwick-Yanai et al. (2017) 
[102]

Bethesda III–IV (n) 154–93 114–76 58–51 150
Prevalence of cancer III–IV 

(%)
23–35 25–22 32 21

Sensitivity III–IV (%) 91–97 93–88 94–82 74
Specificity III–IV (%) 85–75 71–64 80–91 74
NPV III–IV (%) 97–98 97–95 97–91 92
PPV III–IV (%) 64–68 51–42 68–82 43
Hürthle cell lesions (num-

ber)
49 26 na na

Prevalence of cancer (%) 20 35 na na
Sensitivity (%) 100 90 na na
Specificity (%) 67 59
NPV (%) 100 91
PPV (%) 43 53
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of DNA copy number alterations (CNA), and an improved 
accuracy for the detection of oncocytic (Hürthle cell) tumors 
[64].  ThyroSeq® v3 is based on a targeted next-generation 
sequencing of DNA and RNA to analyze 112 genes pro-
viding information on more than 12.000 hotspot mutations 
and more than 120 fusions, gene expression alterations in 
19 genes, and CNAs in 10 genomic regions. Quality con-
trol steps include gene expression analysis for markers to 
determine adequate thyroid follicular cell content, as well as 
markers to detect medullary thyroid carcinoma and non-thy-
roidal tissues (e.g., parathyroid tissue, metastatic carcinoma) 
(Table 1). The genomic classifier that the test uses is based 
on a score from 0 to 2 points for each genetic alteration, 
proportional to its association with cancer. GC scores of 0 
or 1 are considered negative for malignancy (with the latter 
reported as “currently negative” to indicate nodules with 
low-risk mutations for which active surveillance and repeat 
FNA could be considered), while GC scores ≥ 2 are consid-
ered positive results. Among nodules with positive results, 
 ThyroSeq® v3 provides further information on preoperative 
risk stratification based on the type of detected alterations 
and on their allelic frequency.

The test performance was validated in a multi-institu-
tional, prospective, blinded study [65]. In that study, 257 

nodules with indeterminate cytology were analyzed and 
resected tissue samples were obtained for histopathologi-
cal diagnosis.  ThyroSeq® v3 showed 94% sensitivity, 82% 
specificity, 97% NPV and 66% PPV among 247 Bethesda 
III/IV cases with a prevalence of malignancy of 28%. The 
new version of the test demonstrated an improved sen-
sitivity, but lower specificity and PPV compared to the 
previous version  (ThyroSeq® v2; 93% and 83%, respec-
tively) [52].  ThyroSeq® v3 has been shown to be extremely 
useful in the identification of Hurthle cell carcinomas 
(NPV: 100%), while only 43% of adenomas were correctly 
classified.

Post-validations studies are available only for the 
 ThyroSeq® v2 [52, 53, 66–70], and confirmed high NPV 
(94.5%, 95% CI 92.1–96.8%), but reported lower sensitiv-
ity (87.9%, 95% CI 82.9–92.9), specificity (71.2%, 95% 
CI 67.1–75.2%) and PPV (51.2%, 95% CI 45.4–57.1%) 
in comparison to the validation studies (Fig. 1 and Sup-
plemental Table 1). Moreover, considering a pre-test prob-
ability of 25.6, a positive post-test probability of 54.3%, 
and a negative post-test probability of 5.5% were reached.

