
REVIEW

Combined pituitary hormone deficiency: current and future status
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Abstract Over the last two decades, the understanding of

the mechanisms involved in pituitary ontogenesis has lar-

gely increased. Since the first description of POU1F1

human mutations responsible for a well-defined phenotype

without extra-pituitary malformation, several other genetic

defects of transcription factors have been reported with

variable degrees of phenotype–genotype correlations.

However, to date, despite the identification of an increased

number of genetic causes of isolated or multiple pituitary

deficiencies, the etiology of most (80–90 %) congenital

cases of hypopituitarism remains unsolved. Identifying

new etiologies is of importance as a post-natal diagnosis to

better diagnose and treat the patients (delayed pituitary

deficiencies, differential diagnosis of a pituitary mass on

MRI, etc.), and as a prenatal diagnosis to decrease the risk

of early death (undiagnosed corticotroph deficiency for

instance). The aim of this review is to summarize the main

etiologies and phenotypes of combined pituitary hormone

deficiencies, associated or not with extra-pituitary anoma-

lies, and to suggest how the identification of such etiologies

could be improved in the near future.

Keywords Pituitary development � Somatotroph

deficiency � Corticotroph deficiency � Thyrotroph

deficiency � Gonadotroph deficiency � Transcription factor �
Hypothalamus

Introduction

Over the last two decades, the understanding of the

mechanisms involved in pituitary ontogenesis has largely

increased. Since the first description of POU1F1 human

mutations responsible for a well-defined phenotype without

extra-pituitary malformation, several other genetic defects

of transcription factors have been reported with variable

degrees of phenotype–genotype correlations (Table 1).

Two categories of patients with congenital hypopitu-

itarism can be defined (1):

• The first group harbors a complex phenotype including

anterior pituitary hormone deficiencies in association

with extra-pituitary abnormalities or malformations on

MRI such as pituitary stalk interruption syndrome or

midline defects. The transcription factors genes

involved in these phenotypes are early expressed in
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APHM, Hôpital de la Conception, Laboratoire de Biologie
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regions that determine the formation of forebrain and

related midline structures such as the hypothalamus and

pituitary. Mutations in these genes are therefore

characterized by marked phenotypic heterogeneity.

• The second group corresponds to a ‘‘pure’’ endocrine

phenotype including anterior pituitary hormone defi-

ciencies (progressive or not), normal hypothalamo-

pituitary morphology at MRI (regardless of the size of

the pituitary gland) and no extra-pituitary malforma-

tion. These phenotypes are due to mutations of late-

acting pituitary-specific transcription factors. In such a

context, PROP1 gene mutations remain the most

frequently reported genetic defect.

Despite identification of an increased number of genetic

causes of isolated or multiple pituitary deficiencies, the

etiology of most congenital cases of hypopituitarism

remains unsolved. The aim of this review is to summarize

the main etiologies and phenotypes of combined pituitary

hormone deficiencies, associated or not with extra-pituitary

anomalies, and to suggest how the identification of such

etiologies could be improved in the near future. We will

not detail in this review the etiologies of isolated pituitary

deficiency (somatotroph, thyrotroph, corticotroph or

gonadotroph).

Brief overview of pituitary development (based

on murine models)

Human pituitary development is close to murine pituitary

development, which thus represents an appropriate model

to determine the major temporo-spatial interactions

between signaling pathways and transcription factors

leading to a mature endocrine organ [1, 2]. Pituitary

ontogenesis begins early during brain neurogenesis, around

embryonic day (e) 7.5, corresponding to the first visuali-

zation of the pituitary placode [3]. Anterior and posterior

pituitary lobes have two different embryonic origins: the

anterior lobe is derived from oral ectoderm, whereas the

posterior lobe is derived from neurectoderm. Even if close

connections exist between both structures, we will only

focus on the development of the anterior lobe and the

mature pituitary. At e9, the placode forms the rudimentary

Rathke’s pouch, under the control of signaling molecules

issued from the infundibulum [Bone Morphogenetic Pro-

tein 4 (Bmp4) and Fibroblast Growth Factor 8 (Fgf8)].

Definitive Rathke’s pouch is observed at e11.5 [4]. Pro-

genitors around the lumen move progressively to the

developing pituitary, and differentiate under the control of

several factors including SOX2, SOX9, ISL-1… [5–7].

