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The identification of αKlotho as co-receptor of FGF23 
has broadened our understanding of mineral metabolism. 
Emerging evidence suggests that αKlotho also acts inde-
pendently of FGF23 as a phosphate regulator. αKlotho 
contributes to phosphate homeostasis via interplay with 
other calciophosphotropic hormones (parathyroid hor-
mone, FGF23, and 1,25-[OH]2 vitamin D) in the kidney, 
bone, intestine, and parathyroid gland. αKlotho deficiency 
triggers and aggravates deranged mineral metabolism, sec-
ondary hyperparathyroidism, vascular calcification, cardiac 
hypertrophy and fibrosis, and kidney fibrosis as evident in 
chronic kidney disease (CKD) and end-stage renal disease 
(ESRD). This review will update current understanding of 
αKlotho and its contribution to maintenance of phosphate 
homeostasis. The contribution of αKlotho to aging, acute 
kidney injury and chronic kidney disease has been recently 
reviewed [6–13].

Overview of phosphate homeostasis

Phosphorus, its element of phosphate, is the 6th most abun-
dant element in the human being. About 1 % of body phos-
phate is present in extracellular fluid. Serum phosphate 
serves as an exchange pool among various phosphate-reg-
ulating organs (kidney, intestine, and bone) [9, 14]. Fecal 
and urine phosphate excretion is a major way to maintain 
phosphate homeostasis through a complicated, but tightly 
and efficiently regulated network consisting of several cal-
ciophosphotropic hormones (PTH, FGF23, 1,25-[OH]2 
vitamin D) which are dedicated to both calcium and phos-
phate regulation [15–17].

FGF23, known as a phosphatonin, is predominantly 
synthesized in osteocytes and osteoblasts [12, 18–20]. It 
is regulated by dietary phosphate intake, serum phosphate, 
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Introduction

Alpha-Klotho (αKlotho) and fibroblast growth factor23 
(FGF23) were independently discovered in 1997 [1] and 
2000 [2] and were identified as an anti-aging protein and a 
novel phosphatonin, respectively. Interestingly, the FGF23-
null mouse phenocopies almost all features of the αKlotho-
null mouse suggesting that αKlotho and FGF23 may share 
common signaling pathways at least in the maintenance 
of mineral metabolism [3]. In vitro experiments further 
confirmed that membrane αKlotho functions as a manda-
tory co-receptor for FGF23 along with the FGF receptor 
(FGFR) to transduce FGF23 signaling to modulate calcium 
and phosphate metabolism as a calciophosphotropic hor-
mone [4, 5].
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1,25-(OH)2 vitamin D, PTH, and αKlotho, and mainly tar-
gets FGFRs through formation of a tertiary complex with 
membrane αKlotho protein to inhibit renal phosphate reab-
sorption by decreasing NaPi transport activity and to sup-
press 1,25-(OH)2 vitamin D production in the kidney [21–
25]. FGF23 also decreases PTH production, which in turn 
decreases bone turnover [12, 26].

Synthesized by chief cells in parathyroid glands, PTH 
responses directly to extracellular calcium concentration 
via calcium-sensing receptor and changes in PTH mRNA 
stability [27, 28]. PTH acts as phosphaturic hormone, 
reducing tubular phosphate reabsorption through promot-
ing endocytosis of the Na-coupled phosphate transporters 
NaPi-2a and 2c in proximal tubular epithelial cells, thus 
increasing urinary phosphate excretion [29–31]. PTH also 
modulates bone turnover, contributing to calcium and phos-
phate homeostasis of the skeleton [32]. In early stage of 
hyperparathyroidism, PTH stimulates bone release of cal-
cium and phosphate, enhances intestinal absorption of cal-
cium and phosphate, and increases renal calcium reabsorp-
tion while decreasing urinary phosphate reabsorption, thus 
maintaining a relatively normal serum phosphate concen-
tration [33]. High PTH can stimulate the secretion of 1,25-
(OH)2 vitamin D and FGF23 [12].

1,25-(OH)2 vitamin D, whose production is suppressed 
by membrane α-Klotho [8, 15], activates intestinal cal-
cium and phosphate absorption. However, active vitamin D 
stimulates α-Klotho production in the kidney. Independent 
of changes in intestinal calcium absorption and serum cal-
cium, 1,25-(OH)2 vitamin D represses the transcription of 
PTH by associating with the vitamin D receptor, decreasing 
renal excretion of phosphate [34]. High vitamin D may also 
decrease FGF23 levels, further limiting phosphate excre-
tion [12].

