
1 3

J Endocrinol Invest (2016) 39:1–10
DOI 10.1007/s40618-015-0316-5

REVIEW

Circulating miRNAs as biomarkers for endocrine disorders

H. Butz1,3 · N. Kinga2 · K. Racz1,2 · A. Patocs1,2,3 

Received: 17 March 2015 / Accepted: 16 May 2015 / Published online: 28 May 2015 
© Italian Society of Endocrinology (SIE) 2015

Introduction

MicroRNAs (miRNAs) are small, protein non-coding RNAs 
that regulate gene expression post-transcriptionally, through 
RNA interference by targeting mRNAs at the 3′, 5′ untrans-
lated regions or even the coding sequence [1–4]. The 60–70 
nucleotide (nt) primary miRNAs are generated through tran-
scription by RNA polymerase II, which then are cleaved to the 
shorter precursor miRNAs (pre-miRs) by Drosha. The pre-
miRNA molecule is transported to the cytoplasm by Expor-
tin-5 and processed by another RNase III enzyme (Dicer). 
The product is an approximately 21 nt miRNA:miRNA* 
duplex, one strand of which is incorporating into miRNA-
induced silencing complex (miRISC) [5]. In the miRISC 
complex, through base pair alignment miRNAs cause trans-
lational repression, mRNA destabilization or mRNA cleav-
age. The other strand (passenger strand or miRNA*) is usu-
ally degraded [6]. It is thought that approximately 30–50 % of 
all protein-coding genes might be controlled by miRNAs [7, 
8]. One miRNA potentially affects the expression of several 
proteins, and one protein is influenced by numerous miRNAs. 
Their role is considered to set the gene expression to the opti-
mal level, or with other words to provide “fine tuning” and 
adaptive setting of gene expression [9].

Their roles have been demonstrated in the regulation of 
various physiological and pathophysiological cellular pro-
cesses such as proliferation, differentiation, metabolism 
and apoptosis. Differential miRNA expression in endocrine 
disorders including malignancies has also been reported 
[10–13].

MiRNAs as biomarkers in extracellular fluids (“cell-
free systems”) recently have been investigated and linked 
to diagnosis, prognosis and recurrence detection [14, 15]. 
Many reports showed correlations between miRNAs dys-
regulation in the peripheral blood and pathophysiological 
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conditions. Related to endocrine diseases, dysregulated 
miRNAs have been described in diabetes mellitus [16], in 
disorders affecting reproductive tissues [17], vitamin D 
signaling and bone [18], thyroid [19, 20], adrenal [21] and 
pituitary gland [22]. miRNAs have also been implicated in 
developmental processes of pituitary through regulating 
Lef-1 transcription factor [23], in pancreas through HES-1 
and neurogenin 3 [24, 25] and in the female reproductive 
system as well [26]. In addition, expression of mature miR-
NAs, genetic variations and polymorphisms of miRNAs 
encoding genes were associated with the prognosis and/or 
progression of diseases and drug responses [27–30].

A new chapter in miRNAs-related research has been 
starting by their identification outside from cells, in bioflu-
ids. These extracellular miRNAs have been considered as a 
novel type of signaling molecules and being secreted and 
taken up by various cells they may indeed function simi-
larly to hormones or cytokines. In this review we present 
recent data about the origin and function of these extra-
cellular miRNAs focusing on endocrine and metabolic 
diseases.

Extracellular (EC) miRNAs

Origin and function

Extracellular miRNAs have been detected in a wide variety 
of body fluids such as serum, plasma, urine, saliva, tears, 

peritoneal, pleural and cerebrospinal fluid, bronchoalveolar 
lavage, breast milk, amniotic and seminal fluid [31].

Unprotected “naked” miRNAs are sensitive to degra-
dation mainly through RNAses present in large amount 
in these fluids. Protection of miRNAs against RNases 
is provided by association of miRNAs with Argonaute 
(AGO) proteins and by packing them in microvesicles 
[32, 33] (Fig. 1). AGO proteins have been demonstrated 
in microvesicles as well suggesting their essential role in 
miRNA’s protection [34]. Microvesicles are secreted by 
nearly all kinds of cell such as like neural, stem cells, epi-
thelial cells, dendritic cells and lymphocytes [35–40].