This first step leading to terminal differentiation of the

pituitary is possible due to a tightly controlled temporo-

spatial gradient of morphogenic factors from different

origins, the diencephalon (BMP4, FGF8, 10 et 18, Wnt5a),

the ectoderm (Isl1, BMP2, Sonic Hedgehog (Shh), Wnt 4),

the ventral mesoderm (Chordin, BMP2) [8], or the pituitary

cells. At e11.5, asubunit is expressed in the rostral tip [9],

followed by ACTH (e12.5), TSHb (e14.5), Pomc (e14.5,

intermediate lobe), GH and prolactin (e15.5) [10], Lhb
(e16.5), and finally Fshb (e17.5). Precise mechanisms

leading to this differentiation and the formation of pituitary

cell networks remain incompletely understood. Pituitary-

Table 1 Summary of the main phenotypic characteristics of patients

carrying mutations of genes coding for transcription factors (alpha-

betical order)

Transcription

factor

Transmission Phenotype*

ARNT2 R Eye anomalies; inconstant pituitary

deficiencies and diabetes insipidus;

renal anomalies

HESX1 D/R GH deficiency, inconstant pituitary

deficiencies; pituitary hypoplasia;

optic nerve anomalies, septo-optic

dysplasia; ectopic posterior

pituitary, corpus callosum

hypoplasia

LHX3 R GH, TSH, LH/FSH deficiencies,

inconstant ACTH deficiency;

pituitary hypo- or hyperplasia;.

Head and neck rotation anomalies,

vertebral anomalies, hearing

deficits

LHX4 D GH deficiency, inconstant pituitary

deficiencies; pituitary hypoplasia,

ectopic posterior pituitary; Chiari

syndrome, corpus callosum

hypoplasia

OTX2 D GH deficiency, inconstant pituitary

deficiencies; pituitary hypoplasia;

ectopic posterior pituitary, Chiari

syndrome

PITX2 D/R Axenfeld–Rieger syndrome;

inconstant pituitary deficiencies

POU1F1 D/R GH, TSH, prolactin deficiencies;

pituitary hypoplasia

PROP1 R GH, TSH, LH/FSH deficiencies,

inconstant ACTH deficiency;

pituitary hypo- or hyperplasia

SOX2 R Gonadotroph deficiency, inconstant

GH, TSH, ACTH deficiencies;

pituitary hypoplasia;

microphthalmia; mental retardation

SOX3 X-linked Mental retardation, GH deficiency or

panhypopituitarism and brain

anomalies

Please note that the signs described in this table are not always

constant

D dominant, R recessive
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specific or non-specific transcription factors are involved in

a timely manner during these steps of differentiation, early

acting such as Lhx3, Lhx4, Pitx2, Hesx1 or ARNT2 [11],

or late-acting such as Prop1 and Pou1f1. Early acting

transcription factors are also involved in the development

of other organs (eye, inner ear, etc.), and their defects lead

to extra-pituitary anomalies, whereas alterations of late-

acting transcription factors usually lead to a pure pituitary

phenotype, as previously mentioned (Fig. 1).

Congenital hypopituitarism and extra-pituitary

anomalies

Pituitary deficiency and midline anomalies

(holoprosencephaly, septo-optic dysplasia and pituitary

stalk interruption syndrome)

Midline anomalies include a wide range of phenotypic

signs, from cleft palate and pituitary stalk interruption

syndrome, to septo-optic dysplasia or holoprosencephaly.

Stalk interruption syndrome is defined on brain MRI by the

association of an absent or thin pituitary stalk, pituitary

hypoplasia and/or ectopic posterior pituitary [12]. It has

long been considered as a post-natal trauma consequence;

however, the fact that only 30 % of patients had a history

of such an event, and existence of familial cases led to

searching for genetic etiologies. Septo-optic dysplasia is

defined by the association of brain anomalies (septum

agenesis or corpus callosum agenesis), optic nerve hypo-

plasia and pituitary deficiencies (at least two of these

characteristics) [13]. Holoprosencephaly is a complex brain

malformation, affecting both brain and face, due to an

abnormal division of the prosencephalon between days 18

and 28. Facial anomalies include cyclopia, median or

bilateral labial and/or palatal cleft, hypotelorism or a single

median incisor in milder. Mental retardation is frequently

associated. Several distinct genes defects have been asso-

ciated with such anomalies (SHH, ZIC2, SIX3, TGIF,

HESX1, SOX2, SOX3, OTX2, etc.). However, recent studies

emphasized the continuum between these different genetic

causes leading to phenotypes of variable severity depend-

ing on the degree of abnormal development of the anterior

brain [14–16].