Fig. 1  Forest plots for sensitivity, specificity, Positive and Negative Predictive Values (PPV, NPV) for  Thyroseq® v2. The first Author and the 
year of publication are indicated
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Afirma® gene expression classifier (GEC) 
and genomic sequencing classifier (GSC)

The  Afirma® Gene Expression Classifier (GEC, Veracyte) is 
a microarray-based test that uses a proprietary algorithm to 
predict benign lesions (“rule-out” method). The algorithm 
involves 2 steps. The first step screens for the expression 
of 25 genes to identify rare neoplasms such as medullary 
thyroid carcinoma (MTC). Only not excluded samples pro-
ceed to the second step, which evaluates the expression pro-
file of further 142 genes to classify indeterminate thyroid 
nodules into either benign (GEC-B) or suspicious (GEC-
S) categories. The test was validated in a multicenter, pro-
spective, blinded study [54] involving 210 nodules of the 
two indeterminate categories Bethesda III, IV, with a pre-
test malignancy rate of 24 and 25%, respectively. Authors 
showed high sensitivity (87%), but modest specificity (53%); 
the NPV and PPV were 95 and 94% and 38 and 37% in the 
two indeterminate categories, respectively. Differently, in 

one post-validation study a high frequency of false negative 
results was recorded [71]. It is worth noting that the inter-
pretation of the above mentioned results requires caution 
because of the small fraction of GEC-B nodules addressed 
to surgery in the clinical practice. Moreover, benign 
Hürthle cell nodules, which represents a large proportion 
of Bethesda III/IV categories, are frequently falsely clas-
sified as GEC-S [72–75]. Meta-analysis of all the available 
studies using  Afirma® and with available histological diag-
nosis [66, 71–90], showed a pooled sensitivity (95.7%, 95% 
CI 94.1–97.2%), specificity (16.4%, 95% CI 14.2–18.3%), 
PPV (37.6%, 95% CI 35.3–39.9%) and NPV (87.7%, 95% CI 
83.4–91.9%) of the test (Fig. 2 and Supplemental Table 2). 
Considering a pre-test probability of 34.5, a positive post-
test probability of 37.6%, and a negative post-test probability 
of 12.3% were reached.

To overcome the modest specificity and PPV of GEC, the 
Afirma BRAF test was introduced, which assays the expres-
sion profile together with BRAFV600Emutation [34]. However, 

Fig. 2  Forest plots for sensitivity, specificity, Positive and Negative Predictive Values (PPV, NPV) for  Afirma® Gene Expression Classifier 
(GEC). The first Author and the year of publication are indicated
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the investigation of BRAF mutation did not increase the PPV, 
mostly due to the low prevalence of classical variants of 
PTC in Bethesda III and IV nodules. Recently, the next-
generation  Afirma® Genomic Sequencing Classifier (GSC) 
has been developed to analyze the expression profile of 1115 
genes, with RNA-Seq methodology, and including the pos-
sibility to detect single nucleotide variants, fusions, and 
copy number variations in the coding region of the genome 
[91]. The GSC includes several quality control steps, such as 
the screening for the expression profile of parathyroid cells 
and the assessment of follicular cell content. The GSC can 
detect mitochondrial transcripts, and CNAs for the analysis 
of Hürthle cell lesions (Hürthle classifier), too. The GSC 
was validated on the same cohort used for the first gen-
eration  Afirma® GEC, showing increased specificity (from 
53 to 68%) and PPV (from 38 to 47%) while maintaining 
high sensitivity and NPV (Table 1). Furthermore, the GSC 
showed a highest specificity and PPV in Hürthle cell ade-
nomas compared to GEC. Independent reports comparing 
the performance of GSC with that of GEC confirmed these 
results [76, 92–94]. A broader test panel (Xpression Atlas) 
was developed to detect additional alterations, involved 
in thyroid neoplasms (761 variants in 346 genes and 130 
fusions) [95]. Of note, in both GSC and Xpression Atlas, 
mutations in the not transcribed portion of the genome, such 
as in the TERT promoter, are not included. Xpression Atlas 
was intended for Bethesda III/IV nodules with a GSC suspi-
cious (GSC-S) result. However, the impact of the addition of 
novel variants on improving the risk stratification of thyroid 
nodules remains to be established.

