
MOLECULAR CONTROL OF PHOSPHORUS HOMEOSTASIS (B VAN DER EERDEN, SECTION

EDITOR)

Interplay Between FGF23, Phosphate, and Molecules Involved
in Phosphate Sensing

Nina Bon1,2
& Sarah Beck-Cormier1,2 & Laurent Beck1,2

Published online: 21 January 2019
# Springer Nature Switzerland AG 2019

Abstract
Purpose of Review Despite the important progress made in understanding the regulation of phosphate (Pi) homeostasis over the
past 20 years, the mechanisms underlying the very early step leading to the regulating cascade involving multiple hormones
(PTH, vitamin D, FGF23) and organs (kidney, intestine, bone, parathyroid glands) are not deciphered. Particularly, knowledge on
the Pi-sensing mechanism present within or on the surface of the cell that is able to detect changes in serum or local Pi
concentrations and trigger an appropriate FGF23 synthesis/secretion is limited or absent.
Recent Findings Several molecular actors have recently been involved as potential key players in Pi sensing and Pi-dependent
control of FGF23 secretion. Among them, the PiT1/Slc20a1 and PiT2/Slc20a2 proteins are standing out.
Summary We are just beginning to accumulate in vitro and in vivo data that will provide invaluable molecular tools to explore
and understand the integrated response of the body to variations of Pi concentration.
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Introduction

Discovered in 2000, Fibroblast growth factor 23 (FGF23)
is an endocrine factor that plays a central role in Pi ho-
meostasis in mammals [1, 2]. It is expressed mainly but
not exclusively by osteoblasts and osteocytes in bone [3•]
and targets the kidney to inhibit the renal reabsorption of
phosphate (Pi) and the production of the active form of
vitamin D, 1,25(OH)2D [4–6]. Accordingly, increased se-
rum levels of active FGF23 are observed in inherited or
acquired disorders of Pi homeostasis leading to renal Pi
wasting and abnormal vitamin D metabolism [7–9].
FGF23 depends on its co-receptor αKlotho and FGFR1c
to mediate this action [10]. High serum FGF23 levels are

also observed during chronic kidney disease (CKD) where
unregulated prolonged hyperphosphatemia resulting from
renal excretion defects leads to life-threatening situations
due to inappropriate deposition of calcium-Pi crystals in
vessels [11, 12]. These observations illustrate the need for
a tight regulation of FGF23 secretion in maintaining nor-
mal serum Pi levels.

The 1,25(OH)2 vitamin D was shown to enhance FGF23
production and FGF23 serum levels [13, 14], but the low
1,25(OH)2D serum levels during CKD [15] argues for the
existence of other determinants of FGF23 secretion.
Recently, FGF23 expression and/or secretion was shown
to be regulated by various factors, including FGFR1 signal-
ing [7, 16], iron deficiency [17], and pro-inflammatory
stimuli [18, 19], but it remains to be determined whether
these regulations have a role in Pi homeostasis regulation.
Interestingly enough, while an important progress has been
made in elucidating the role of FGF23 in Pi homeostasis
regulation over the past 20 years, the mechanisms underly-
ing the very early step of Pi homeostasis are still not
deciphered. This first step is the ability of a cell or an organ-
ism to detect the variations of intra- and/or extracellular
concentrations of Pi that will trigger the regulating cascade
aimed at normalizing the Pi serum levels.
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Therefore, this review will explore the possible mecha-
nisms by which Pi could directly regulate FGF23 production
and/or secretion by summarizing the interplay between
FGF23 and molecules involved in Pi sensing.

Phosphate-Dependent Regulation of FGF23

Studies conducted in humans demonstrated that serum FGF23
levels are associated with dietary Pi [20–22], and that intrave-
nous infusion of Pi or acute duodenal Pi load increased FGF23
levels [23]. A relationship between dietary Pi load and circu-
lating Fgf23 levels was also illustrated in mice [24, 25].
Nevertheless, it is important to differentiate short-term
(direct) changes in FGF23 levels following dietary Pi loads
from long-term (indirect) changes through endocrine loops
that may involve other organs than bone. For instance, we
have recently showed that changes in Pi diet can influence
Klotho protein expression in vivo in the kidney [26••], while
another group has shown that FGFR1 mRNA expression can
be regulated by extracellular Pi concentration in vitro [27],
underscoring the role of these factors in the Pi-dependent reg-
ulation of FGF23. In addition, it is unclear by which mecha-
nisms FGF23 is regulated by Pi (transcription, post-transcrip-
tion, secretion, activity, and/or cleavage).

