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Abstract
We propose relational density theory, as an integration of stimulus equivalence and
behavioral momentum theory, to predict the nonlinearity of equivalence responding of
verbal humans. Consistent with Newtonian classical mechanics, the theory posits that
equivalence networks will demonstrate the higher order properties of density, volume,
and mass. That is, networks containing more relations (volume) that are stronger
(density) will be more resistant to change (i.e., contain greater mass; mass = volume
* density). Data from several equivalence experiments that are not easily interpreted
through existing accounts are described in terms of the theory, generating predictable
results in most cases. In addition, we put forward the higher-order properties of
relational acceleration and gravity, which follow directly from the theory and may
inspire future researchers to evaluate the seemingly self-organizing nature of human
cognition. Finally, we conclude by describing avenues for real-world translation,
considering past research interpreted through relational density theory, and call for
basic experimental research to validate and extend core theoretical assumptions.

Keywords classicalmechanics . relationaldensitytheory. relationalframetheory.stimulus
equivalence

Perhaps the most extensively researched behavioral model of complex behavior is found
in stimulus equivalence theory (Sidman, 1994, 2000; Sidman & Tailby, 1982), which
posits that unique conditional discriminations can emerge in the absence of direct rein-
forcement when prerequisite conditional discriminations are directly trained. For example,
if a person is taught to match a stimulus A to a stimulus B (A = B), and the same stimulus
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A to a stimulus C (A = C), the person will most likely also match the stimulus B to the
stimulus C (C = B) and vice versa (B = C) without being taught to do so. This derived
relation contains the mathematical properties of symmetry and transitivity, both of which
are necessary for equivalence (Sidman & Tailby, 1982).1 Critchfield, Barnes-Holmes, and
Dougher (2018), in a prior issue of Perspective on Behavior Science, discussed how
stimulus equivalence represented a marked advance in behavior science, providing lawful
descriptions of emergent language learning in humans. Indeed, as the authors claimed,
deriving equivalence relations may be a human-specific behavior (see Galizio & Bruce,
same issue, for an in-depth review of current animal models of derived relational
responding) that opens the door to new areas of research on human language and
cognition.

This basic model has been extensively evaluated in human subjects by basic
experimental researchers (e.g., Arntzen, Grondahl, & Eilifsen, 2010; Dougher,
Augustson, Markham, Greenway, & Wulfert, 1994), and increasingly is the basis of
applied technologies for, among other things, teaching language skills to children both
with and without disabilities (e.g., LeBlanc, Miguel, Cummings, Goldsmith, & Carr,
2003; Rose, Souza, & Hanna, 1996). Despite vast empirical advances stemming from
equivalence theory (McLay, Sutherland, Church, & Tyler-Merrick, 2013; Zentall,
Galizio, & Critchfield, 2002), there are disagreements about the fundamental processes
that govern the emergence of equivalence responding (Barnes, 1994; Clayton & Hayes,
1999; Hayes & Barnes-Holmes, 2004; Hayes, Barnes-Holmes, & Roche, 2001; Horne
& Lowe, 1996, 1997; McIlvane, 2003; Palmer, 2004; Sidman, 1994, 2000).

In an attempt to expand the scope of theoretical accounts of stimulus equivalence, in
this article we propose relational density theory as a quantitative metaphor adapted from
Newtonian classical mechanics in physics. The theory is an extension of behavioral
momentum theory as proposed by Nevin and colleagues (Nevin, 2002; Nevin & Grace,
2000; Nevin & Shahan, 2011). In this article, we introduce the theory, offer a reinterpre-
tation of some existing findings in the basic experimental equivalence literature, and
provide recommendations for potential translational application and experimental research
needed to validate and extend core assumptions. Our purpose in this article is not to
provide an exhaustive account of the theory. Rather, the goal is to lay out the precepts and
structure of the theory and relate these to enough experimental findings to demonstrate
plausibility. As we will discuss toward the end of the article, an exhaustive evaluation of
the ideas proposed here will require both additional theoretical work and new experiments.

The Basic Theory

Quantitatively described models of behavior may hold utility over narratively described
theories by allowing for (1) parsimonious descriptions of how selected features operate
on a continuum to influence a behavior outcome, and (2) descriptions of higher-order
relations (interactions among variables) that are not easily communicated using

1 Although we describe the basic model using a three-member class example, equivalence networks can occur
at far greater complexity (e.g., greater class membership, multiple nodes, contextual control) and include
transfers and transformations of stimulus function, all of which likely participate in much of human behavior
(see Dixon, Belisle, Rehfeldt, & Root, 2018, for an overview of basic and applied research and future
extensions).
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narratively described models (e.g., Critchfield & Reed, 2009). For example, the
matching law (Herrnstein, 1961, 1970; Poling, Edwards, Weeden, & Foster, 2011)
describes the relationship between relative rates of behavior and relative rates of
reinforcement, expressed in the standard equation: B1/(B1+B2) = r1/(r1+r2)
(Herrnstein, 1961). This equation provides a quantitative account of central tenants of
Skinner’s (1938, 1953) narrative operant theory, and its extensions (Baum, 1979;
Davison & McCarthy, 1988; Herrnstein, 1974) that employ fitted parameters to
describe higher-order relations (bias and sensitivity) in choice behavior.

Of primary interest to the present discussion is behavioral momentum theory (BMT;
Nevin, 1992; Nevin & Grace, 2000; Nevin & Shahan, 2011). BMT, utilizing Newton’s
second law of thermodynamics as a metaphor, describes a change in behavior as a
function of two factors: momentary force applied to the behavior system (e.g., present
levels of reinforcement or punishment), and the higher-order variable of behavioral
mass, or the resistance of behavior to the application of force (also called resistance to
change). Mass is usually taken to result from a history of reinforcement and modulates
the effects of contemporary contingencies. The BMT equation originally introduced by
Nevin and colleagues has been refined to allow for direct computation and prediction of
behavior (Nevin & Shahan, 2011; Shahan & Sweeney, 2011), and accounts well for
data obtained from both animal models (Nevin & Shahan, 2011; Podlesnik & Shahan,
2009) and clinical interventions (e.g., Mace et al., 1990, 2010).

From the perspective of research on derived stimulus relations, which reveals a
number of indirect influences over behavior (Greer & Keohane, 2005; Hayes et al.,
2001; Horne & Lowe, 1996, 1997; Sidman & Tailby, 1982), a potential limitation of
models like the matching law and BMT is the assumption that behavior is necessarily
under direct contingency control. An extensive literature on derived stimulus relations
reveals effects that are more extended than those usually addressed by invoking
immediate and historical contingencies of reinforcement.