The  Afirma® GEC was developed to reduce the morbid-
ity and the cost of repeated FNAC and/or of unnecessary 
thyroid surgery, but contrasting results have been obtained 
in different settings regarding its actual impact. Indeed, it 
has been reported that after the availability of this test the 
number of indeterminate cytologies has increased without a 
significant reduction of surgical procedures [66, 75, 77, 78, 
96, 97], and the cost-effectiveness of the test in the clinical 
practice has been questioned [8]. On the other hand, in hypo-
thetical modeling, molecular test resulted considerably more 
cost-effective than diagnostic lobectomy, being  ThyroSeq® 
v3 more cost-effective than GSC [98].

ThyGeNEXT/ThyraMIR®

ThyGeNEXT® is a targeted next-generation sequencing test 
developed by Interpace Diagnostics that evaluates mutations 
in 10 genes (BRAF, H-, K-, and N-RAS, TERT, ALK, GNAS, 
RET, PTEN, and PIK3CA) and 38 different gene fusions 
(involving ALK, BRAF, NTRK-1, -2, and -3, PPARG , RET, 
and THADA).

To increase the sensitivity and NPV of the genotyp-
ing panel, Interpace Diagnostic pairs this test with a 

complementary miRNA expression classifier called 
 ThyraMIR®. Samples for which no mutations or gene 
fusions are detected by the targeted sequencing test, undergo 
further risk stratification with  ThyraMIR® which is based on 
the expression pattern of 10 miRNAs (miR-29b-1-5p, miR-
31-5p, miR-138-1-3p, miR-139-5p, miR-146b-5p, miR-155, 
miR-204-5p, miR-222-3p, miR-375, miR-551b-3p).

The miRNA classifiers were developed using miRNA 
expression data determined by RT-qPCR on a case–control 
training set consisted of 240 surgical specimens [99].

The test includes expression analysis for transcripts to 
confirm the thyroid follicular cell content and detect sam-
pling of parathyroid tissue and markers associated with 
medullary thyroid carcinoma (miR-375 and RET mutations) 
(Table 1).

The combined test was clinically validated using and 
earlier version of the NGS-based test called  ThyGenX®, 
which analyzes 7 genes (BRAF, H-, K-, and N-RAS genes) 
and 3 gene fusions (PAX8-PPARG, RET-PTC1, and RET-
PTC3), together with  ThyraMIR®. Among 109 Bethesda 
III/IV cases with a 32% prevalence of cancer, ThyGenX/
ThyraMIR® together demonstrated 89% sensitivity, 85% 
specificity, 94% NPV, 74% PPV, and a 61% benign call rate.

Banizs et al. 2019 [100] reported the establishment of an 
additional level to the two-level miRNA classifier described 
by Labourier et  al. [99]. The Authors showed that this 
miRNA sub-classification offers the opportunity to support 
non-surgical management in patients with weak or no driver 
mutations for low levels microRNA status while supporting 
the need diagnostic lobectomy for high microRNA status.

Additional post validation studies are certainly needed to 
better determine the accuracy of ThyGeNEXT/ThyroMIR®.

Rosetta GX reveal™

The Rosetta GX Reveal™ Thyroid Classifier (Rosetta 
Genomics Philadelphia, PA) was a validated test to meas-
ure the expression pattern of 24 miRNAs, found to be up- or 
down-regulated in PTC, directly on RNA extracted from 
stained FNA smears prepared for initial cytological evalu-
ation [101]. The advantage of the methodology was that it 
obviated the need to perform an additional collection of 
material for molecular testing after the fine needle aspira-
tion, since miRNAs were analyzed from the same sample 
used for cytological examination. The test is no longer com-
mercially available. The test used algorithms to classify 
indeterminate thyroid nodules into benign, suspicious for 
malignancy or positive for medullary carcinoma. Markers 
associated with thyroid epithelial cells were also included 
(Table 1).