In vitro studies have been conducted in order to decipher
the Pi-dependent FGF23 regulation mechanisms, but results
are conflicting. Extracellular Pi concentration directly stimu-
lates the transcription of FGF23 in some studies [28, 29] but
not in others [26••, 27, 30, 31•, 32]. Undoubtedly, in vitro
studies are limited by the absence of appropriate models for
FGF23 secretion, since only fully differentiated osteocytes
secrete significant levels of FGF23, maybe due to the impor-
tance of extracellular matrix and 3D environment that is lack-
ing in established cell lines. Based on this observation, we
recently set up an ex vivo bone shaft model in which we were
able to illustrate significant Pi-dependent FGF23 secretion,
together with no effect of Pi on FGF23 transcription [26••].

FGF23 biological action can also be regulated by intracel-
lular cleavage of the protein, a phenomenon that is regulated
by the balanced action of two molecules. Polypeptide N-
acetylgalactosaminyltransferase 3 (GALNT3) protects
FGF23 activity by its O-glycosylation activity at the Thr178

cleavage site providing protection of furin-mediated cleavage
[33]. Another post-translational modification has more recent-
ly been involved, which is a phosphorylation of Ser180 by
family with sequence similarity 20, member C (FAM20C)
kinase [34•]. This phosphorylation inhibits the O-glycosyla-
tion, thus promoting FGF23 cleavage. However, GALNT3
and FAM20C regulators remain poorly described for now,
except for one study showing Pi-dependent regulation of
GALNT3 expression [35].

Phosphate as a Signaling Molecule

In addition to its well-known role as a component of apatite
crystals, evidence of a role of Pi as a signaling molecule has
slowly emerged in the scientific community. The first evi-
dence of such a role was shown approximately 15–20 years
ago owing to the work of Beck GR et al. that demonstrated
the regulation of secreted phosphoprotein 1 (Spp1) expres-
sion by Pi [36, 37]. Since then, the direct effect of Pi on bone
cell function and on extra-skeletal organs has been illustrat-
ed multiple times through the Pi-dependent regulation of
many genes [31•, 38, 39••].

Being a Bsignaling^ molecule implies Pi to activate a
signaling pathway. Consistently, the early works of Beck
GR and collaborators have described that the induction of
the Spp1 gene by Pi was mediated by the activation of the
ERK1/2MAPK pathway [37]. The role of the ERK pathway
in mediating the signaling function of Pi has now been con-
firmed by many other teams including ours [38, 40–45,
46•]. In addition to the ERK pathway, the Akt pathway has
been found to be activated by Pi in adipose [4] and human
bronchial cells [47], but not in HEK293 cells [44] or the
chondrogenic cell line ATDC5 [43]. The PKC and protea-
some were also found to be activated [37]. In contrast, sev-
eral pathways have been shown not to be activated by Pi
such as the P38 or JNK MAPK pathways [37, 40]. While
knowledge on the signaling pathways and genes being reg-
ulated by Pi is accumulating, one key unanswered question
is how Pi activates these pathways, and which pathway is
relevant to the Pi-dependent FGF23 secretion.

Phosphate Sensing vs Phosphate Sensors

The mechanism by which Pi signals to the cell and activates
genes or pathways is referred as Pi sensing. Although the
existence of such a mechanism is now largely accepted [38,
39••, 48•], it is not known whether in mammalian organisms
this involves a cell surface receptor that binds to Pi, or intra-
cellular proteins that respond to changes in intracellular Pi
concentrations (that may result from changes in the extracel-
lular Pi). Moreover, since changes in Pi concentration occur in
either compartment, both extracellular and intracellular Pi-
sensing mechanisms are likely to co-exist.