Relational density theory is an attempt to provide a unifying, quantitative2 account of
relational responding that integrates stimulus equivalence and relational frame theory, and
potentially extends BMT into the realm of human language and cognitive behavior, which
is usually thought of within the province of behavior science. Our purpose in developing
this account, consistent with the breakdown provided by Critchfield and Reed (2009), is to
parsimoniously describe how relational networks interact as a function of the higher-order
properties of relational volume, mass, and density. Decades of research focusing on
stimulus equivalence and relational frame theory have shown that the stimuli that comprise
relational networks rarely are “equivalent” (Fields, Verhave, & Fath, 1984; Sidman, 2000;
Saunders &Green, 1999) in the strict sense of being functionally substitutable (Spencer &
Chase, 1996). Rather, the responding that normally is taken to suggest “substitutability”
appears to be influenced by a variety of factors, including but not limited to degree of
derivation (Pilgrim & Galizio, 1990), stimulus complexity (Stromer, McIlvane, & Serna,
1993), the number of relations between equivalent stimuli (nodal distance; Fields, Adams,

2 Here we wish to be clear about our use of this term. “Quantitative” often implies both the expression of
theory as equation and a rigorous means of measuring the equation’s input and output terms. In explaining
relational density theory we will show how its terms may be quantified. However, many of the studies we will
mention in illustrating theory predictions were not devised with the theory in mind. In such cases we will
sometimes need to resort to an ordinal description of variables, in terms of more versus less, rather than exact
quantities. This reflects a limitation of the relevant studies rather than of the model.
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Verhave, & Newman, 1990), and stimulus familiarity (Holth & Arntzen, 1998). These
factors create degrees of nonequivalence, or nonlinearity, that is not accounted for in the
basic narrative of equivalence theory or in subsequent theoretical extensions (e.g., naming
theory and RFT). To be clear, we define nonlinearity in equivalence classes, or networks,
as occurringwhen (1) inequalities exist between stimulus relations within the network, and
(2) the addition or subtraction of some variable leads to an unequal change in dependent
network properties. For example, Arntzen and Holth (2000) demonstrated that although
the probability of demonstrating a derived relation decreases from a three-node3 network
to a four-node network, a much greater decrease in the probability of a correct response is
seen when moving from a four-node network to a five-node network. Nonlinearity of
relational responses is problematic to traditional explanations of equivalence like that of
Sidman (Sidman, 1994; see Pilgrim & Galizio, 1995, for an explanation), but may be
parsimoniously predicted by quantifying the relationship between higher-order network
properties described in the theory.

Relational density theory posits that the nonlinearity of relational responding, like
operant responding in BMT, can be described and modeled using Newton’s second law
in classical mechanics as a metaphor.4 The theory’s bedrock assumption is that the
historical influence of prior relational learning can be understood in terms of the
classical mechanical properties of volume, density, and mass. Experiments have not
yet been conducted to prospectively test theory predictions, but several findings in
basic experimental research, which we will describe in the following section, are
consistent with theory predictions and therefore suggest that experimental tests will
in fact be productive to conduct.

We begin with an equation derived from the standard model of BMT put forward by
Nevin and colleagues, but expressed in terms of relational or equivalence responding:

ΔR ¼ −x
Rm

ð1Þ

Here a change in relational responding (ΔR) is equal to counterforce (-x) against
relational mass (Rm). Mass, like in BMT, refers to the resistance of a network to
change when counterforce is applied to contained relations. Thus, mass is an inferred
property that can be experimentally demonstrated by applying equal counterforce to
two networks and evaluating relative degrees of change in relational responding.
Counterforce can be created by conditioning competing relations, punishing existing
relations, or introducing rules or distractions; we will refer to the processes that produce
counterforce as counterconditioning. These yield nonlinear changes in relational
responding in proportion to the mass of the relational network. For example, if we
take two relational networks, one involving DOG and one involving VALLHUND (a
Swedish breed of dog), and apply the same counterforce, such as in the statement “X
does not bark,” where X is either DOG or VALLHUND, the probability of a change in
the DOG relation is low, because, based on a history of relational responding, a person
is unlikely to believe that a dog does not bark. However, if a person is unfamiliar with a

3 A node is an item in a network. Thus, a three-node stimulus relations network would encompass 3 stimuli.
4 We use the term metaphor to describe the transfer of laws and rules in one context to understanding laws and
rules that operate in a similar way in another context.
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vallhund, the probability of a change in the relational response is significantly higher, in
that the person may readily repeat that “a vallhund does not bark.” Thus, we can say
that DOG participates in a network with greater mass than does VALLHUND (i.e., is
more resistant to change).

An assumption in BMT is that behavioral mass, or resistance to change, emerges
through historical participation of behavior in contingencies of reinforcement (Nevin &
Grace, 2000). The theory proposed here, however, assumes that relational nonlinearity
is the result of a history of relational learning, which can include but is not limited to the
effects of direct acting contingencies. As we discuss in detail below, it is common to
find that derived relations are nonequivalent (i.e., nonlinear), both in terms of response
strength and resistance to change. Newton’s volumetric-mass-density formula may
appropriately describe relational factors that contribute to relational mass, or the
resistance to change of relational networks, expressed in the equation5:

Rm ¼ Rp*Rv ð2Þ

Here relational mass (Rm) is a function of relational density (Rp) and relational volume
(Rv). Relational mass refers to the resistance to change of a relational network. Density
refers to the strength of the various relations contained in a network, as measured
through such variables as response latency, probability, and rate. Relational volume
refers to the number of relations contained in the network. For example, DOG
participates in a high-mass network. It is related to barking, is contained in the class
animal, is the opposite of CAT, and is a best friend and loyal companion (among many
other densely established relations). It is not surprising, therefore, that most people will
quickly match the printed word “dog” to a picture of a dog and other related stimuli.
Because of high relational mass DOG is resistant to change, hence the unlikelihood of
incorporating "does not park" into its relational network. For the typical English-
speaking American the same may not be true for VALLHUND.