The test was developed using a training set of 375 
FNAB smears and was validated using a blinded mul-
ticenter retrospective cohort of 189 cytologically 
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indeterminate cases, including 150 Bethesda III–IV cases, 
with their corresponding surgical specimens [102]. Con-
sidering classes III and IV, this validation study revealed 
74% sensitivity and specificity, 43% PPV and 92% NPV, 
with a malignancy rate of 21%. Of note, since no Hürthle 
carcinomas were included the validation study, the perfor-
mance of Rosetta GX Reveal™ in detecting these tumors 
was not determined.

Walts et  al. 2018 retrospectively compared the per-
formance of the  Afirma® GEC with that of Rosetta GX 
Reveal™ in a cohort of 80 Bethesda III–IV thyroid 
FNAs with surgical follow-up and a rate of malignancy 
of 20–23% [79]. Rosetta GX Reveal™ demonstrated a 
higher specificity compared to GEC (60.3% vs 9.5%) but a 
lower sensitivity (78% vs 94%). Interestingly, Rosetta GX 
Reveal™ outperformed GEC in the cohort of NIFTP and 
of Hürthle lesions. A retrospective study was performed 
in 2018 on a small cohort of 9 Bethesda III–IV thyroid 
FNAs with a prevalence of cancer of 30%, comparing the 
Rosetta GX Reveal™ and the ThyGenX/ThyraMIR® com-
bination tests [103]. The 2 tests had similar sensitivities 
and NPV (85 vs 89%, and 100% for both), while Rosetta 
GX™ showed a higher specificity (86 vs 71%) and higher 
PPV (75 vs 60%).

Non‑commercial tests

Although the clinical relevance of the above described 
commercial tests has been widely recognized, their high 
cost has prevented their extensive diffusion, particularly 
in European Countries. As a consequence, “home-made”, 
customized molecular tests have been developed, many 
of them never reported in the literature, mainly testing by 
PCR and direct sequencing BRAFV600E, RAS point muta-
tions and RET, TRK and PPARG  fusions (Fig. 3 and Sup-
plemental Table 3).

The first non-commercial panels reported in the lit-
erature were based on the analysis of the 7 most frequent 
genetic alterations in DTC, such as the first Nikiforov’s 
panel (BRAFV600E and BRAFK601E, RAS mutations at 
codons 12, 13, and 61, PAX8/PPARG, RET/PTC and 
TRK fusions). This panel was tested on 2 series obtaining 
sensitivities of 60–100%, specificities and PPV of 100%, 
NPVs of 92–100 in Bethesda III category, with a preva-
lence of malignancy of 14–17% and sensitivities of 77%, 
specificities and PPV of 100%, NPVs of 79% in Bethesda 
IV category, with a prevalence of malignancy of 52% [104, 
105]. In the same year, Cantara and co-Authors screened 

Fig. 3  Forest plots for sensitivity, specificity, Positive and Negative Predictive Values (PPV, NPV) for non-commercial 5- and 7-genes panels. 
The first Author and the year of publication are indicated
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the same molecular alterations in 41 indeterminate lesions 
with a sensitivity and a PPV of 86%, a specificity and NPV 
of 97% and a risk of malignancy of 17% [106], whereas 
Beaudenon-Huibregtse et al. found both a lower sensitivity 
(36/67%) and a NPV (56/86%) in a series of 41 indetermi-
nate cases analyzed by means of the same 7-genes panel, 
with a risk of malignancy of 50 and 32% in the III and IV 
categories, respectively [107].

In 2017, there were reported the results obtained in a 
large German cohort of 254 indeterminate cases analyzed 
for BRAF and RAS mutations and PAX8/PPARG and RET/
PTC rearrangements, by pyrosequencing and quantitative 
PCR, respectively, on air-dried FNA smears [108, 109]. In 
the AUS/FLUS category they found sensitivity and NPP 
(58% and 90%, respectively), comparable to those reported 
by Nikiforov, but a lower specificity (82%) and PPV (41%), 
with a risk of malignancy of 15%. In the FN/SFN category, 
the specificity (91%) was similar to that previously reported 
[104, 107], but the sensitivity was lower (27%), with a risk 
of malignancy of 17%. The detection of RAS/PAX8/PPARG  
genetic alterations in histologically benign nodules could 
have affected the specificity in all indeterminate categories, 
while the low sensitivity in the FN/SFN category was prob-
ably due to a very low mutation prevalence in follicular thy-
roid cancers and in follicular variant PTCs.