Central to the sensing mechanism, the Pi sensor is thought
to be a single molecule or a complex of molecules that is able
to bind Pi and trigger the secondary events leading to the
cellular response. A Pi sensor that detects changes in extracel-
lular Pi concentrations would necessarily be present at the
external cell surface. As such, membrane-associated proteins
such as high-affinity Pi transporters or receptors represent
good candidates. On the other hand, an intracellular Pi sensor
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could either be an intracytoplasmic protein or a membrane-
associated protein with exposed intracellular regions.

Identifying a Pi sensor in higher eukaryotes is a very
delicate task. An elementary difficulty relates to the defi-
nition of a Pi sensor, which, even more than the Pi-
sensing mechanism, can be questionable. In addition,
many processes have been proposed as part of a Pi detec-
tion mechanism, despite the lack of information on the
identity of the Pi sensor itself. For instance, in yeasts, in
condition of Pi starvation, the 5′-diphosphoinositol
pentakisphosphate (IP7) accumulates in the cytoplasm.
IP7 then binds to the SPX domain of the cyclin-
dependent kinase inhibitor phosphate system positive reg-
ulatory protein (Pho81) and the Pi exporter XPR1, trig-
gering the PHO pathway that will eventually activate Pi
transporters to correct for intracellular Pi [49]. In this
mechanism, in which IP7 serves as a second messenger
to respond to a decrease in intracellular Pi concentration,
the identity of the molecules that actually detect the intra-
cellular Pi decrease is unknown. In mammals, IP7 is gen-
erated from IP6 by a family of IP6 kinases (IP6K1–3) [50,
51]. Early studies have identified IP6K2 as PiUS (stand-
ing for phosphate uptake stimulator), a protein character-
ized by its ability to enhance Pi uptake [52]. More recent-
ly, IP6K2 and IP6K3 have been identified as genetic de-
terminants of serum Pi level regulation in humans [53],
whereas PPIP5K, another enzyme responsible for the syn-
thesis of inositol pyrophosphates, is strongly inhibited by
extracellular Pi in human epithelial cells [54]. It is there-
fore important to design experiments to study the role of
these kinases as potential intracellular Pi sensors.

Although it is expected that a Pi sensor will bind the Pi, the
opposite is not necessarily true since a molecule that binds Pi
does not necessarily represent a Pi sensor. This may be partic-
ularly difficult to conceptualize when considering Pi trans-
porters at the plasma membrane. The binding of Pi on the
transporter leads to a conformational change and ultimately
to the transport of the Pi ion into the intracellular space, which
will change the intracellular Pi concentration, triggering an
adaptive cellular response. It is therefore true that a transporter
participates in the sensing mechanism, but the molecule that
informs the cell of a change in intracellular Pi is not necessar-
ily the transporter itself [48•, 49]. It should be demonstrated
that, independently of Pi transport, the transporter can signal
to the cell (using transport-deficient transporters or non-
metabolizable Pi analogues). Otherwise, it is the change in
intracellular Pi itself that triggers the cellular response, via a
still unknown intracellular Pi sensor.

Finally, while PHEX and DMP1 are involved in the regu-
lation of Pi homeostasis through complex regulatory loops
involving FGF23 secretion [9], it has recently been shown that
mutations in these genes alter the responsiveness to extracel-
lular Pi [55, 56] that may involve FGFR1 [7].

Candidate Molecules as Pi Sensors Involved
in the Control of FGF23 Secretion

When considering the above definitions, candidate intracellu-
lar or membrane-bound proteins capable of binding Pi and
acting as mediator of the Pi-dependent regulation of FGF23
are rare. The best candidates for mediating the Pi-dependent
FGF23 regulation are presently the PiT/Slc20 proteins. PiT1/
Slc20a1 and PiT2/Slc20a2 are high-affinity Na+-dependent Pi
transporters [57, 58] that were originally identified as retrovi-
rus receptors [59–61]. Unlike the other high-affinity Na+-Pi
co-transporters described in mammals and which belong to
the Slc34 family [62], PiT proteins are widely expressed, in-
cluding in the main organs involved in the regulation of Pi
homeostasis [63]. PiT1 expression was shown to be regulated
by extracellular Pi concentration [32, 64–66]. Notably, PiT1 is
involved in the Pi-dependent activation of the ERK1/2 path-
way in numerous cell types [43–45, 46•]. The PiT1 paralog
PiT2, although less studied, has also been suggested to be
involved in Pi signaling.