αKlotho is predominantly expressed in renal distal convo-
luted tubules with lower abundance in proximal convoluted 
tubules, and also in parathyroid chief cells, making the kid-
ney and parathyroid gland the primary FGF23 target organs 
[26, 35]. FGF23, without the participation of αKlotho, fails 
to regulate phosphate homeostasis. When HEK293 cells 
are co-transfected with a αKlotho and FGFRs, they acquire 
the ability to respond to FGF23 and activate FGF signaling 
[36]. Both FGF23-deficient [36] and αKlotho-deficient mice 
[1, 37] showed increased serum levels of phosphate and 
1,25-(OH)2 vitamin D, which may result from impaired sup-
pression of cyp27b1 [38] and NaPi activity [35, 39]. Both 
circulating soluble αKlotho and membrane αKlotho can 
suppress the secretion of PTH and 1,25-(OH)2 vitamin D, 
thus indirectly influencing the production of FGF23 [8, 15]. 
Whether αKlotho directly modulates FGF23 production in 
the bone remains to be confirmed.

Taken together, almost all players implicated in phos-
phate homeostasis are PTH, 1,25(OH)2 vitamin D, FGF23, 

and αKlotho that regulate phosphate metabolism indepen-
dently and are also highly interrelated through modulation 
of other hormones’ metabolism.

Role of abnormal αKlotho in disturbed phosphate 
metabolism

αKlotho deficiency

The role of αKlotho in phosphate homeostasis was rec-
ognized as soon as αKlotho was discovered because the 
αKlotho-deficient mouse demonstrates severe hyperphos-
phatemia [1]. This was further confirmed by the fact that 
there is low serum phosphate in αKlotho-overexpressing 
mice [40]. A patient with homozygous missense muta-
tion (H193R) in the αKLOTHO gene had severe calcino-
sis, dural and carotid artery calcifications, severe hyper-
phosphatemia, hypercalcemia, and high serum 1,25-(OH)2 
vitamin D and FGF23 [41]. This mutation conceivably 
destabilizes KL1 domain of αKlotho, thereby attenuating 
production of membrane-bound and soluble αKlotho pro-
tein [41]. Therefore, αKLOTHO is a novel candidate gene 
for genetic hyperphosphatemia and calcinosis.

Emerging evidence in CKD and ESRD showed that 
kidney disease is a status of αKlotho deficiency. Although 
the mechanism of reduced circulating αKlotho is largely 
unclear, it is conceivable that αKlotho deficiency might be 
involved in the development of CKD–mineral bone disease 
(CKD-MBD): hyperphosphatemia, hyperparathyroidism, 
and vascular calcification. Hopefully αKlotho administra-
tion will be a novel strategy for CKD-MBD [7, 42].

αKlotho overexpression

It is interesting to note that extremely high-circulating 
αKlotho does not necessarily have better impact on mineral 
metabolism. In 2008, Brownstein and colleagues reported 
one case featuring hypophosphatemic rickets, hyperparath-
yroidism, >10- to 20-fold higher circulating αKlotho due 
to a balanced chromosomal translocation between 9q21.13 
and 13q13.1 [43]. Unexpectedly, there were higher levels 
of circulating FGF23 and PTH which can trigger or exac-
erbate hypophosphatemia and osteodystrophy [43]. Up to 
now, the mechanism of αKlotho-induced elevation of these 
two phosphotropic hormones still has not been completely 
elucidated.

Similar phenotypic features were seen in mice with ade-
novirally delivered soluble αKlotho gene [44]. Mice had 
extremely high levels of circulating αKlotho (5- to 20-fold 
normal) and exhibited hypophosphatemia, hypocalcemia, 
reduced bone mineral content, expanded growth plates, 
and severe osteomalacia, and fracture. In addition, these 
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mice had markedly elevated level of FGF23 (38- to 456-
fold) in the circulation, and Fgf23 mRNA (>150-fold) in 
bone. Therefore, soluble αKlotho protein in very high lev-
els potently stimulates FGF23 production through yet-to-be 
identified mechanism [44].

Taken together, modulation of circulating αKlotho 
within a desired range is required for the maintenance of 
phosphate balance to protect against phosphate toxic-
ity. Both pathological increase and decrease in circulat-
ing αKlotho can cause disturbed phosphate homeostasis. 
Obviously, many clinical features in the patient with loss-
of-function mutation in αKLOTHO gene [41] and in the 
patient with gain-of-function translocation of αKLOTHO 
gene [44] differ from those in αKlotho-deficient [1] or 
αKlotho-overexpressing mice [40], but the mechanism 
remains unexplained.