Bongiovanni et al. [110], after sampling by laser capture 
microdissection, applied the 7-gene panel prospectively and 
retrospectively on 23 FN/SFN, with a malignancy rate of 
57%, showing sensitivity and PPV of 67% and specificity 
and NPV of 92%.

Censi et al. [111] analyzed H-,K-, and N-RAS, TERT pro-
moter and BRAF gene mutations (5-gene panel) in a series 
of 199 consecutive indeterminate nodules with a sensitivity, 
specificity, PPV, NPV and risk of malignancy of 50, 78, 37, 
84%, and 22% in the AUS/FLUS category, and of 39, 85, 
79, 50%, and 58% in the FN/SNF category, respectively. The 
frequent detection of RAS mutation in benign samples, the 
lack of rearrangement analysis and the introduction of the 
new NIFTP histopathologic nomenclature may have played 
a part in the low PPV obtained in this study.

The same 5-gene panel was more recently interrogated on 
54 indeterminate nodules showing lower sensitivity (44%) 
and NPV (67%), but higher specificity and PPV (93 and 
85%) [112].

Overall, the pooled sensitivity, specificity, PPV and NPV 
of the 7-genes molecular test on Bethesda III/IV nodules was 
61.3% (95% CI 54.3–68.2%), 95.2% (95% CI 93.7–96.7%), 
76.5% (95% CI 69.7–83.2%) and 90.6% (95% CI 88.6–92.7), 
respectively. Considering a pre-test probability of 20.3, a 
positive post-test probability of 76.5%, and a negative post-
test probability of 9.4% were reached.

The pooled sensitivity of the 5-gene panel was 46.8%, 
(95% CI 36.7–56.9%), specificity 86.3% (95% CI 81–91.6%), 
PPV 66.7% (95% CI 55.3–78%) and NPV 73.5% (95% CI 
67.3–79.8). Considering a pre-test probability of 36.9, a 
positive post-test probability of 66.7%, and a negative post-
test probability of 26.4% were reached.

As expected, the 5 and 7 gene non-commercial panels are 
less sensitive, but more specific of the commercial  Afirma® 
and  Thyroseq® tests (Fig. 4).

Fig. 4  The pooled sensitivi-
ties, specificities, Positive and 
Negative Predictive Values 
(PPV, NPV) for commercial and 
non-commercial tests
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Several non-commercial panels for indeterminate cytolo-
gies have been also developed based on the analysis of dif-
ferent miRNAs, being miR-146 the only one tested in all 
series (Supplemental Table 3) [50, 80, 104–116].

Shen et al. [113] identified and validated a set of four 
miRNAs (miR-146b, -221, -187 and -30d) in 30 AUS sam-
ples, obtaining a sensitivity of 63.6%, specificity of 78.9%, 
PPV of 64%, and NPV of 79%, with a prevalence of malig-
nancy of 37%.

Santos et al. [114] developed a new molecular classifier 
test (mir-THYpe) that analyzes the expression profiles of 
11 miRNAs (let-7a, miR-103, miR-125a-5p, let-7b, miR-
145, RNU48, miR-146b, miR-152, miR-155, miR-200b, and 
miR-181b) obtained from the same FNA cytology smear 
slides used to classify the thyroid nodule as indeterminate. 
In the validation set, the mir-THYpe test reached 100–83% 
sensitivity, 82–79% specificity, 25–38% PPV, 100–97% 
NPP, 5–13% cancer prevalence in Bethesda III and IV nod-
ules, respectively. Mazeh et al. analyzed the expression of 
6 miRNAs (miR-21, -31,-146b, -187, -221 and -222) in 11 
indeterminate FNA samples, and found a sensitivity of 89%, 
specificity of 100%, PPV of 100% NPV of 66 [115], and a 
prevalence of malignancy of 63%.