Density and volume are higher-order properties, because many complex and likely
dynamical factors can contribute to the density and volume of a network as well as to
potentially self-organizational factors that we describe below. Figure 1 shows high- and
low-density networks in terms of geometric space, where the distance between any two
nodes is inversely proportional to the strength of the relation; thus, strongly related
nodes are shown as close together, and weakly related ones are shown as farther apart.
As noted above, relation strength can be measured in several ways, but in the
equivalence literature it has been operationalized primarily in terms of either response
latency (e.g., Spencer & Chase, 1996) or relative probability of a particular relational
response given a particular stimulus context (e.g., Arntzen & Holth, 2000). Thus, for
instance, in Figure 1 space could represent response latency, in which case the faster the
response the smaller the distance between two nodes and thus the greater the relational
density. Or it could represent the reciprocal of the relative probability of a given
relational response, in which case the more probable a criterion response the smaller

5 We provide standard conceptual definitions and compare the results of prior research to predictions made by
these definitions that deviate from traditional equivalence accounts. Basic research on relational density theory
will need to further develop operational and computational formulas as has been done with BMT to directly
test the core assumptions of the theory.
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the distance between nodes and thus the higher the relational density. The figure also
shows volume in terms of the number of stimuli contained in the network, where the
high-volume networks contain more stimuli and therefore more relations. Networks
therefore can differ simultaneously in terms of volume and density.

Based on Equation 1, we can solve for density using the equation:

Rp ¼ Rm
Rv

ð3Þ

as well as for volume using the equation:

Rv ¼ Rm
Rp

ð4Þ

Figure 2 shows the effect of these higher-order properties on relational mass. It can be
inferred from Equations 3 and 4 that density and volume do not necessarily operate in
the same direction in terms of their effects on mass, but may instead operate as
opposing properties where increases in one property (e.g., volume) will likely lead to
decreases in the other property (e.g., density). For example, for a person you’ve only
just met, it may be easy to “recall” (i.e., respond in terms of) simple relations involving
isolated facts such as the person’s report that he enjoys maple syrup on his eggs at
breakfast. In this instance, relational volume is low and relational density is high. By
contrast, once the person becomes “familiar” (more is learned about him), relational
volume increases and overall mass increases as a result, yet the probability of recalling

Fig. 1. Graphic display of four equivalence networks differing along the higher-order properties of density
and volume. The space between relata (letters) represent the strength of the relation (i.e., smaller space =
stronger relation).
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the relatively trivial facts becomes diminished because relative relational density
involving such facts decreases (see Figure 2).

At the same time, important facts about a person that are regularly repeated, such as
the person’s name or the fact that he regularly exhibits kindness toward others, retain or
increase in density and, along with increases in relational volume, participate in a
network that is resistant to counterforce. Such an effect may be captured when, upon
hearing something incongruous (e.g., the person was reportedly cruel to someone), we
say “that doesn’t sound like him!” or “I cannot believe he would do that!” Such
reactions indicate resistance to change of a well-established network, one that does
not readily admit incongruent new nodes. Research has in fact established that net-
works can be resistant to class mergers (the absorption of new stimuli) when the
networks involve incompatible stimuli, such as in a study conducted by Watt and
colleagues in which Northern Irish and English participants’ preexperimental religious
beliefs influenced the emergence of transitive relations between Protestant and Catholic
symbols (Watt, Keenan, Barnes, & Cairns, 1991).

Combining Equations 1 through 3 yields a complete standard equation for relational
density theory, expressed as:

ΔR ¼ −x
Rp*Rv

ð5Þ

A change in relational responding is equal to counterforce over mass as in Equation 1,
where relational mass is the product of competing properties of network density and
volume. As explored in the following section, we propose that this standard equation
may account for some of the nonlinearity observed in equivalence relational networks
by introducing volumetric-mass-density as higher-order properties, allowing for greater
prediction and influence of relational responding in humans.

Reinterpreting Nonlinearity using Relational Density Theory

As noted by Hursh (1984), the value of theoretical extensions is always measured in
terms of data: either validity when directly tested under laboratory conditions, or utility

Fig. 2. Matrix of relative expected relational mass given known high and low density and volume values.
Upward facing arrows indicate a high value, downward facing arrow represent a low value, and dashes
indicate neither a high nor low value.
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when compared to existing models in interpreting existing experimental findings. In the
present section, we take up the latter challenge by interpreting results from several basic
experimental equivalence studies that have all demonstrated nonlinearity and nonequiv-
alence of emergent relations. When interpreted in terms of the present equations, these
studies speak to the potential utility of the theory in explaining and predicting human
behavior in equivalence tasks.

Traditional equivalence-based accounts assume that stimuli contained in an equiv-
alence class are functionally substitutable, that is, equivalent (Barnes & Holmes, 1991;
Sidman, 2000; Sidman & Tailby, 1982). As such, the strength of one conditional
discrimination in a network should be the same as any other, and an intentional
reconditioning of one relation within the network should, via the phenomenon of
transformation of function (Dymond & Rehfeldt, 2000) be accompanied by parallel
changes in other related nodes. For example, if A1 = B1 and B1 = C1, then the directly
trained (A1–B1, B1–C1), symmetrical (B1–A1, C1–B1), and transitive (A1–C1, C1–
A1) relations should occur at the same strength. Thus, changes in relational responding
should be linearly equal to the force applied to the network by adding new relations
(e.g., if an A1 = D1 and A1 = E1 relation are reinforced), such that the new relations are
as strong as the old relations and equally related to already established relations (e.g.,
the strength of A1–E1 = the strength of A1–B1 = the strength of D1–C1). Basic
research in equivalence has shown that this is not the case, as the strength of network
relations appear to erode as the derived response becomes more complex (i.e., response
strength for symmetrical responses > response strength for transitive responses; Spen-
cer & Chase, 1996) and as more nodes are added to the network (i.e., response strength
for five class members < response strength for three members; Arntzen & Holth, 2000).

Continuing with the above example if one of the relations (e.g., A1–B1) is suddenly
put on a continuous punishment schedule, and a new A1–B2 relation is continuously
reinforced (i.e., reconditioning), then the C1–B2 and B2–C1 relational responses
should also emerge because the C1 stimulus was transitively related to the A1 stimulus.
Moreover, if reconditioning a relation leads to changes in the remaining network
relations, the change should be equal whether the network contains 3 class members
or 300 class members. Again, basic research in stimulus equivalence does not support
this prediction, because equivalence networks appear to be highly resistant to
reconditioning (Pilgrim, Chambers, & Galizio, 1995; Pilgrim & Galizio, 1995). As
noted by Pilgrim and Galizio (1995), this outcome “may have important implications
because it is not easily accounted for by current models of equivalence phenomena” (p.
225). Those models make no special provision for resistance to change, and therefore
default apparently assume equivalence networks to be nonresistant. relational density
theory, by contrast, anticipates the aforementioned findings of nonlinearity as interac-
tions of the higher-order properties of volume, mass, and density. Below we describe
three additional predictions that derive from relational density equations and are
imminently testable.