αKlotho effect on Na‑dependent phosphate 
cotransporters

External phosphate balance is achieved through modula-
tion of intestinal uptake of phosphate from diet, and renal 
reabsorption of phosphate from urine via regulation of 
NaPi activity. Type II (SLCA34) and type III (SLC20) Na-
coupled phosphate transporters are responsible for uptake 
of extracellular phosphate [45–47]. The type II transport-
ers NaPi-2a and NaPi-2c play a major role in phosphate 
reabsorption in the kidney and NaPi-2b mediates phosphate 
absorption in the intestine. Type III cotransporters includ-
ing PiT-1 and PiT-2 are expressed in more broad tissues. 
PiT-1 also exists in bone and kidney and PiT-2 in intestine 
and bone. They are assumed to participate in control of 

phosphate absorption in the intestine, phosphate reabsorp-
tion and excretion in the kidney, and phosphate release 
and storage in the bone [45–48] (Table 1). Note that both 
NaPi-II and III isoforms control phosphate influx across the 
apical membrane, but the mechanism of phosphate efflux 
across the basolateral membrane remains to be identified.

αKlotho regulation of phosphate transport in the kidney

In the kidney, in addition to NaPi-2a and 2c whose expres-
sion pattern and function have been well characterized in 
proximal tubules, mRNA of both PiT-1 and PiT-2 was also 
detected, but only PiT-2 protein and its function in proxi-
mal tubular epithelia were noted [49, 50]. After a high 
phosphate diet, rats showed marked increase in serum 
phosphate with gradual down-regulation of phosphate reab-
sorption mediated by decrease in NaPi-2a (<1 h) followed 
by delayed and eventual down-regulation of PiT-2 (>8  h) 
and NaPi-2c (>24  h) [51]. NaPi-2a- and NaPi-2c-medi-
ated transport is suppressed by 32  % and PiT2-mediated 
transport by 73  %, with phosphate loading, which proves 
PiT-2 to be highly regulated at an intermediate time course 
between NaPi-2a and NaPi-2c [51]. The biological function 
of PiT-1 in the renal phosphate transport is uncharacterized.

αKlotho deficiency up-regulates, and αKlotho overex-
pression or supplementation down-regulates NaPi-2a expres-
sion in the kidney and NaPi transport activity (Fig. 1) [35, 
39, 52]. In addition, αKlotho deficiency is associated with 
up-regulation of NaPi-2c in the kidney [54], which should 
exacerbate hyperphosphatemia in αKlotho-deficient mice.

More interestingly, circulating soluble αKlotho 
can directly suppress NaPi transport activity, because 
αKlotho does so when directly added to cultured proximal 

Table 1   Effect of αKlotho on Na-dependent phosphate cotransporters

S, segment of the proximal tubule which is subdivided into three segments present in the cortical labyrinth and the medullar rays; S1, first por-
tion of proximal convoluted tubule; S2, latter portion of proximal convoluted tubule and first portion of proximal straight tubule; S3, latter por-
tion of proximal straight tubule

Isoforms Substrates Expression location αKlotho effect

Expression abundance Transport activity

NaPi-2a 3Na+/HPO4
2– Kidney: S1, 2, 3

bone: osteoblast

↓
N/a

↓
N/a

NaPi-2b 3Na+/HPO4
2– Intestine: enterocytes in duodenum and jejunum

Bone: only mRNA detected

↓
N/a

↓
N/a

NaPi-2c 2Na+/HPO4
2– Kidney: S1, S2 ↓ N/a

PiT-1 2Na+/H2PO4
– Kidney: only mRNA detected

Intestine: enterocytes in duodenum and jejunum
Bone: osteoblast
Artery: smooth muscle cell

N/a
N/a
N/a
↓

N/a
N/a
N/a
↓

PiT-2 2Na+/H2PO4
– Kidney: S1, S2

Intestine: only mRNA detected
Bone: osteoblast with low abundance

N/a
N/a
N/a

N/a
N/a
N/a
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tubule-like cells, and in cell-free brush border membrane 
vesicles (BBMV) without FGF23. The fact that FGF23 
null mice preserve the ability to increase urine phosphate 
excretion in response to soluble αKlotho [35] further sup-
ports that αKlotho also has FGF23-independent pathway to 
induce phosphaturia. αKlotho appears to function as gly-
cosidase acting on a yet unknown substrate in the brush 
border, since glucuronidase inhibitor can reverse αKlotho’s 
action on NaPi transport in both BBMV and cultured cells. 
Chronic effect of αKlotho on inhibition of NaPi-2a is asso-
ciated with induction of NaPi-2a internalization and deg-
radation through modification of moieties of sugar chain 
in NaPi-2a [35]. Thus far, mechanism of αKlotho effect on 
NaPi-2c is still completely elusive.