Sonic-hedgehog pathway (gli2)

Sonic-hedgehog (SHH) signaling pathway and its targets,

GLI transcription factors, is involved in the early steps of

pituitary development. SHH mutations have been reported

in patients with holoprosencephaly [17]. GLI2 heterozy-

gous mutations have also been reported in patients with

holoprosencephaly, or with pituitary hormone deficits and

less severe cranio-facial anomalies such as polydactyly,

and pituitary hypoplasia, corpus callosum agenesis or

ectopic posterior pituitary on brain MRI.

Hesx1

Hesx1 expression has been observed very early in the

pituitary placode. Its expression is restricted to Rathke’s

pouch at e8.5–e9. Decreased expression at e13 is necessary

for PROP1 and secondarily Pou1f1 expression, leading to

differentiation of GH-, TSH- and PRL-secreting cells [18–

21]. Other transcription factors are also necessary for

proper HESX1 expression, such as LIM domain Lhx1 and

Lhx3, or Six3 transcription factors [22]. In humans, 16

HESX1 mutations have been reported [18, 23–31]. Patients

with homozygous mutations (40 % cases) usually pre-

sented a more severe phenotype than the ones with het-

erozygous mutations [32]. Pituitary phenotype includes GH

deficiency in all patients, whereas other pituitary

Fig. 1 Simplified scheme

representing the main

transcription factors expression

during pituitary development.

Note that early transcription

factors dysfunction is associated

with pituitary and extra-

pituitary anomalies, whereas

late transcription factors (PIT1,

PROP1) dysfunction is

associated with pure pituitary

phenotype
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deficiencies are only observed in 50 % cases. Optic nerve

anomalies are the other major phenotypic sign, observed in

30 % cases. In contrast, only 1 % of septo-optic dysplasia

cases have been linked to HESX1 mutations [32–34] [35].

Brain MRI usually reveals a pituitary hypoplasia (80 %

cases); extra-pituitary anomalies include ectopic or non-

visible posterior pituitary in 50–60 % cases, and corpus

callosum agenesis or hypoplasia in 25 % cases.

Fgf8 et fgfr1

The expression of FGF8 and FGFR1 in the ventral dien-

cephalon is necessary for proper Rathke’s pouch formation

and temporo-spatial pattern of pituitary cell lineages. FGF8

overexpression stimulates melanotroph and corticotroph

lineages, and inhibits gonadotroph, somatotroph, thyro-

troph and lactotroph [36]. FGFR1 and FGF8 heterozy-

gous mutations have first been reported in 10 % of

Kallmann syndrome and 7 % of normosmic hypogonadism

[37]. Penetrance was incomplete [38, 39]. Pituitary MRI

showed normal or hypoplastic anterior pituitary and

inconstant ectopic posterior pituitary. Other anomalies

were reported such as ear hypoplasia, dental agenesis, cleft

palate and distal limb malformations. FGFR1 and FGF8

mutations have also been reported in patients with septo-

optic dysplasia, with about 4 % prevalence [14].

Prokineticin pathway: PROK2 and PROKR2

Prokineticin pathway is known to be involved in portal

angiogenesis and neuronal development and migration

[40]. Involvement of the prokineticin pathway has thus

been suggested as a possible cause of pituitary stalk

interruption syndrome. PROK2 and PROKR2 mutations

have been recently reported in a cohort of patients with

pituitary deficiencies, anterior pituitary hypoplasia or

aplasia, and stalk interruption syndrome [15]. These results

have been also reported thereafter in patients with septo-

optic dysplasia, and inconstant additional brain abnormal-

ities, such as cerebellar hypoplasia, Dandy–Walker cyst,

focal abnormality of mesial frontal cortex have also been

reported on brain MRI [16]. However, the prevalence of

mutations in PSIS or SOD is estimated to be below 3 %.