Prediction 1: Density and Volume are Inversely Related Properties

As seen in Equations 2 through 4, nonlinearity of equivalence responding can be
predicted in terms of the interacting higher-order properties of volume (i.e., the number
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of relations or relata), density (i.e., the strength of contained relations), and mass (i.e.,
the resistance to change of the network). When solving for Rp, Rv necessarily serves as
the denominator on the right side of the equation, meaning that an increase in Rv will
lead to a corresponding decrease in Rp when mass is held constant. The same is true
when solving for Rv, where increase in Rp will decrease Rv. Thus, a first source of
nonlinearity of equivalence responding may be imposed by the competing properties of
volume and density, where greater volume may detract from overall network density,
and low network density may be predictive of high network volume.

Such nonlinearity can be captured using response time as a measure of response
strength or density (Spencer & Chase, 1996). In a traditional equivalence account, one
would expect the response time of any relational response within a network to be equal.
Results obtained by Spencer and Chase (1996), contrary to this prediction, demonstrat-
ed that not only were response times not equal for all relational responses within an
equivalence network, but that the number of nodes, or volume, was predictive of a
nonlinear decay in response strength, or density. Throughout six training stages with
college participants, three 7-member classes were established (directly reinforced
relations: A–B, B–C, C–D, D–E, E–F, F–G). The training stages were conducted in a
linear order, where the A–B relation was trained to mastery, and subsequent relations
were added to the network in each successive phase (B–C, C–D . . . F–G). Thus, at each
step the volume of the network was expanded by one relation, and the nodal distance6

between A and subsequent relations was also increased by 1. Symmetrical and transi-
tive relations across nodal distances up to 5 were tested in a combined testing phase,
where greater nodal distance is indicative of greater relational volume.

To repeat a point, if the concept of equivalence is interpreted traditionally, with no
provision for nonlinearity (e.g., as per Sidman, 1994), differences in response density or
strength would not be expected at greater nodal distance (i.e., with volumetric in-
creases). However, relational density theory, using Equation 3 (Rp = Rm/Rv) in fact
predicts nonlinearity. We assume that relational mass is held constant across nodal
distance such that Rm1 node = Rm2 node = Rm3 node… = Rm5 node. We know that adding
nodes increases the volume of the network, therefore Rv1 node < Rv2 node < Rv3 node… <
Rv5 node. Because an increase in the denominator (Rv) on the right side of the equation
will lead to a decrease in the left side of the equation (Rp), assuming mass is held
constant, we would predict that Rp1 node > Rp2 node > Rp3 node… > Rp5 node. As shown in
Figure 3, for three of the four participants in from Spencer and Chase (1996), response
strength was inversely related to nodal distance as predicted by the model. As more
relations were added to the network, the speed of the transitive relational responses
decreased, and this effect was replicated across the six of the remaining eight partic-
ipants under different testing conditions. Therefore, 9 of 12 participants demonstrated
nonlinear equivalence responding that would be predicted by Equation 3.

A limitation of the Spencer and Chase (1996) study, with respect to relational
density theory, is that the number of class members was not manipulated across classes,
so we cannot compare relational density across networks differing in volume and
established under the same overall rates of reinforcement. Data from Arntzen and

6 In a stimulus relations network, nodal distance is the number of directly learned relations separating any two
items. For instance, if experience makes A equivalent to B, and also B equivalent to C, then the nodal distance
between A and B is 1. The distance between A and C is 2.
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Holth (2000) allow for such a comparison as relations were manipulated in terms of
both the number of class members within a given class and the number of established
classes. In the first of two studies, the authors recruited 50 college student participants
and assigned the participants to 10 experimental groups. The groups differed in terms
of both the number of relations directly reinforced (i.e., nodal distance or network
volume) and the number of classes established, in both cases ranging from three to six.
In this study response strength was described as probability of occurrence of an
expected relational response, rather than in terms of response latency, with probability
defined by the authors as the percentage of participants in each group that demonstrated
all transitive responses. The same general predictions would be made for this study as
for Spencer and Chase (1996). Figure 4 shows that as the number of class members
increased from three to six, the percentage of participants that demonstrated the
transitive responses decreased, and this was evident when three, four, or five classes
were established. On the other hand, response strength appeared relatively unaffected
by the number of classes, and especially when those classes operated at low volume
(i.e., Rv = three members). Therefore, this finding, and when interpreted in the context
of results reported by Spencer and Chase (1996), support the prediction that when

Fig. 4. Percentage of participants who responded consistent with established equivalence classes as a function
of (a) the number of class members (volume) and (b) the number of classes. See text for further explanation.
From Arntzen and Holth (2000). Reproduced by permission.

Fig. 3. Response strength (speed = 1/latency in seconds) as a function of the number of relations contained in
a coordinated network. Each set of bar graphs represent one participant. From Spencer and Chase (1996).
Reproduced by permission
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volume is added to a relational network the strength of the established network relations
is weakened.

Prediction 2: High-Volume and High-Density Networks are Highly
Resistant

One limitation of the relational density model as we have described it so far is that, if
relational density and volume are inversely related, relational mass would almost
necessarily become equal across networks. For example, if volume increases, and
therefore overall network density decreases, then network mass remains unaffected
(assuming Rm is equal to Rv * Rp). If so, there would be no utility in incorporating
mass into the model. However, research (Bortoloti, Rodrigues, Cortez, Pimentel, & de
Rose, 2013) indicates that overtraining of directly taught relations increases relational
response strength without altering the volume or number of relations contained in the
network. The result should be that networks that are high in volume, but also contain
dense relations, may exhibit higher order properties consistent with relational mass as
predicted in Equation 4.

Some empirical evidence exists that suggests that volume and density may both
participate in relational network resistance to counterconditioning as a source of
counterforce. Pilgrim and Galizio (1995), extending prior work (Pilgrim & Galizio,
1990; Saunders, Saunders, Kirby, & Spradlin, 1988), evaluated several outcomes of
equivalence class resistance when counterconditioning was applied to baseline equiv-
alence networks. Upon reversing7 contingencies for a single relation in four-member
classes, the authors assessed the degree to which responding in terms of symmetrical
and transitive responses in the network would also be influenced. Then, upon training
additional relations following the contingency reversal, they assessed the degree to
which the new relations cohered with the baseline class or with the reversed contin-
gencies. For five student participants, baseline A–B, A–C, and A–D relations were
established, and several transitive relations were tested. Then, contingencies for the A–
D relations were reversed (i.e., reinforcement was provided when participants selected a
stimulus other than the original D stimulus), followed by a probe of the transitive C–D
and D–C relations. D–E training was then conducted to establish a fifth class member,
along with symmetry and transitivity test probes. Finally, a B–C reversal was conducted
along with test probes, followed by a return to baseline contingency conditions (i.e.,
consistent with the first noncounterconditioned networks).