The term microvesicle is often used generally for any 
type of vesicle regardless of the size or its origin. Exosomes 
are small (approximately 30–100 nm) membrane-limited 
secreted vesicles [41]. They are formed in the endoso-
mal compartments of cell (multivesicular endosomes or 
MVEs). In this compartment, extracellular molecules are 
stored, released or degraded by fusing with lysosomes after 
endocytosis. Exosomes can be released by fusion of the 
multivesicular endosomes with the plasma membrane [41]. 
Cells can release other types of vesicles as well by directly 
budding or shedding off the plasma membrane. These vesi-
cles are also referred as microvesicles, shed vesicles, or 
ectosomes but their size is more variable (typically between 
50 and 1000 nm) than the exosomes. Both exosomes and 
other microvesicles contain various molecules including 
mRNA, miRNA, proteins, cytokines and different surface 
receptors specific for their cell origin [42].

Fig. 1  Extracellular microR-
NAs in circulation. See detailed 
description in the text
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Beside exosomes and microvesicles, several miRNAs 
were found in high-density lipoprotein (HDL) particles 
and, therefore, their extracellular uptake by the host cells is 
dependent on the presence of HDL receptors [34].

It is described that one part of the extracellular miRNAs is 
byproduct of cell death, and it is also shown that the amount 
of miRNAs correlates with cell death in vitro [34]. But, inter-
estingly, not all mRNA molecules were found in exosomes, 
and literature data suggest that different RNA species can 
specifically be packaged by active sorting [35, 43, 44].

The function of microvesicles is still not yet clear; how-
ever, more and more studies proved their significant role in 
cell–cell communication in immunology and tumor biol-
ogy. Exosomes secreted by dendritic cells carry antigens 
and are able to induce immune response [39]. They can 
mediate paracrine signals of cancer cells as well influencing 
tumor microenvironment by exosome secretion in promot-
ing growth by inhibiting antitumor immune response and 
by facilitating angiogenesis, cell migration and metastasis 
[45–49]. Exosomal miR-21 and miR-29a were described to 
be internalized by immune cells surrounding cancer cells 
where they bind as ligands to the Toll-like receptor (TLR) 
family (TLR7 in murine and TLR8 in human) triggering a 
TLR-mediated prometastatic inflammatory response that 
ultimately may lead to tumor growth and metastasis [50]. 
Interestingly, tumor cells were found to exhibit self-pro-
moting effect by secreting microvesicles in glioblastoma 
and renal cancer cell lines [49, 51]. On the other hand, it 
was also described that metastatic gastric cancer cells can 
eliminate tumor suppressor miRNAs by exosome secretion 
[52]. Taking these data together it is reasonable to hypoth-
esize that in a malignant tumor overexpressed, oncogenic 
and downregulated tumor suppressor miRNAs can be 
exploited as potential biomarkers. As miRNAs are also tis-
sue specific they may be unique identifiers of certain tumor 
types [27], and if they secreted they could be specific bio-
markers to a certain diseases.

Extracellular miRNAs as biomarkers

MiRNAs are found to be very stable in extracellular flu-
ids and miRNA levels were demonstrated to be reproduc-
ible across individuals, robust against enzymatic cleavage, 
thawing–freezing cycles or pH changes [53–55].

The major source of extracellular miRNA in blood is 
obviously the blood and endothelial cells; however, tissue-
specific miRNAs, i.e., miR-122 from the liver, miR-124 
from the brain or miR-208b from the heart [56–58] are also 
detectable in the blood.