Pituitary deficiency and eye anomalies

Otx2

Otx2 is a paired homeodomain transcription factor

involved in the early steps of brain development. OTX2 is

expressed from e10.5 to e14.5 in the ventral diencephalon,

where it likely interacts with HESX1, and from e10.5 to

e12.5 in Rathke’s pouch. OTX2 is also involved in GnRH

neurons development [41]. In humans, 25 heterozygous de

novo OTX2 mutations have been reported, including 9 in

patients with congenital hypopituitarism; the remaining 16

mutations were reported in patients with ophthalmic dis-

eases, and no mention of pituitary axes evaluation [42–46].

All but one mutation induced a loss of function, the last

being responsible for a dominant negative effect. Pheno-

type is highly variable in terms of pituitary deficiencies

(from isolated GH deficiency to panhypopituitarism) and of

brain MRI (normal or hypoplastic pituitary, inconstant

ectopic posterior pituitary and Chiari syndrome).

Sox2

Sox2 is an ‘‘HMG DNA binding domain’’ transcription

factor. At e 9.5, Sox2 expression is observed in the brain,

the neural tube, the oral endoderm, the sensorial placodes

and the branchial arcs. At e11.5, Sox2 is expressed in

Rathke’s pouch and the future hypothalamus. Sox2 is then

expressed in the periluminal proliferative zone where it

could be involved in the maintenance and function of

pituitary progenitors [47]. At adult age, Sox2 is expressed

in the periventricular zone of lateral ventricles and in the

dentate gyrus. In humans, heterozygous de novo SOX2

mutations have been observed in six patients with hy-

pogonadotroph hypogonadism, bilateral microphthalmia,

corpus callosum hypoplasia and inconstant mental retar-

dation. Pituitary phenotypes included inconstant GH, TSH

or ACTH deficiencies, pituitary hypoplasia in 80 % cases,

and ectopic posterior pituitary. Extra-pituitary anomalies

including corpus callosum anomaly has been reported in 1

case [47].

Pitx2

PITX2 is a paired homeodomain transcription factor

expressed in the stomodeum at e8, Rathke’s pouch at e10.5

[48, 49], and pituitary anterior and intermediate lobes at

e12.5. At adult age, PITX2 is expressed in thyrotrophs and

gonadotrophs [50]. Pitx2 expression is ubiquitous, as it has

also been observed in adult brain, eye, kidney, lungs, testis

and tongue [48, 51]. In humans, PITX2 mutations have

been reported in patients with Axenfeld–Rieger syndrome,

which is characterized by anomalies in the ocular anterior

compartment and systemic malformations (cranio-facial

dysmorphy, dental, and umbilical anomalies) [52, 53].

Pituitary phenotype is rare, with only three patients

reported with GH deficiency and pituitary hypoplasia [54–

56]. Abnormal pituitary shape has also been described on

MRI [57]. PITX2 is not the only transcription factor

involved in this syndrome, as mutations of FOXC1, a

forkhead homeodomain transcription factor, have also been

reported.
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Arnt2

A complex syndrome of post-retinal eye abnormalities,

congenital hypopituitarism with diabetes insipidus, renal and

central nervous system anomalies has recently been descri-

bed [11] in a large consanguineous kindred. It was shown to

be related to a defect in the Helix-Loop-Helix transcription

factor ARNT2 that plays a critical role in the development of

hypothalamus and other CNS structures as well as kidneys or

eyes. Brain MRI was similar for all patients, with absent

posterior pituitary bright spot, thin pituitary stalk, hypoplastic

anterior pituitary, hypoplastic frontal and temporal lobes, thin

corpus callosum and delay in brain myelination [11].

Pituitary deficiency and mental retardation

Mental retardation can be associated with early neurogen-

esis anomalies (including septo-optic dysplasia or holo-

prosencephaly). A male predominance has been observed,

leading to a search for X-linked transcription factors [58].

In humans, X transmitted SOX3 mutations have been

associated with either mental retardation and GH defi-

ciency [59], or panhypopituitarism and brain anomalies

(corpus callosum hypoplasia, hypoplastic or non-visible

stalk, ectopic posterior pituitary) [60]. A lack of strict intra-

familial genotype–phenotype correlation was reported [61].