Framed using Equation 1, the same counterforce was applied to the A–D and B–C
relations through counterconditioning (-x), or −xA −D = − xB −C. We know that no direct
counterforce was applied to either the symmetrical or transitive relations, therefore
−xsymmetry = − xtransitivity. The difference in the symmetrical and transitive networks is in
terms of volume, where Rvsymmetry < Rvtransitivity, and assuming density is the same
(because the authors did not measure response time), given Equation 5, we can also

7 Here is a simple example of reversing relations. To create the class in which A1 = B1 = C1, one might teach
that A1 = B1 (but not B2), then that B1 = C1 (but not C2). After equivalence has been verified, reversal could
take the form of teaching that B1 = C2 rather than C1, with the interest being in what happens to other
relations (A1 = B1 and A1 = C1) that formerly depended on B1 = C1 to comprise a complete equivalence
class.
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say that Rmsymmetry < Rmtransitivity. The theory predicts that greater changes (ΔR) should
be observed in terms of the symmetrical relations that operate at lower mass (i.e., less
resistance) than the transitive network relations. The results of the study are shown in
Figures 5 (symmetrical relations) and 6 (transitive relations). Results for both symmet-
rical and transitive relational responses show that, although the counterconditioning
was effective in influencing the directly targeted relations (A–D and B–C countercon-
ditioning), the other symmetrical relations and the transitive relations were relatively
unaffected. Although not shown in the figure, emergent symmetrical and transitive
relations following the introduction of the D–E relation also were consistent with the
original networks. Traditional theories would posit that changes in responding to
subsets of relations, assuming the relations are equivalent, should result in correspond-
ing changes in related network stimulus relations.

These results suggest that the transitive relations consistent with the theory are
highly resistant to counterconditioning. Results from Pilgrim and Galizio (1990),
Pilgrim & Galizio, 1995, Pilgrim et al., 1995) suggest that contingency reversals only
influence directly retrained relations and their symmetrical counterparts. Based on this
we may reasonably assume that the impact of counterconditioning is inversely related
to network size. If a network contains three class members (i.e., Rv = 3), then two of six
possible relations (33%) may be influenced by counterconditioning, or counterforce
(i.e., the counterconditioned relation and the derived symmetrical relation). If a network
contains six class members (e.g., Rv = 6), then 2 of 30 possible relations (6.7%) may be
influenced by counterconditioning.

Fig. 5. The effect of punishing subsets of derived relations on emergent symmetrical relations across four
subjects. See text for further explanation. From Pilgrim and Galizio (1995). Reproduced by permission
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Another study involving counterconditioning was described by Dixon, Rehfeldt,
Zlomke, and Robinson (2006). They employed familiar stimuli, some of which were
related to the concept of “terrorist” whereas some were not. Shortly after the terrorist
attack on September 11, 2001, the authors attempted to determine if college participants
could be taught to match nonterrorist stimuli to traditionally American images and
traditionally Middle Eastern images. The nonterrorist-to-American relations and
terrorist-to-Middle Eastern relations were considered to be culturally established, that
is, conditioned prior to the experiment. In the first study, eight participants demonstrat-
ed a high probability of matching terrorist–terrorist stimuli during a pretest phase,
suggesting that these relations were, as assumed, culturally established prior to the
study. Participants were then taught to match nonterrorist stimuli to both American and
Middle Eastern images, and the result was that the participants demonstrated fewer
culturally established relations following counterconditioning. Direct support for great-
er resistance to counterconditioning via network density and volume was provided in
the second study, during which the researchers compared resistance to countercondi-
tioning of the terrorist–terrorist relations to two other stimulus sets, one involving
mixed terrorist/American stimuli, and one involving neutral images. Because terrorist
stimuli are culturally established, we can reasonably assume that the “terrorist” network
contains greater volume and density than the nonassociated mixed and neutral networks
(i.e., prior to baseline conditioning, the mixed and neutral networks are not related to
one another, and “terrorist” is likely related to much more than the stimuli used in the

Fig. 6. The effect of punishing subsets of derived relations on emergent symmetrical relations. See text for
further explanation. From Pilgrim and Galizio (1995). Reproduced by permission
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study). Therefore, we can assume that Rmterrorist > Rmmixed/neutral.Because equal counter-
conditioning was applied to all networks, −xterrorist = − xmixed/neutral, then according to
Equations 1 and 5, we therefore predict that ΔRterrorist < ΔRmixed/neutral. Consistent with
this prediction, five of seven participants (71.4%) demonstrated less change in
responding (greater resistance to change) for culturally established terrorist-terrorist
relations compared to the mixed and neutral classes.

Another source of resistance to change resulting from relational mass may be
suggested by relapse models developed from BMT (Podlesnik & Shahan, 2009,
2010). As a preliminary point, relational networks can show resurgence, as Wilson
and Hayes (1996) demonstrated for baseline equivalence relations with college student
participants. Three, four-member equivalence class were established using several
baseline conditioning experimental phases (e.g., A1–B1–C1–D1, A2–B2–C2–D2).
Following the development of the baseline relations, in which three new classes were
established by rearranging the stimuli from baseline conditioning (e.g., A1–B3–C2–
D3, A2–B1–C3–D2). As they were taught to do, participants demonstrated responding
consistent with the reconditioned class arrangement, but when responses consistent
with these alternative classes subsequently were punished, responding consistent with
the baseline classes reemerged for 16 of 23 participants. Therefore, these results suggest
that equivalence relations may demonstrate resistance to counterconditioning through
resurgence, similar to resistance of operant behaviors observed in research on BMT.