Tissue-specific miRNAs as biomarkers have been 
linked to tissue injuries, as miR-499 and miR-208b spe-
cific for myocardial infarction or mir-122 for the drug-
induced liver injury [57, 58]. Thus in malignant diseases, 

tumor-associated miRNAs were found in serum of patients 
with hematological diseases and in patients with solid 
tumors as well. For instance, the serum levels of miR-141, 
a miRNA expressed in prostate cancer, could distinguish 
prostate cancer patients from healthy individuals [55]. 
However, it is still not clear if extracellular miRNAs are 
derived from the tumor directly or derived from non-malig-
nant cells as a response to cancer for instance from white 
blood cells or tumor-reactive immune cells [34].

The level and composition of extracellular miRNAs have 
been shown to correlate well with disease progression, i.e., 
miR-221 in renal cell carcinoma, let-7f and miR-30e-3p in 
breast cancer [15, 59] or to predict biochemical recurrence 
in prostate cancer patients [60] or response to chemother-
apy in esophageal cancer [61].

Serum biomarkers in endocrine diseases

Microvesicles containing miRNAs can mediate autocrine, 
paracrine signaling and also can be transported substan-
tially longer distances via the circulatory system, hence 
they can be considered as a new kind of hormone-like enti-
ties. In this part, we summarized the data about circulat-
ing miRNAs and their associations found in endocrine and 
metabolic diseases.

In diabetes and metabolic disorders, Guay and Regazzi 
excellently reviewed the role of circulating miRNAs [62]. In 
brief, in diabetes mellitus type 2 (T2DM), Zampetaki and 
colleagues found that reduced miR-15a, miR-29b, miR-
126, miR-223, and elevated miR-28-3p levels preceded the 
manifestation of disease [63]. Another study performed by 
Kong et al. showed that 7 serum miRNAs (miR-9, miR-
29a, miR-30d, miR34a, miR-124a, miR146a and miR-375) 
were significantly upregulated in patients with T2DM com-
pared with patients having normal glucose tolerance (NGT) 
and five (miR-9, miR-29a, miR-34a, miR-146a, miR-375) 
were significantly upregulated in patients with T2DM com-
pared with patients having pre-diabetes [64]. However, the 
authors could not show difference between NGT and pre-
diabetes groups regarding these miRNAs [64]. Karolina 
et al. reported increased expression of miR-150, miR-192, 
miR-27a, miR-320a, and miR-375 in T2DM and metabolic 
syndrome compared to healthy individuals [65]. Expres-
sion of miR-27a and miR-320a displayed a strong positive 
correlation with fasting glucose level, thus highlighting 
their potential as key players in early-phase hyperglycemia, 
which could eventually result in the development of dia-
betes over time. Beside these miRNAs, miR-17 was found 
to be downregulated in T2DM, and the authors suggest a 
stronger implication of miR-17 in fully manifested diabe-
tes, instead of early-phase dysglycemia as seen in patients 
having metabolic syndrome [65]. They found miR-144 to 
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be upregulated in T2D, but metabolic syndrome [65]. Zhang 
et al. found that the expression of miR-126 was significantly 
reduced in patients with T2DM and pre-diabetic individuals 
with fasting glucose between 6.1 and 6.9 mmol/L compared 
to healthy controls [66]. They proposed that miR-126 in cir-
culation could serve as a potential biomarker for early iden-
tification of susceptible individuals to T2DM.

In type 1 diabetes mellitus (T1DM), Nielsen and col-
leagues identified twelve upregulated miRNAs (miR-152, 
miR-30a-5p, miR-181a, miR-24, miR-148a, miR-210, 
miR-27a, miR-29a, miR-26a, miR-27b, miR-25, miR-
200a) in sera of children with newly diagnosed disease 
[67]. They also found miR-25 as being negatively associ-
ated with residual beta cell function, and positively associ-
ated with glycaemic control (HbA1c) 3 months after onset. 
The authors suggest that miR-25 might be a “tissue-spe-
cific” miRNA for glycaemic control.