Pituitary deficiency and intermediate neurogenesis

anomalies

Lhx4

LHX4 is a LIM domain transcription factor, involved in the

early steps of pituitary development. LHX4 expression has

been reported in Rathke’s pouch at e9.5, and in the anterior

part of the pituitary at e12.5. A low expression is still

observed at adult age [62, 63]. In humans, 11 sporadic or

familial LHX4 mutations have been reported in 17 patients

[64], with a wide intra- and inter-familial phenotypic vari-

ability in terms of pituitary phenotype (ranging from isolated

GH deficiency to complete panhypopituitarism) [65, 66] and

brain MRI (pituitary hypoplasia, inconstant ectopic posterior

pituitary and sellar hypoplasia, corpus callosum hypoplasia

or Chiari syndrome). Of note, one patient carrying 1q25

microdeletion (including LHX4 deletion) was also present-

ing with heart defect. In our cohort of patients with pituitary

stalk interruption syndrome, LHX4 mutations have been

observed in 2.4 % cases [58].

Lhx3

Lhx3 is another LIM domain transcription factor, with a

similar pituitary expression profile as Lhx4. Both factors

seem to have redundant roles during pituitary development,

and proper Lhx3 expression requires Lhx4, as LhxX3 is not

observed at e12.5 in mice with homozygous inactivation of

Lhx4; however, the fact that Lhx3 expression is reported in

these mice at e14.5 suggest that there are compensatory

mechanisms (likely PROP1) allowing delayed expression

of Lhx3 [62]. Lhx3 is involved in extra-pituitary structures

development, such as medullar motoneurons [67, 68], and

inner ear [69, 70]. Lhx3 is also necessary for proper

expression of Hesx1 [71], foxl2, Notch2, SF1, tbx19

(involved in corticotroph differentiation), GnRH receptor

and FSHb [72–74] and Pou1f1. Lhx3 interacts with Pou1f1

for promoting prolactin, and TSHb genes expression [75].

In humans, 12 homozygous LHX3 mutations have been

reported [76–82]. All but one (p.K50X) were familial [82].

Pituitary phenotype usually includes GH, TSH and LH/

FSH deficiencies. ACTH deficiency is inconstant, reported

in 58 % of the mutations. On MRI, pituitary aplasia or

hypoplasia is observed in 60 % cases, whereas hyperplasia

is observed in 30 % cases. Pituitary MRI is considered

normal in 10 % cases. Of note, one patient was presenting

with an MRI suggesting a microadenoma. Extra-pituitary

phenotype can include abnormal head and neck rotation

(70 % cases), vertebral abnormalities (50 % cases), and

mild-to-severe hearing deficits (50 % cases).

Purely endocrine combined pituitary phenotype

Prop1

Prop1 is a pituitary-specific paired domain transcription

factor. Its expression is observed from e10 to e15.5, with a

peak around e12 [83]. Prop1 is likely involved in pituitary

progenitors differentiation, by interacting with Notch [5, 7,

84], and is necessary for proper Pou1f1 expression, leading

to somato-lactotroph and thyrotroph cells differentiation

[85]. In humans, at least 25 PROP1 mutations have been

reported [86–107]. Homozygous or compound heterozy-

gous PROP1 mutations, transmitted in an autosomal

recessive way, currently represent the most frequently

identified etiologies of CPHD [1, 108, 109]. Pituitary

phenotype includes GH, TSH, LH/FSH, ACTH and PRL

deficiencies, diagnosed from childhood to adulthood [110].

W194X mutation, the first one mutation in the transacti-

vation domain [92], led to an unusual phenotype, with

initial isolated gonadotroph deficiency, and delayed GH

deficiency in two of the three patients of the family.

Interestingly, the other mutation (S156InsT) located in the

transactivation domain, led to a classical phenotype [89].

Corticotroph deficiency, present in 50 % cases, is surpris-

ing, as mice with spontaneous Prop1 inactivation, have

normal ACTH secretion. The precise mechanisms leading
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to this usually delayed phenotype, by up to 35–40 years

[111], remain unknown [96, 112]. Pituitary MRI can show

transient pituitary hyperplasia, normal or hypoplastic

pituitary: pituitary hyperplasia sometimes precedes spon-

taneous hypoplasia [88, 113–117]: an hypothesis that may

account for this phenomenon is that pituitary progenitors

would not differentiate in the absence of Prop1, accumulate

in the intermediate lobe (hyperplasia), and secondary

present apoptosis (final hypoplasia) [118]. No extra-pitui-

tary anomaly has been reported to date.

