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Abstract
Purpose of Review Ewing sarcoma is the second most common bone cancer seen in children and adolescents. Previous reports
have demonstrated that the main driver of malignancy in this disease is an aberrant transcription factor that is expressed by gene
fusions between the EWSR1 gene and an ETS family transcription factor such as FLI1 or ERG. Here we review recent preclinical
and clinical advances in drug development for the treatment of Ewing sarcoma. We also discuss the rationale for promising
combination therapies that have been considered in the interest of developing treatments for Ewing sarcoma.
Recent Findings The main driver of malignancy in this disease is EWS-FLI1. There have been valiant efforts to develop targeted
therapies targeting EWS-FLI1, epigenetic factors, factors that affect transcription and the repurposing of previously approved
drugs has also been of interest.
Summary The underlying mechanisms of how EWS-FLI1 contributes to malignancy in Ewing sarcoma have been extensively
studied. Through these observations, EWS-FLI1 targeting and inhibition of aberrant transcription of downstream targets has been
proposed as a potential pharmacologic treatment. Improved understanding of how newly developed compounds affect this
disease, keeping associated toxicities in mind have led to structure activity relationship studies that have demonstrated improved
efficacy and toxicity when treating at the preclinical level. Although there have beenmany challenges translating these promising
results in the clinic, there are further studies ongoing to improve these efforts.
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Introduction

Ewing sarcoma (ES) is an aggressive malignant tumor that
occurs in bones and soft tissue and is the second most com-
mon bone malignancy after osteosarcoma [1]. Primarily, this
disease affects children and adolescents with about 200 pa-
tients being diagnosed annually in the USA. For patients with
localized and metastatic disease the current standard chemo-
therapy for ES consists of four to six alternating cycles of
VDC/IE (vincristine, doxorubicin, cyclophosphamide/

ifosfamide and etoposide) [2, 3•]. The 5-year survival rate
for patients with localized disease is about 83%.
Unfortunately, patients with metastatic and/or recurrent dis-
ease have an overall survival rate of less than 20% [4]. Even
those patients who do successfully recover and become long-
term survivors often suffer from late effects of their therapy [5,
6, 7•, 8–10]. Many of these patients suffer from the develop-
ment of secondary malignancies including hematopoietic can-
cers, carcinoma, and other sarcoma like cancers [11]. ES pa-
tients also suffer from reduced fertility, renal insufficiency,
and cardiomyopathy [8]. Therefore, there is a need to develop
treatments that specifically target the underlying biological
drivers of this disease. The ES family of tumors (ESFT) is
characterized by a unique chromosomal translocation that
gives rise to specific gene fusions that involve the EWSR1
gene and ETS transcription factors with the end result being
malignant transformation and disease progression. In 85% of
ES cases, there is an associated t(11;22) (q24;q12) chromo-
somal translocation, which leads to the formation of the
EWSR1-FLI1 fusion gene [12] whereas in 10–15% of ES
cases, there is the EWSR1-ERG fusion gene arising from the
t(21;12) (22;12) [12]. The remaining 1–5% of ES cases harbor
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one of several possible translocations resulting in a fusion
gene that contains the EWSR1 gene and a member of the
ETS family of transcription factors (Table 1) [1].

Structurally, the EWS and FLI1 components of the fusion
protein EWS-FLI1 have unique activity. The c-terminus, com-
prised of a significant portion of the FLI1 protein, acts as the
DNA-binding domain, while EWS, at the N terminus, acts as a
transcriptional activator. In general, EWS-FLI1 localizes in
the nucleus and binds DNA at GGAA microsatellite repeats
to promote transcription of its downstream targets [13, 14].
Notably, the DNA-binding domain is conserved among all 28
members of the ETS family. The transcription program medi-
ated by EWS-ETS leads to malignant transformation, allows
cells to maintain a de-differentiated state, and affords them to
circumvent toxicity associated with DNA damaging agents
[15•, 16, 17]. Preclinical data aimed at understanding the role
of EWS-FLI1 in ESFT viability has shown that silencing of
EWS-FLI1 expression markedly impairs ES cell growth [18].
Many different approaches have been followed in efforts to
develop therapeutic agents that target the biological drivers or
malignant phenotype of ES. Here we highlight six classes of
experimental agents: (i) DNA-binding agents targeting EWS-
FLI1 and protein partners, (ii) agents that reverse transcrip-
tional signature of EWS-FLI1, (iii) kinase inhibitors, (iv) in-
hibitors of LSD1 (lysine-specific demethylase 1), (v) inhibi-
tors of poly ADP ribose polymerase-1 (PARP-1), and (vi)
microtubule inhibitors.