However, not in serum but in blood lymphocytes, miR-
326 was described to be overexpressed in T1DM subjects 
with ongoing islet autoimmunity compared to controls by 
Sebastiani et al. [68]. Similarly, not in cell-free serum, but 
in peripheral blood mononuclear cells miR-21a and miR-
93 were shown to be downregulated in T1DM patients [69]. 
Based on in vitro and in vivo experiments, circulating miR-
375 was identified as a biomarker of β cell death and diabe-
tes in mice by Erener et al. [70]. Increased miR-375 level 
was detected after high-dose streptozotocin (STZ) admin-
istration, prior to the onset of hyperglycemia both in vitro 
and in vivo mice experiments.

Related to patients having metabolic syndrome, sev-
eral circulating miRNAs were also identified in serum. 
miR-197, miR-23a, and miR-509-5p appeared as potential 
contributors of dyslipidemia in metabolic syndrome and 
miR-130a and miR-195 as contributors of hypertension 
(expression of these miRNAs correlated with blood pres-
sure; p = 0.019 and 0.045, respectively) [65]. Decreased 
miR-221 and miR-28-3p and increased concentrations in 
plasma of miR-486-5p, miR-486-3p, miR-142-3p, miR-
130b, and miR-423-5p were reported in childhood obesity 
[71]. Another study also found elevated miR-130b in a 
mouse model of obesity as well as in obese individuals. The 
authors showed that miR-130b was secreted during adipo-
genesis and was able to target muscle cells and reduce the 
expression of its direct target gene, PGC-1α (also known as 
PPARGC1A), which plays a key role in lipid oxidation in 
muscle. It is claimed that circulating miR-130b reflects the 
degree of obesity and could function as a metabolic media-
tor for adipose–muscle crosstalk [72].

Altered circulating miRNA expression was linked to 
non-alcoholic fatty liver disease (NAFLD). It was shown 
that serum levels of miR-122, miR-34a and miR-16 were 
significantly higher in patients with NAFLD compared 
to controls and positively correlated with disease severity 

[73]. The expression of these two miRNAs also correlated 
with liver enzymes levels, serum lipids, fibrosis stage and 
inflammation activity in NAFLD patients [73]. Vickers 
et al. reported that human HDL-miRNA profile of normal 
subjects is significantly different from that of individuals 
with familial hypercholesterolemia [74]. HDL containing 
miRNAs (miR-223 and miR-375) from atherosclerotic sub-
jects induced differential gene expression with decrease of 
RhoB and Ephrin A1 in cultured hepatocytes [74]. Based 
on these results miRNAs embedded in HDL molecules 
can be delivered to the liver and mediate gene expression 
regulation.

Endocrine tumors

Compared to other tumor types in endocrine tumors, there 
is still a lot of opportunity to investigate extracellular 
miRNAs. There are several publications showing miRNA 
expression data in neuroendocrine tumors (NET) [75, 76], 
but there is a lack of information regarding, e.g., pituitary 
adenomas and pheochromocytomas. Serum miR-1290 was 
found to be overexpressed but statistically not significantly 
in pancreatic NET compared to normal controls (Table 1); 
however, it was able to discriminate pNETs from pancre-
atic cancer with 0.80 (95 % CI 0.67–0.93) AUC character-
istic [77].

Regarding thyroid neoplasms, Yu et al. published that 
the expression of serum let-7e, miR-151-5p and miR-222 
was increased in papillary thyroid cancer (PTC) compared 
to benign lesions and healthy controls [78]. The ROC 
analysis of the combination of these three miRNAs in dis-
criminating PTC from benign nodules and healthy controls 
showed 0.917 and 0.897 AUC values, respectively. Moreo-
ver, the serum let-7e, miR-151-5p and miR-222 expression 
correlated well with nodal status, tumor size, multifocal 
status and TNM stage. Increased expression of miR-151-5p 
and miR-222 was detected in the tumor tissues as well, and 
in serum the level of the two miRs decreased after tumor 
excision [78].