Pit1/POU1F1

Pit1 was the first pituitary-specific transcription factor

identified in Snell mice and then in humans (POU1F1,

human ortholog of Pit1) [119]. Pou1f1 expression is first

observed at e13.5 during pituitary development. Pou1f1 is

necessary for thyrotroph, somatotroph and lactotroph dif-

ferentiation, and remains expressed in these cell lineages at

adult age. Pou1f1 requires Prop1 expression [120–124],

and is able to interact with other transcription factors such

as Lhx3 (prolactin promoter) and Gata2 (TSHb promoter)

[79, 125], ubiquitous proteins (CBP), or protein complexes

such as med/Trapp220 [126]. In humans, POU1F1 muta-

tions can be transmitted as an autosomal recessive or

dominant trait. Complete TSH and GH deficiencies are

usually observed during childhood, whereas gonadotroph

and corticotroph axes remain functional. Brain MRI can be

normal, or shows pituitary hypoplasia. No extra-pituitary

anomaly has been reported to date.

Perspectives: looking for etiologies and new genes

Classical approach and sequencing algorithm

Almost all the genes reported to date as being involved in

CPHD have been discovered via a murine model and

extrapolation on human phenotypes. Though this

approach allowed the discovery of several genes, it is

limited by differences between both species: for instance,

as previously mentioned, corticotroph axis is always

normal in Ames mice, whereas corticotroph deficiency is

reported in roughly 40 % of human cases with PROP1

mutations. This likely explains, at least in part, why only

10 % of CPHD etiologies have been identified to date.

Based on phenotypes described in the literature and our

experience in the Genhypopit network, we defined an

algorithm allowing the clinician and the geneticist to look

for the most appropriate genes to sequence when a con-

genital hypopituitarism is diagnosed (Fig. 2). Recent data,

however, suggest that alterations of some genes initially

thought to be involved in a specific phenotype, can

actually lead to a wider range of phenotypes. This algo-

rithm thus has to be frequently updated by including

novel genes and/or phenotypes.

Classical Sanger sequencing has inherent limits with the

impossibility to identify large deletions or insertions, or

intronic alterations leading to splicing anomalies. Recent

years allowed the development of new techniques, which

should dramatically improve the rate of identification of

etiologies of congenital hypopituitarism.

Fig. 2 Simplified sequencing

algorithm for patients with

congenital hypopituitarism
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Modern approaches

Array comparative genomic hybridization (aCGH) has

been created for identifying segmental genomic copy

number variations (gain or loss) such as structural rear-

rangements (deletions, duplications, insertions, transloca-

tions) or complex chromosomal aneuploidies. In contrast

with fluorescent in situ hybridization (FISH), which

requires a previous knowledge of the zone of interest,

aCGH can also be used to identify new genes involved in

monogenic disorders: first, large deletions can include new

genes involved in a specific phenotype; aCGH can be

designed in a whole genome approach, where the array

targets are equally spaced with coverage of 100–1,000 kb.

Main limitations is the impossibility to detect balanced

translocations, and for the whole genome approach, the risk

of ‘‘over-detection’’, i.e., detecting numbers of rearrange-

ments of low or undetermined clinical significance.

Another approach is whole-exome sequencing, which is

based on the assumption that 85 % of mutations are located

in coding regions of the genome. This technique should be

of great interest in highly penetrant Mendelian diseases.

However, reporting new variants in a single patient does

not mean pathogenicity, and requires confirmation by a

similar finding in other persons, presenting with similar

phenotypes. Confirmatory steps by bioinformatics analysis

after a usually large dataset of results can thus be highly

challenging. In contrast, identifying variants known to be

involved in other unrelated diseases raises ethical questions

for patients and offspring.

Conclusions

Identifying the etiologies of congenital hypopituitarism is

of major importance

– As a post-natal diagnosis to better diagnose and treat

the patients, in particular in the differential diagnosis of

a pituitary mass on MRI, or to identify the patients at

risk of developing delayed corticotroph deficiency.

– As a prenatal diagnosis to decrease the risk of early

death (undiagnosed corticotroph deficiency for

instance).

Classical candidate gene approach has shown some

limits in detecting new etiologies of congenital hypopitu-

itarism mainly because it was based on murine models not

always concordant with human diseases. New pangenomic

approaches have also their own limits, the first of which

currently being their cost, the second the difficulties in

interpreting and filtering the large dataset of results

obtained. However, combining all of these techniques

should allow increasing the currently low rate (about 10 %)

of identified etiologies of congenital hypopituitarism in the

next few years.
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