The Wilson and Hayes (1996) study is not a direct test of the combined influence of
volume and density on network mass, or resistance, because neither network volume
nor density was manipulated. The study simply demonstrated that relational networks
can show resurgence. More recent research, however, has shown that increasing
density, or response strength, can make resurgence more likely. Doughty, Cash,
Finch, Holloway, and Wallington (2010) established classes that differed in the fre-
quency of reinforcement to which baseline relations were exposed. Thus, some classes
received more extensive conditioning than other classes, and prior research has dem-
onstrated that overtraining specific relations can increase the response strength, or
density, of the relations within a class while overall class volume is held constant
(Bortoloti et al., 2013). Therefore, we know that volume (Rv) was held constant across
classes, and that density (Rp) was likely greater for the overtrained class; or that
Rmovertrained > Rmundertrained.We also know that equal counterforce through countercon-
ditioning was applied to both networks, or −xovertrained = − xundertrained. Therefore, ac-
cording to Equation 1 and 5, we predict less change in responding, or greater resistance
predicted by resurgence models, for the network with greater mass (i.e., the overtrained
network); or, ΔRovertrained < ΔRundertrained. Two of three participants indeed showed
greater resurgence of relations for the classes with a lengthier baseline relation rein-
forcement history (2 out of 3; 66%). Therefore, the overall probability of the baseline
conditioned responses occurring following the application of counterforce through
reconditioning was greater for more-dense baseline relations.8

8 A possibly related effect was described by Doughty, Leake, and Stoudemire (2014), who found that derived
relational testing may be a prerequisite to resurgence (i.e., resistance). Prior research has demonstrated that, in
the absence of direct reinforcement, testing improves the accuracy and response speed of derived relations
(e.g., Sidman, Kirk, & Willson-Morris, 1985). These effects suggest increased relational density and therefore
likely increased mass.
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Summary of Support for Predictions 1 and 2

In examining research in which nonlinearity of equivalence relations was apparent, but
not readily interpretable using existing accounts (Pilgrim & Galizio, 1995), relational
density theory anticipates the obtained results in most cases. Four studies employing
within-subject designs have arranged appropriate conditions and measured response
strength in terms of either reaction time or probability. Figure 7 summarizes the
outcomes from these studies. All told, 21 of 27 participants (78%) demonstrated
responding consistent with the theory (Dixon et al., 2006; Doughty et al., 2010;
Pilgrim & Galizio, 1995; Spencer & Chase, 1996). In studies employing between-
group analyses, networks with greater volume also have shown lower response strength
(Arntzen & Holth, 2000). That is, when response strength and volume both were high,
the networks appeared to be resistant to counterforce (Arntzen & Vie, 2013). Of course,
the present account is not an exhaustive literature review. We have merely sought to
show how results obtained by independent research laboratories and framed in different
theoretical orientations (e.g., RFT, equivalence, naming), speak to the interrelatedness
of volume, mass, and density as higher order properties.

Prediction 3: High-Mass Networks Demonstrate the Emergent
Properties of Acceleration and Gravity

A major advance of BMT was the use of Newton’s second law to model behavioral
mass as resistance to counterforce, where mass was described as the aggregate outcome
of a dense history of reinforcement for an operant response (Nevin & Grace, 2000). In
classical mechanics, an important implication is that force is provided, not only by
external events, but also within a system through acceleration and gravity. In the
present article we have proposed, and provided preliminary support for, the notion that

Fig. 7. Percentage of participants from four studies that demonstrated relational responding, or changes in
relational responding, consistent with Relational Density Theory. The dashed line shows chance responding.
Sample sizes are presented above each bar. See text for additional explanation
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relational mass can be modeled via Newton’s volumetric-mass-density formula, in
terms of the volume and density of equivalence networks of verbally sophisticated
humans. We now turn our attention to how the concepts of acceleration and gravity
might inform an analysis of derived stimulus relations. Available data, though limited,
suggest promise for these concepts.

We first suggest that relational acceleration may be defined as a positive relationship
between network mass and rate of acquisition of new relations into the network. For
example, if a person is taught a new equation that predicts the movement of orbiting
planets, the person is more likely to restate the new equation if they are already familiar
with planetary movement and equations. Familiar, understood in the context of rela-
tional density theory, would mean that the related networks operate at high mass and
high volume. Therefore, the already established mass of networks involving “planetary
movement” and “mathematical properties” may accelerate the establishment of new
relations that correspond to these networks. On the other hand, if a person is familiar
with neither planetary movement nor mathematical equations, the person may be less
likely to restate the new equation, let alone to use the equation in any meaningful way.

A few studies have attempted to evaluate how stimulus familiarity can influence the
development of new relations. Arntzen (2004) examined the influence of familiar
stimuli contained in established equivalence networks on derived responding. Fifty
college student participants took part in the study, in which 3 five-member equivalence
classes (A–B–C–D–E) were established, where either the A stimuli or the E stimuli
were familiar pictures for two groups and three additional groups had different arrange-
ments of all abstract stimuli. All stimuli were trained to the B stimulus in the following
order: A–B, C–B, D–B, E–B. Thus, for the picture (A) group, the familiar stimuli were
involved in the first relational training, and for the picture (E) group, the familiar stimuli
were involved in the final relational training. Figure 8 shows the results. The probability
of participants demonstrating derived relational responses was enhanced when familiar
stimuli participated in the network. Thus, relational responding appeared to be accel-
erated by the inclusion of stimuli that already participated in high mass networks.
Greater acceleration was also observed when the familiar stimuli were involved in the
initial stages of training. Interpreted in the context of the theory, if the inclusion of a
familiar stimulus accelerates learning, then the A–B relation would be established
quickly, leading to the inclusion of the B stimulus in the high-mass network of the A
stimulus (i.e., Rm-combined = Rm-familiarA + B). Therefore, when all other stimuli (C,
D, and E) were trained to B, the mass of Rm-combined accelerated the acquisition of
the new relations. By contrast, when the other stimuli were trained to B, but B was not
yet trained to A, the substantially lower mass of Rm-B only failed to accelerate the
acquisition of the new relations.

Directly related to Newton’s model of acceleration and mass is force resultant from
gravity. In physics, two systems that contain mass are attracted to one another as a
function of the relative mass of the two systems (greater mass = greater attraction or
force) and the distance between them (greater distance = lesser attraction or force).
Framed in this way, we expect that high-mass relational networks will strongly attract
new relations or networks. That is, when a new stimulus could be related to either a
high-mass network or a low-mass network, it will more likely be incorporated into the
high mass network, even in the absence of direct instruction or reinforcement. Consider
as a point of departure a study conducted by Saunders et al. (1988). In a series of three

Perspectives on Behavior Science (2020) 43:259–283274



experiments conducted with individuals with intellectual disabilities, the authors eval-
uated: (1) the likelihood that participants with a history of equivalence class formation
would respond consistently to new discriminations in the absence of any sort of
feedback or reinforcement; and (2) if once the new discriminations were established,
participants would respond in terms of already established equivalence relations that
were indirectly related to the new discrimination. Figure 9 (left panel) shows the
breakdown of training in Experiment 1, in which four baseline equivalence classes
were established (i.e., A1, A2–H1, H2 and I1, I2–L1, L2). Participants were then
presented with A–I conditional discriminations, and were tested, in the absence of any
reinforcement or feedback, until they achieved consistent responding in the form of
either A1–I1/A2–I2 or A1–I2/A2–I1 relations. Participants consistently arrived at one
of the two possible sets of conditional discriminations (they did not respond randomly).