In another study, Lee et al. also published that miR-222, 
beside miR-146b, was overexpressed in PTC compared to 
healthy individuals [79]. Also, these two miRs’ expressions 
in the plasma were higher in recurrent PTCs compared to 
non-recurrent disease. It was also described that miR-222 
and miR-146b levels dropped in plasma following total thy-
roidectomy [79]. Another publication of this group showed 
that miR-146b and miR-155 were expressed at a higher level 
in plasma of patients having PTC compared to benign thy-
roid nodules [80]. They also found that miR-146b, miR-155 
and miR-222 were slightly higher in patients with lymph 
node metastasis than in patients without lymph node involve-
ment [80]. The third study identified miR-579, miR-95, 
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miR-29b as being downregulated and miR-190 upregulated 
in serum of PTC patients compared to patients with nodular 
goiter (NG) and healthy controls [81]. By combining expres-
sion data of miR-95 and miR-190, the authors developed a 
multivariate risk model which was able to differentiate PTC 
samples from NGs with 0.99 AUC [81]. In addition, miR-
579 and miR-95 were significantly downregulated in PTC 
compared with NG, while miR-190 was upregulated in PTC 
both at tissue level and in serum samples.

Regarding adrenal neoplasms, several studies showed 
that adrenocortical cancer-specific miRNAs miR-34a and 
miR-483-5p were able to differentiate adrenocortical car-
cinoma (ACC) from adrenocortical adenomas (ACA) [82]. 
Moreover, they observed miR-34a and miR-483-5p secre-
tion by ACC cells to cell culture media. Szabó and col-
leagues reported that the difference between expression of 
miR-210 and miR-181 [(dCT(miR-210)-dCT(miR-181b)] 
and the ratio of dCT(miR-100)/dCt(miR181b) could be 
used with high diagnostic accuracy in differentiating 
ACC from ACA [83]. In a third publication, Chabre et al. 
showed that miR-195 and miR-335 levels were decreased 
in both tumor tissues and serum samples compared to 
ACA patients or healthy controls [84]. They also found 
that miR-483-5p, which was markedly upregulated in ACC 
patients compared to ACA, was detectable only in the 
serum obtained from patients with aggressive ACC [84]. 
They also showed that high miR-483-5p and low miR-195 
circulating levels were associated with shorter recurrence-
free and overall survival, hence the authors claimed that 
these miRNAs could be used as a prognostic biomarker for 
clinical outcome of ACC patients. In all three studies, miR-
483-5p was found to be upregulated in ACC patients; there-
fore, it is probably a very useful, non-invasive biomarker 
candidate for this very aggressive cancer.

In pituitary tumors, several targets have been validated 
at tissue level. For instance PTEN, BMI1, E2F1 in growth 
hormone-producing adenomas, SMAD3 in non-functioning 
adenomas and PRKCD in ACTH-secreting tumors have 
been proved to be targeted by several miRNAs [85–88]. 
Also, there are genes like HMGA1-2, WEE1, AIP, CCNA2 
that are controlled by miRNAs in more than one pituitary 
adenoma type as well [89–92]. However, several miRNAs 
were identified correlating with clinical features such as 
tumor size [87, 93], disease recurrence [94] or treatment 
[95–97], there is no study yet profiling circulating miRNAs 
(or exosomes) as biomarkers in pituitary adenoma patients 
based on literature search [98]. However, Wang et al. inves-
tigated the plasma levels of three miRNAs (miR-21, miR-
128 and miR-342-3p) in 10 pituitary adenoma specimens 
as control for identifying biomarkers for glioma, but those 
were proved to be specific only in glioma patients [99].

In patients with pheochromocytoma miR-483-5p, miR-
183, and miR-101 were proved to be diagnostic markers for Ta
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distinguishing malignant from benign pheochromocytomas 
at tissue level [100]. Though these miRNAs were detect-
able in patients’ serum as well, their expression level was 
too low to obtain significant difference [100]. This study 
draws our attention to summarize those technical consid-
erations which have to be considered during studying extra-
cellular miRNAs.

Technical considerations

In general, an ideal marker should be easily measured by 
non-invasive sample collection. Therefore, blood and urine 
are the most commonly used matrixes used in laboratory 
testing. The marker should be specific to the pathologic 
condition bearing clinically acceptable (high) specificity 
and sensitivity and relatively inexpensive to quantify. Bio-
markers that can be used to stratify disease and assess ther-
apy response or disease progression are also valuable.