Targeting EWS-FLI1

YK-4-279 The EWS-FLI1 transcriptional complex includes
CREB-binding protein, RNA polymerase II, and RNA
helicase A (RHA) [19, 20•]. It has been previously reported
that RHA increases EWS-FLI1–mediated transcription, sug-
gesting that these protein interactions are important for ES
oncogenesis [20•]. EWS-FLI1 binds to RHA in a unique po-
sition where if inhibited it would not interfere with any other
transcriptional or RNA metabolism proteins (Fig. 1a) [20•].
Based on these experimental discoveries, RHA inhibition is
an attractive target for treating ES. Erkizan et al. developed the
small molecule YK-4-279 as an inhibitor of RHA: EWS-FLI1

binding. YK-4-279 binds RHA inhibiting its ability to bind
and interact with EWS-FLI1 at low micromolar concentra-
tions [21]. They also demonstrated that YK-4-279 treatment
inhibits EWS-FLI1 functionality. Luciferase reporter assays
were conducted to demonstrate EWS-FLI1 activity at the
NR0B1 promoter upon dose dependent YK-4-279 treatment
in COS7 cells [21]. YK-4-279 was also shown to induce ap-
optosis and inhibit ES cell growth [21]. Efficacy studies in ES
xenografts displayed significant decreases in tumor size com-
pared with control showing potential use for YK-4-279 in the
clinic [21]. Due to poor clinical activity, YK-4-279 is no lon-
ger being evaluated for the treatment of ES its clinical deriv-
ative TK216 which, is currently being evaluated in patients
with relapsedor refractory ES [22•].

Mithramycin In efforts to discover an EWS-FLI1 inhibitor
a 50,000-compound high-throughput screen was conduct-
ed at the National Cancer Institute (NCI) in 2011. Cell-
based luciferase reporter screens in TC32 ESFT cells
identified mithramycin as a potent inhibitor of EWS-
FLI1 (Fig. 1b) [23•]. Mithramycin is a tricyclic polyketide
that was originally isolated from Streptomyces argillaceus
for its antibiotic activity but was later found to have po-
tent anti-tumor activity [24]. Mithramycin was character-
ized based on its ability to inhibit EWS-FLI1 activity
in vitro using microarray expression profiling, qRT-PCR,
and immunoblot analysis. In vitro assays displayed
mithramycin ability to inhibit expression of downstream
EWS-FLI1 targets at the mRNA and protein levels.
In vivo studies included xenograft studies where
mithramycin suppressed tumor growth in two different
ESFT models [23•].

The success of this preclinical study prompted a phase I/II
clinical study of mithramycin in children and adults with refrac-
tory ES [25•]. Results from the clinical trial showed that
mithramycin has a very narrow therapeutic window. At doses
relevant to treat and decrease tumor size in these patients, toxicity
was prevalent [25•]. The average maximal mithramycin plasma
concentration in patients was 17.8 ± 4.6 ng/mL. The average
plasma concentrations of mithramycin measured were extremely
low compared with the sustained mithramycin concentrations
required to suppress EWS–FLI1 transcriptional activity in pre-
clinical studies at ≥ 50 nmol/L [25•]. Patients displayed high
levels of alanine aminotransferase (ALT) and aspartate amino-
transferase (AST), hallmarks of severe liver damage [25•]. It has
been reported that mithramycin binds DNA specifically at GC
sites, inhibiting the transcription factor Sp1 from binding and
regulating expression of thousands of genes [26]. There is evi-
dence that the inhibition of Sp1 by mithramycin is a substantial
part of its associated toxicity [27]. This data has helped to guide
the development of second generation mithramycin analogues
that can confer potent inhibition of EWS-FLI1 while bypassing
toxicities associated with mithramycin treatment.

Table 1 Summary of the
different fusions between
non-ETS and ETS genes
and their frequency in
Ewing sarcoma tumors

Non-
ETS

ETS Frequency (%)

EWS FLI1 85

EWS ERG 10

EWS ETV1 < 1

EWS ETV4 < 1

EWS FEV < 1

TLS ERG < 1
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Mechanistic studies based on the molecular mode of action
of mithramycin have led to the development of novel
mithramycin analogues (Fig. 1). MTMSA-Trp and
MTMSA-Phe are semi synthetic analogues of mithramycin
that have shown in vitro anti-cancer activity similar to
mithramycin [28•]. It has also been reported that MTMSA-
Trp and MTMSA-Phe bind DNA and physically interact with
EWS-FLI1 [29•, 30•]. Further refinement of these
mithramycin analogues has led to the development of
MTMSA-Phe-Trp and MTMSA-Trp-Trp [31•]. Mitra et al.
reported that both MTMSA-Phe-Trp and MTMSA-Trp-Trp
have potency similar to mithramycin in ESFT cells [31•]. It
was also reported that MTMSA-Phe-Trp and MTMSA-Trp-

Trp are more selective for cell lines that express EWS-FLI1
than mithramycin and previously reported analogues [31•].
Further studies are currently ongoing to determine efficacy
and pharmacokinetics of other analogues in xenograft mouse
models of ES.