Aside from these panels which analyzed the expression of 
miRNAs in FNA cytologies, some Authors investigated the 
use of circulating miRNA, which would represent a simpler 
and less invasive procedure [117–120]. In particular, Pilli 
et al. [120] analyzed the expression of two miRNA (mi-95, 
-190) in the serum of 72 Bethesda III and IV FNAC with 
an available histological diagnosis, reaching a sensitivity of 
71.9%, a specificity of 85%, PPV 79.3% and NNP 79.1%, 
with a prevalence of malignancy of 44%. Despite these 
promising results, the analysis of miRNAs in the serum 
poses some concerns, such as the low level of miRNAs 
and technical problems associated with the analysis of such 
samples.

Molecular testing of NIFTP

Noninvasive follicular thyroid neoplasm with papillary-like 
nuclear features (NIFTP) is an encapsulated or clearly delim-
ited, noninvasive neoplasm with a follicular growth pattern 
and nuclear features of PTC. This entity has been established 
in 2016 after the revision of the outcome of 108 patients 
with noninvasive follicular variant PTC not treated by radio-
active iodine by a working group of thyroid experts [121]. 
After a follow-up of at least 10 years there was no recurrence 
recorded, and this peculiar entity was then re-classified as 
non-malignant. This reclassification aims to avoid over-
treatment of patients with an indolent lesion. NIFTPs are 
associated with “RAS-like” mutations (RAS, BRAF K601E 
mutations, PAX8/PPARG, THADA fusions) [122], and share 

gene expression profile with encapsulated follicular-variant 
PTC, minimally invasive follicular carcinoma and follicular 
adenoma [80]. Since all the commercial tests described here 
were developed prior to the nomenclature change, NIFTPs 
were classified as malignant in the validation sets. Accord-
ingly, in both the validations studies and in the “real-world” 
clinical settings 95% and 80% of NIFTP were classified as 
suspicious/malignant by GEC or  ThyroSeq® v2, respec-
tively (Supplemental Tables 1 and 2). The reclassification 
of NIFTP as a benign neoplasm would likely affect the pre-
dictive value of these tests.

Conclusions

The diagnosis of indeterminate lesions of the thyroid is a 
challenge in cytopathology practice. Indeed, up to 30% of 
cases lack the morphological features needed to provide 
definitive classification. The molecular characterization of 
thyroid nodules has become more easy and exhaustive since 
the advent, in the last 10 years, of NGS and Gene Expres-
sion technologies which have provided better stratification 
of patients. Two different categories of molecular tests have 
been developed, the ‘rule-out’ methods, which aim reduce 
the avoidable treatment of benign nodules, and the ‘rule-in’ 
tests that have the purpose to optimize surgical management 
(total thyroidectomy or loboisthmectomy). Although each 
test has different advantages and limitations in the evalua-
tion of indeterminate FNA samples, they are progressively 
increasing their performance levels and are predicted to 
become an integral part of the thyroid nodule evaluation, 
especially if their cost will be reduced. Finally, it should 
be highlighted that the genetic characterization of a thyroid 
nodule has a positive impact not only in the initial treat-
ment but potentially in the follow-up of patients, too. Indeed, 
some molecular markers, including the most studied BRAF 
and TERT promoter mutations, have been shown to harbor 
a prognostic value and their evaluation is predicted to be of 
help in the stratification of patients into distinct risk groups 
and in a better assessment of their outcome.

Moreover, in the era of targeted therapies, knowing the 
molecular signature of the tumor is crucial for the selec-
tion of the most appropriate antineoplastic compound.
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