Compared to messenger RNAs, miRNAs are more stable 
and, therefore, they are attractive potential biomarker can-
didates. However, there are some inconsistencies among 
the results of different studies which may be related to 
different sampling, different detection techniques and/or 
selection of internal controls.

There is no clear recommendation whether serum or 
plasma is more suitable for investigating extracellular 
miRNAs. However, a higher miRNA concentration was 
observed in serum compared to the corresponding plasma 
samples. The difference between serum and plasma miRNA 
concentrations showed some associations with miRNA 
originated from platelets suggesting that the coagulation 
process may affect the spectrum of extracellular miRNA in 
blood [101]. Because a large amount of miRNAs are pre-
sent in blood cells, it is important to avoid cell contamina-
tion and disruption, such as hemolysis. In this latter case, 
miRNAs characteristic to red blood cells can appear in the 
sample and may bias the miRNA expression profile [102].

To date, there are no standardized protocols for miRNA 
extraction from biofluids or quality/quantity assessment 
of the purified RNA either. Different, even commercially 
available extraction kits are available for cell-free total 
RNA extraction from biofluids. According to microvesi-
cles, the most common used methods are differential cen-
trifugation, combining ultracentrifugation and nanomem-
brane ultrafiltration. Extraction from cell-free body fluids 
usually yields very low RNA concentrations especially in 
case of urine or cerebrospinal fluid. Nanospectrophotom-
etry is greatly affected by RNA concentration, and these 
low-concentration samples often do not pass through the 
conventional RNA quality criteria (A260/A230 and A260/
A280). Even so, they typically perform well in real-time 
quantitative PCR (RT-qPCR) experiments.

Recent years resulted in several high-throughput 
techniques such as miRNA microarrays, PCR arrays 
or next generation sequencing which may be useful for 
an initial screening for identification of the miRNome 
expression profile and for selection of the specific bio-
marker candidates. However, regarding cell-free bio-
fluids, they require a large volume of starting material. 
The analysis of miRNA expression by sequencing is 
challenging because the sequences are short, and there 
is a high homology among members of miRNA families 
(sometimes only one base difference), hence it is hard to 
achieve high sensitivity and specificity. The most widely 
accepted “gold standard” method is a two-step approach 
using looped miRNA-specific reverse transcription prim-
ers and TaqMan probes.

Another key factor in miRNA expression measurements 
is the reference standard. A proper endogenous control 
should be the same biotype molecule, stable, abundant and 
expressed irrespective of biological variance and medical 
conditions. A valid normalization could help to minimize 
the technical differences and remove systemic bias among 
different studies. Different small nuclear RNA (RNU) 
molecules or miR-16 are often used as endogenous con-
trol; however, lacking a valid housekeeping normalization 
by input volume is also applied using different spike-in 
controls [77, 103–105]. It is worth noticing that the same 
starting volume does not guarantee equal amount of RNA/
miRNA content. For instance, the purified RNA yield can 
differ among samples from different individuals which 
make the normalization even more complicated.

Conclusion and future perspectives

Specific, sensitive, non-invasive and cheaply detectable 
biomarkers are always needed in diagnosis of diseases. Cir-
culating miRNAs can be actively secreted and delivered to 
distant cell types. In this context, they can be considered as 
a new type of paracrine regulators, and a miRNA-mediated 
cell–cell communication can be hypothesized. Extracellular 
miRNAs are detectable in malignant diseases hence they 
can be diagnostic or prognostic biomarkers. To date, only 
limited data are available about the true diagnostic power 
of extracellular miRNAs. Harmonization of extraction and 
quantification methods is essential in identification of clini-
cally significant miRNAs. In the future, there is still a need 
to improve simple standard assays for quantification, estab-
lish the specificity and sensitivity by comparing miRNA 
expressions among different types of cancer and healthy or 
pathological conditions.
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