Reversing the Transcriptional Signature
of EWS-FLI1

Trabectedin Trabectedin is a natural product that was original-
ly isolated form the sea squirt Ecteinascidia turbinate [32].
Trabectedin binds DNA in the minor groove at GC-rich

Fig. 1 Depiction of the mechanism of action of novel treatment
approaches for Ewing sarcoma. a YK-4-279 binds RHA inhibiting its
interaction with EWS-FLI1 and transcription of target genes. b
Mithramycin binds DNA and inhibits EWS-FLI1 mediated
transcription. c Trabectedin-binding alkylates DNA distorting its
structure and inhibits DNA repair protein activity and transcription

factor activity. d LSD1 inhibitors bind LSD1 and prevent its interaction
with EWS-FLI1. e, f CDK inhibitors bind cyclin/CDK complexes
preventing phosphorylation. g PARP binds DNA and repairs DNA
breaks, in the presence of olaparib PARP activity is inhibited rendering
the cell vulnerable to consequences of DNA damage. h Eribulin inhibits
microtubule growth causing nonproductive tubulin aggregates
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sequences and alkylates the amino group of guanine at posi-
tion 2, bending DNA toward the major groove (Fig. 1c) [33].
A potent alkylator, its cytotoxicity comes from its ability to
interact with DNA repair pathways. Trabectedin-DNA ad-
ducts can trap the transcription-coupled DNA nucleotide ex-
cision repair (TC-NER) system as it repairs DNA damage in
transcribing cells, this then leads to lethal DNA breaks [34].

Clinically, trabectedin has shown activity in a wide range of
malignancies, most notably in leiomyosarcoma and
liposarcoma [35]. Previously it has been shown that sarcomas
harboring chromosomal translocations are sensitive to
trabectedin treatment [36]. Taamma et al. reported a 50% re-
sponse rate in patients with myxoid liposarcoma which har-
bors a t(12:16) (q13;p11) chromosomal translocation FUS-
CHOP, after treatment with trabectedin [36]. This finding
has identified trabectedin as a potential drug of interest for
the treatment of ES. Preclinical studies have shown that ES
cells are sensitive to trabectedin treatment, and there is mech-
anistic evidence that trabectedin interferes with EWS-FLI1
activity in vitro, reversing the gene signature of the aberrant
transcription factor [37, 38, 39•]. Trabectedin has not shown
success in the clinic in ES patients, but there have been efforts
to develop analogues that can better target the EWS-FLI1
translocation [40•]. Lurbinectedin, a trabectedin derivative,
has shown evidence of activity against EWS-FLI1. This sec-
ond generation trabectedin analogue causes nuclear redistri-
bution of EWS-FLI1 from the nucleus to the nucleolus, sim-
ilar to that of the parent compound trabectedin [41•].
Lurbinectedin is currently being tested in a phase 2 clinical
trial in select advanced solid tumors [42•].

Inhibitors of LSD1

HCI-2509 Although there have been multiple efforts to target
the transcription factor EWS-FLI1, the main oncogenic driver
in ES, there has been little success in identifying a potent yet
clinically acceptable small molecule inhibitor of the transcrip-
tion factor. ES has one of the lowest mutation rates of any
cancer, and it has emerged as a model system to investigate
epigenetic aberrations resulting in oncogenesis [43•, 44, 45•].
Lysine specific demethylase 1 (LSD1) is an enzyme that func-
tions as a histone demethylase and as a transcriptional activa-
tor and repressor [46]. LSD1 has been implicated in many
malignancies including breast, prostate, bladder, lung, liver,
neuroblastoma, amyloid leukemia and colorectal tumors
[47–52]. In 2011, it was reported that ES expresses unusually
high levels of LSD1 [53•, 54]. It has also been demonstrated
that overexpression of LSD1 can drive transformation in cells
[49, 54, 55]. Previous studies have demonstrated that LSD1 is
required for chromosome segregation and downregulation of
LSD1 can lead to abnormal centrosome duplication. This

significantly impairs nuclear pore complex assembly, leading
to an extended telophase [56, 57].