We recently demonstrated that the Pi-dependent activation
of ERK1/2 pathway requires both PiT1 and PiT2, and that Pi-
dependent/PiT-mediated ERK1/2 phosphorylation does not
require Pi transport through the PiT proteins [46•]. Although
this was the first time that PiT2 was demonstrated to play a
role in Pi signaling, Pi-independent function of PiT1 on ERK
signaling has also been shown earlier [45, 67]. We also
showed that PiT1 and PiT2 were able to form low-abundant
heterodimers in addition to high-abundant homodimers and
that the heterodimerization was enhanced by increased extra-
c e l l u l a r P i . Impo r t a n t l y, we showed t ha t t h e
heterodimerization was dependent upon the binding of Pi to
the PiTs, but not the transport of Pi. Early studies have also
suggested a homodimerization of PiT2 in response to extra-
cellular Pi variations that was independent of its transport
function [68, 69]. These results reinforce the idea that PiT
protein dimers are strong Pi sensor candidates mediating ex-
tracellular Pi variations. However, the cell-specificity of the
redundancy or non-redundancy of PiT1 and PiT2 inmediating
Pi effects and the physiological relevance of these findings are
both unknown. As a first step to illustrate a physiological role
for PiTs in Pi sensing, we recently illustrated in vitro, ex vivo
in bone shafts culture, and in vivo in mice that lack of PiT2
blunted the Pi-dependent regulation of FGF23 secretion
[26••]. Importantly, we also showed in this model that the
ERK1/2 pathway was not involved in the Pi-dependent
FGF23 secretion, despite a normal expression of FGFR1, sug-
gesting that mechanistic links other than the ERK1/2 pathway
may be at work between PiT2 and FGF23 secretion. Despite
this observation, a role for FGFR1 inmediating the effect of Pi
and PiTs on FGF23 secretion should still be considered.
Indeed, the osteocyte-specific deletion of Fgfr1 partially re-
stored the overproduction of FGF23 seen in Hyp mice [16].
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Moreover, exogenous over-expression of FGFR1 in HEK
cells rescued the decrease in the Pi-induced phosphorylation
of ERK1/2 in PiT1-deficient cells [70], suggesting that
FGFR1 may be a molecular link between PiT1 and the Raf/
MEK/ERK pathway. Clearly, further studies are therefore nec-
essary to decipher the link between PiT1/PiT2, FGFR1, and
the ERK pathway in regulating FGF23 secretion.

A contribution in the sensing of extracellular Pi variations
may involve the calcium-sensing receptor (CaSR). Not sur-
prisingly, the CaSR was identified in a genome-wide associa-
tion study as a genetic determinant of serum Pi concentration
[53]. More intriguingly, the recent crystal structure of the re-
ceptor revealed multiple binding sites for PO4

3− ions in the
extracellular domain of CaSR [71••]. Although no functional
studies have been performed and the role of CaSR in the
detection of Pi has not been tested, the authors suggest that
binding Pi may modify the conformation of CaSR, which
could modify the binding properties of Ca2+ to the receptor
and have indirect consequences on the regulation of Pi ho-
meostasis through Pi sensing.

Since the deletion of the intestinal high-affinity Na+-Pi co-
transporter Npt2b/Slc34a2 leads to a decrease in Fgf23 serum

levels [72] and that serum Pi levels have been shown to be
regulated through an intestine-kidney axis [73, 74], the in-
volvement of Npt2b in Pi sensing was suggested [75].
Although a role of Npt2b in regulating Pi concentration is
consistent with the current observations, Npt2b expression is
not regulated by Pi [76] and no study has yet been conducted
to determine whether Npt2b could represent a Pi sensor.
Particularly, it remains to be established whether its possible
involvement in a Pi-sensing mechanism relates to its sole
transport function, whereby Npt2b-mediated Pi entry in the
cell would be detected by a yet unknown intracellular Pi sen-
sor triggering the cell’s response.