The question raised by relational density theory is whether the mass of baseline
classes in a study like that of Saunders et al. (1988) would influence the relative

Fig. 8. Number of participants who demonstrated correct equivalence-responding as a function of the
familiarity of network stimuli and location in the training arrangement. From Arntzen (2004). Reproduced
by permission

Fig. 9. Procedure summary of Saunders et al. (1988). Left: The actual procedure; reproduced by permission.
Right: Modified procedure showing a hypothetical difference in the probability of ambiguous equivalence
responding as a function of network volume.
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probability of participants arriving at one set of class-consistent conditional discrimi-
nations versus another. In the right panel of Figure 9, we altered the diagram of the
Saunders et al. procedure to show what such an arrangement might look like along with
expected results. In the actual study, classes had equal numbers of class members (equal
volume) and, presumably, equal density (i.e., all relations had equal exposure to the
same schedule of reinforcement). We have modified the hypothetical arrangement such
that Class 1 contains eight members and Class 2 contains three members.9 Given this
arrangement, if the predictions made in the theory hold true, participants will be
significantly more likely to relate the I stimuli to the Class 1 network if network mass
exerts gravitational attraction to the I-L network. As well, given findings reported by
Saunders et al., we would expect the derived equivalence relations to be consistent with
the probabilistic conditional discrimination in terms of network mass. Research by
Quinones and Hayes (2014) suggests that this sort of “self-organization” may be likely
when stimulus relations are ambiguous. When a stimulus could be related to two
competing networks, the network containing a greater historical density of
reinforcement and established relational exemplars will be more likely to acquire the
ambiguous relational stimulus.

Fields and Arntzen (2018) described how the prior meaningfulness of stimuli can
enhance the formation of equivalence classes. The author’s detailed review of the
extant literature supports the assumption that the multitude of relations and functions
contained within already meaningful stimulus relations can affect how new classes
develop, or self-organize, within conditional discrimination arrangements. Two points
raised by the authors are most relevant in developing relational density theory. First,
research by Nartey, Arntzen, and Fields (2014, 2015) suggested that if meaningful
stimuli were introduced at the beginning of a linear training arrangement (i.e., as the A
stimulus), greater enhancement was observed than when the stimuli were introduced at
the end. More research is needed to quantitatively evaluate the influence of nodal
location of meaningful stimuli, but the relationship does appear to be nonlinear.
Introducing high-mass stimuli initially in training may accelerate the formation of
equivalence classes. Second, the authors cite several studies showing that when classes
contained meaningful stimuli with preexperimental conflicting valence, yields were
lower than when valence was nonconflicting. In physical models of gravity, distance
serves as the denominator term, wherein objects that are closer are more likely to
attract. The research reviewed by these authors may suggest that preexperimental
relational properties such as valence, and we argue coherence, may be useful in
modelling the preexperimental distance between two classes and predicting the prob-
ability that the two classes will merge under training and testing conditions.

Although limited data are available through which to evaluate the concepts of
relational acceleration and gravity, we advance them here in part because of their
potential to aid in the understanding of phenomena that often are labeled as
“cognitive.” A key tenet of many cognitive theories is that such phenomena are
self-organizing. Examples include cognitive schemas, mental maps, and perhaps
even the development of correlated behaviors that comprise personalities or a
transcendent self. Marr (1992, 1996) has argued that behavior science is obliged to

9 We also only condition one I–L class to eliminate relating through exclusion (i.e., if participants responses
A1–I1, then they may relate A2–I2 through exclusion).
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account for self-organization and, in a more general sense, dynamical system
evolution. Proponents of stimulus equivalence and relational frame theories clearly
agree (Barnes & Holmes, 1991; Cassidy, Roche, & O’Hora, 2010; Dymond &
Rehfeldt, 2000; Hayes et al., 2001; Zentall et al., 2002), and they have offered
narrative interpretations inspired by our understanding of stimulus relations
(Barnes-Holmes, Hayes, & Dymond, 2002; Dougher, 1998; Weinstein, Wilson,
Drake, & Kellum, 2008). Our current point is that relational density theory offers a
means of better operationalizing relevant variables. The theory’s key premise is
that although reinforcement (of directly trained relations) undoubtedly exerts force
and is necessary for the initial development of subsets of relations, relational
networks may generate their own force, that (1) interacts with reinforcement to
accelerate the acquisition and strengthening of new relations, and (2) establishes
new relations under novel or ambiguous situations that may not involve direct
reinforcement. In this sense relational density theory complements previous nar-
rative interpretations by proposing a well-defined self-organizing property of
relational behavior that may help to account for the development of so-called
“cognitive” phenomena.

Translational Implications and Avenues for Future Research

As discussed by Critchfield et al. (2018), one of the greatest achievements of
stimulus equivalence theory is its potential to mend bridges with other ap-
proaches to behavior science. Finally, we can develop models of meaning and
complex cognition that do not require mediational accounts as have emerged
within other literatures. Relational density theory is an attempt to continue this
tradition in a conceptually systematic way while accounting for nonlinearity and
self-organization evident within derived relational responding. The present ac-
count of relational density theory, though preliminary and not fully vetted by
experimental findings, is sufficient to support predictions for real-world phe-
nomena that can be tested in translational research. Below we describe three
potentially valuable lines of research suggested by the theory.