αKlotho effect on phosphate transport in the intestine

In the duodenum and jejunum, expression of NaPi-2b and 
both type III cotransporter isoforms (PiT-1 and PiT-2) has 
been reported [53, 54]. In mice, the functional NaPi-2b, 
PiT-1 and PiT2 are also present in ileum [55], but NaPi-
2b and PiT-1 are thought to be most active in modulating 
intestinal phosphate absorption. In comparison with PiT-1, 
NaPi-2b is the major transporter that mediates phosphate 

absorption [53]. The αKlotho-deficient mice displayed 
an increased activity of intestinal NaPi transport, and 
increased levels of NaPi-2b protein compared with WT 
mice [52], indicating that up-regulation of NaPi-2b protein 
and activity may be one of the molecular mechanisms of 
hyperphosphatemia in αKlotho-deficient mice. The fact that 
co-expression of αKlotho decreased phosphate-induced 
current in NaPi-2b-expressing Xenopus oocytes [56] fur-
ther supports that αKlotho directly down-regulates NaPi-2b 
activity (Fig. 1). But the effect of αKlotho on PiT-1 in the 
intestine needs to be identified.

αKlotho effect on the phosphate transport in the bone

Bone does not only provide mechanical support, but also 
contributes to the maintenance of circulating phosphate and 
calcium as a target organ of several calciophosphotropic 
hormones such as 1,25-(OH)2 vitamin D, PTH, FGF23, and 
αKlotho, and as an organ producing FGF23.

There is high PiT-1 mRNA with low PiT-2 mRNA abun-
dance in osteoblasts [57]. Only PiT-1 rather PiT-2 mRNA 
was up-regulated by phosphate deprivation and Ca2+ treat-
ment, which suggests that PiT-1 may play a more impor-
tant role in phosphate trafficking across the bone [58]. Both 

Pi in
Extracellular 

fluid

NaPi-2b
PiT-1
PiT-2?

Dietary Pi intake

Urinary PiFecal Pi

NaPi-2a
NaPi-2c
PiT-1?
PiT-2

NaPi-2a
NaPi-2b?

PiT-1
PiT-2?

Membrane Klotho

Soluble Klothoα

?

Soluble Klotho

α

α
/FGF23/FGFRs

Fig. 1   αKlotho inhibits Na-dependent phosphate co-transporters. 
Phosphate absorption from food is regulated by NaPi-2b and PiT-1 
in small intestine, and phosphate reabsorption from urine by NaPi-
2a, 2c and PiT-2 in renal proximal tubules. Gut and kidney are the 
two major organs to modulate phosphate excretion based on dietary 
intake and phosphate concentration in extracellular fluid, which is 
also maintained by phosphate trafficking across bone controlled by 
NaPi-2a and PiT-1 in osteoblast. Membrane αKlotho can regulate 
urinary phosphate excretion through FGF23 signaling pathway. In 
addition, soluble αKlotho can also exert phosphaturic action via a 

FGF23-independent manner to directly modulate NaPi-2a activity. 
The role of αKlotho in modulation of bone formation is known but 
αKlotho protein is not expressed in bone; soluble αKlotho is there-
fore considered an alternative candidate. How soluble αKlotho affects 
NaPi transport activity in the bone has not been addressed, although 
αKlotho has been shown to suppress NaPi-2a expression and activ-
ity in proximal tubules and PiT-1 expression and activity in vascular 
smooth muscle cells. Therefore, it is still premature to conclude that 
αKlotho can directly affect bone development and mineralization
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NaPi-2a and NaPi-2b were recently found in osteoblast-like 
cell lines and play a role in phosphate flux to modulate min-
eralization [59]. But their responses to phosphate challenge 
differed, as phosphate supplementation only up-regulated 
NaPi-2a, and not NaPi-2b; whereas phosphate deprivation did 
not change either one. Whether these isoforms play distinct 
roles in phosphate trafficking across the bone individually, or 
in concert at different scenarios, remains to be explored.

The osteopenia in αKlotho-deficient mice has been rec-
ognized for more than one decade [1, 60–62]. However, 
there is no αKlotho protein expression in the bone; soluble 
αKlotho may be, therefore, a contributor to maintenance of 
bone formation (Fig. 1).

Conclusive remarks

Several lines of emerging evidence suggest that αKlotho 
deficiency and hyperphosphatemia are considered as risks 
for the high morbidity and mortality of cardiovascular dis-
eases in CKD/ESRD [7, 63–71]. Therefore, the potential 
indication for αKlotho therapy will be genetic and acquired 
hyperphosphatemia such as CKD/ESRD. Better under-
standing of αKlotho physiology and pathophysiology will 
help to develop new drugs that may correct hyperphos-
phatemia and hypo-αKlotho-temia and to improve long-
term outcome of CKD/ESRD patients.
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