The retrovirus receptor XPR1 [77] has recently been de-
scribed as the only known Pi exporter in mammalian cells
[78••]. XPR1 contains an N-terminal SPX (Syg1/Pho81/
Xpr1) domain that is not required for Pi export function
[78••], suggesting a potential role in another function.
Consistently, the SPX domain is described in yeasts and plants
as a domain that could mediate signal transmission from var-
iations of extracellular Pi concentration [79, 80]. Recently, as
outlined above, it was reported that the SPX domain binds
inositol polyphosphates (IP), particularly IP7 [81••], the

Fig. 1 Schematic view of putative Pi-sensing pathways involved in
FGF23 secretion. Upon Pi binding to the PiT1-PiT2 heterodimer, the
ERK1/2 MAPK pathway is activated within few minutes, whereas
FGF23 secretion is observed within few hours. However, the use of a
MEK inhibitor did not block Pi-dependent PiT-mediated secretion of
FGF23 indicating that other signaling pathways are involved. Upon stim-
ulation by Pi, FGFR1 has been implicated in FGF23 regulation at the
transcription level, a phenomenon that involves the ERK pathway. Since
Pi was not demonstrated to bind FGFR1, a functional link between this

receptor and the PiT proteins has been suggested. The regulation of in-
tracellular Pi concentration may involve a coordinated control of Pi up-
take through the PiTs and Pi efflux throughXPR1. The IP6K2 kinasemay
represent an intracellular Pi sensor by modulating the concentration of
IP7 that binds the SPX domain of XPR1 and controls Pi efflux. The role
of the binding of Pi to CaSR and the transport of Pi by Npt2b in control-
ling FGF23 synthesis or secretion requires more investigation but may
modulate the above phenomenon
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concentration of which changes upon Pi availability, suggest-
ing that, as in yeasts, IP concentration participates to the Pi-
sensing mechanism in mammals. The role of IP kinases may
therefore be central to the regulation of intracellular Pi, while
their role in regulating FGF23 secretion is totally unknown. A
recent study illustrated that conditional deletion in mice of
Xpr1 in the renal tubule resulted in renal Fanconi-like syn-
drome with impaired renal Pi reabsorption and impaired bone
mineralization [82]. In addition to these Pi-related effects,
these mice excrete massive amounts of glucose, amino acids,
and albumin, indicating severe kidney damage and suggesting
an important role for XPR1 in the kidney that may extend
beyond the export or sensing of Pi. Although XPR1 is a prom-
ising candidate for controlling intracellular Pi concentration,
further studies are needed to establish a link between its ex-
pression in the kidney or bone and the regulation of FGF23
synthesis or secretion.

Conclusion and Unresolved Questions

Although the regulation of Pi homeostasis by FGF23 has been
extensively studied, the feedback loop by which Pi modulates
FGF23 is much less known. Recent efforts have been made to
identify the molecular actors involved in the detection of Pi and
their role in triggering the expression or secretion of FGF23
(Fig. 1). Important molecules include the PiTs and XPR1 pro-
teins, but also perhaps FGFR1 and CaSR. However, many
questions remain. What is the respective role of PiT1 and
PiT2 in controlling FGF23 secretion? What are the molecules
connecting the PiT proteins to the ERK, Akt, or PKC signaling
pathways? Since extracellular and intracellular Pi concentra-
tions are closely related, what is the functional relationship
between PiTs and XPR1, and do they function together in a
coordinated manner to control FGF23 secretion? Is the sensing
of Pi controlling FGF23 secretion limited to bone, or is there a
coordination between the intestine, kidneys, bone, and parathy-
roid glands to integrate the response to variations in serum Pi
levels? Finally, if Pi-sensing controlling serum Pi levels proves
to be a universal mechanism widely distributed in the body’s
cells, how can therapeutic strategies be devised to control it?
These and many other questions remain challenges for re-
searchers and clinicians andwill require in-depth in vivo studies
to decipher and understand them.
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