First, if high mass networks can accelerate learning when force instead of
counterforce is applied, by understanding the current state of important relational
networks we can best choose which force to apply to achieve desired changes in
relational behavior. For example, when teaching a new concept, using an already
established network as a relational metaphor or analogy could accelerate learning,
such as by saying “planets are to solar systems as neutrons and protons are to
atoms” (Stewart, 2004). The basic experimental research findings reported by
Arntzen (2004) suggests that this may be the case, and research on utilizing
analogical reasoning to teach new concepts to children support that this strategy
could be effective (Stewart, Barnes-Holmes, Roche, & Smeets, 2001). Likewise,
in treating challenging behavior that operates at high mass, fewer resources may
be required to apply force that moves with the network rather than high-dose
counterforce. This difference may be seen in cognitive-therapy strategies that
emphasize “acceptance,” rather than attempting to decondition erroneous beliefs
(Hayes, 2004).
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Second, if we can estimate the relative resistance to change of relational responses
given knowledge of the volume and density of a given network,10 it should be possible
to predict the counterforce needed to change the desired relational response. Behavior
analysts have an ethical obligation to use least restrictive procedures (Bailey & Burch,
2016; Johnston & Sherman, 1993), therefore “least-restrictive” could become a quan-
tifiable reality. For example, if densely established rules participate in the challenging
behavior exhibited by an adolescent (see Vahey, Boles, & Barnes-Holmes, 2010, for a
study on relations that may contribute to youth smoking), several intervention compo-
nents may be required to reduce the influence of high mass rules, perhaps including
regular therapeutic exercises and strict contingency-management approaches. On the
other hand, if the same rule operates at low mass for another adolescent, simply
“discussing” the problem may be a sufficient intervention. This conditional prescribing
of an intervention mirrors the “tiered” approach employed in Positive Behavior Inter-
vention and Support (PBIS; Sugai et al., 2000) and the AIM Curriculum (Dixon &
Paliliunas, 2018) that directly targets verbal relations that contribute to challenging
behavior of children in schools.11 Another ready example can be seen in conditioning
against racist belief structures, which are highly resistant to change (Campbell &
Deacon, 2006; Guerin, 2006). Intervening at a younger age, when networks operate
at a lower mass, may be pivotal in decreasing racist beliefs and human suffering
resultant from it.

Third, if we know that adding volume to a network can decrease density, and vice
versa, then we can use this information to optimize educational strategies both in
schools and in the workforce. For example, undertraining several concepts may lead
to a loose understanding of new concepts that contain adequate volume but insufficient
density. On the other hand, although overtraining only a few relations will result in
dense relational responses, because the responses operate at low volume the relations
will be highly susceptible to change. It is interesting to note that recent changes in the
Common Core State Standards of the United States (e.g., Porter, McMaken, Hwang, &
Yang, 2011) emphasize teaching the same information in a number of different ways
(i.e., differentiated instruction), potentially simultaneously increasing volume and den-
sity to produce high mass learning.

Limitations and Conclusions

We readily acknowledge that much more basic experimental research is needed to
validate and expand relational density theory before its translational implications can be
properly examined. Each of the three predictions offered above needs to be directly
evaluated across several dimensions. For example, although some evidence suggests
that increases in volume will correspond with decreases in density, we do not know if
increasing density of certain relations will reduce volume or the probability of demon-
strating other relations in the network, and we do not know how mass enters into the

10 A potentially useful procedure for mapping network volume and density is the Implicit Relational
Assessment Procedure (IRAP; Barnes-Holmes, Hayden, Barnes-Holmes, & Stewart, 2008).
11 A key tenet of tiered systems is that interventions are only as invasive as they need to be to produce
beneficial results.
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system as the numerator when isolating for either density or volume. As well, although
the standard equation assumes that resistance is equal to density times volume, basic
research may show that this is an oversimplification, such as would occur if increases in
density have a disproportionate influence on resistance than do increases in volume,
requiring more precise equations that provide an appropriate curve fit to this relation-
ship (Critchfield & Reed, 2009).

It is also important to acknowledge that stimulus relations are far more diverse than
simply equivalence. Research inspired by relational frame theory has established that
relata can also be framed in terms of opposition, comparison, deictically, among other
contextual cues. There is already some evidence suggesting that reaction times, or
density, may be influenced by the type of relations (e.g., “same,” “opposite,” “differ-
ent”) comprising a network (O'Hora, Roche, Barnes-Holmes, & Smeets, 2002). In the
present article we restricted our focus to equivalence relations because relevant data
were more readily available for them. Studies will need to be designed that specifically
test predictions made by entering nonequivalence relations into the model. For now,
little can be assumed about how volume, mass, and density interact with such relations,
or if the model is even applicable to nonequivalence relations.

Another limitation of the theory as described here is that it does not directly address
transformation of function, which both stimulus equivalence and relational frame
theories consider to be a central phenomenon. It is well known that stimulus functions
can be transformed through class memberships (Hayes et al., 2001). For example,
Dougher, Hamilton, Fink, and Harrington (2007) demonstrated that when human
participants were shocked prior to the presentation of an arbitrary stimulus, and taught
that other stimuli are “more” or “less” than the initial stimulus, that the physiological
reaction to the “more” and “less” stimuli were transformed consistent with class
participation. An important focus for future research is on the relationship between
transformation of function and the higher-order properties of volume, mass, and density
in basic research. We suggest as a starting point that experiences that directly establish
various psychological functions of stimuli be thought of in terms of force and
counterforce.

Although our primary goal is to recruit the assistance of other researchers in
exploring the implications of relational density concepts for the broad spectrum of
stimulus relations phenomena, and equally intriguing direction for future research is to
explore the implications of relational density theory for the model that inspired it
(BMT). For instance, can the theory shed light on resistance to change of responding
to a single stimulus? Nevin and Grace (2000) implied that such resistance is the result
of a history of direct reinforcement, but training multiple exemplars of a stimulus (i.e.,
increasing volume) or overtraining several exemplars of a stimulus (i.e., increasing
volume and density) may contribute to mass in a nonlinear way that is not currently
accounted for in BMT. This may then circle back to relational cues as a single relational
response, where multiple exemplar training of the various cues (e.g., same, opposite,
different) could contribute to greater resistance, and potentially to a higher probability
of interpreting novel events in terms of a given cue through acceleration and gravity as
a product of “cue mass.” We look forward to new research exploring these avenues.

In summary, quantitative approaches to understanding human behavior confer the
benefits of speaking parsimoniously and describing higher-order relations (Critchfield
& Reed, 2009). We have proposed that complex models of human behavior consistent
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with stimulus equivalence and related theories can be modeled in terms of the higher
order properties of volume, mass, and density, consistent with Newtonian classical
mechanics, and may explain part of the nonlinearity of equivalence relations observed
in basic experimental research with humans. We have shown how selected predictions
derived from the theory square with existing experimental data that are difficult to
account with traditional accounts of stimulus equivalence. We have also illustrated the
theory’s heuristic value by showing that (1) it makes testable predictions for which new
basic research studies are needed and (2) it offers potentially valuable guidance to
application. We now invite other researchers to help refine the theory and evaluate its
utility.
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