Initially LSD1 inhibition in ES was tested using
tranylcypromine [53]. Tranylcypromine is currently pre-
scribed as an anxiolytic and antidepressant. However, because
of severe side effects associated with its treatment, its use is
limited to treating patients with major depressive disorders
[58]. It was shown that tranylcypromine inhibits LSD1 in a
non-reversible manner, which translated to decreased cell pro-
liferation at milli-molar concentrations in ES cells, thus
supporting further exploration and development of a more
potent and specific LSD1 inhibitor [53]. Sankar et al. have
been investigating the therapeutic potential of HCI-2509, a
non-competitive reversible small molecule inhibitor of
LSD1, for the treatment of ES (Fig. 1d) [59•]. Their studies
demonstrated that HCI-2509 can reverse the global oncogenic
transcriptional program in ES with the use of cell viability
assays and RNA-sequencing [59•]. They also demonstrated
that HCI-2509 impairs tumorigenesis in vivo. As a single
agent HCI-2509 decreased tumor size in comparison to the
vehicle group, which led to improved survival of treated ani-
mals over 60 days, but these differences were not statistically
significant [59•]. Despite this limited efficacy, an analogue of
HCI-2509 known as SP-2577 is undergoing phase 1 clinical
testing [60].

Kinase Inhibitors

CDK12/13 Inhibitors One approach to treating ESFT is to tar-
get the basic transcriptional machinery with small molecule
inhibitors such as THZ1, which is a covalent inhibitor of
CDK7/12/13 [61]. The control of gene transcription involves
a set of cyclin-dependent kinases (CDKs), including CDK7,
CDK8, CDK9, CDK11, CDK12, CDK13, and CDK19 these
kinases are essential to transcription, initiation and elongation.
Specifically, CDKs phosphorylate RNA polymerase II
(RNAPII) at its C-terminal domain (CTD) causing recruitment
of transcriptional activators to the transcriptional complex
[62]. THZ1 was implicated as a potential therapeutic for
treating cancers defined by their high dependency on tran-
scriptional programs for initiating transformation [63]. This
was further demonstrated when 1081 cancer cell lines were
screened, and ES cell lines were shown to be the most sensi-
tive to THZ1 treatment [64]. Iniguez et al. reported that in ES
cell lines THZ1 primarily targets CDK12, a kinase that regu-
lates expression of DNA damage repair genes (Fig. 1e) [64,
65•]. Because of non-specific targeting, the THZ1 analogue
THZ1531 was developed and tested in preclinical studies.
These studies showed that THZ1531was highly active in cells
expressing EWS-FLI1, specifically showing an increase in
proteins involved in double-stranded DNA damage repair.
Considering this discovery, they then hypothesized that cells
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expressing EWS-FLI1 are more vulnerable to THZ1531 and
other DNA damage repair inhibitors. ES cell lines have been
reported to be highly sensitive to PARP inhibitors [66].
Preclinical combination study results showed strong synergy
with THZ1531 and the PARP inhibitor olaparib.

Xenograft studies using THZ1 as a single agent did not
cure mice of ES, suggesting that the combination of THZ1
and olaparib could be necessary to achieve complete efficacy
[64]. Treatment of tumors with the combination of THZ1 and
olaparib demonstrated a marked decrease in tumor size com-
pared with control groups [64].

CDK4/6 Inhibitors The ES genome is characterized by one of
the lowest mutational rates among cancer types, implicating a
possibility for epigenetic deregulation as a component for tu-
mor development [44, 45•, 67]. Reports have shown that
about 13 to 30% of ES tumors possess deletions in the gene
CDKN2A, although these deletions do not appear to be asso-
ciated with clinical outcome there is still some implication that
this could be a target for pharmacological drug development
[51, 68]. In ES, the tumor suppressors p16INK4a and p14arf
arise from variant transcription start points of the CDKN2A
gene, and p16 has been shown to inhibit CDK4 and CDK6–
mediated phosphorylation of the RB protein, preventing cell
cycle progression [69]. The alteration of p16INK4a in ES has
sparked clinical interest in CDK4/6 inhibition. Cyclin D1, a
regulatory subunit of CDK4 and CDK6, has also been shown
to be a super enhancer in ES [70•] and consequently, in ES
cells, the CyclinD1/CDK4 pathway is activated and is re-
quired for growth. Kennedy et al. conducted xenograft studies
where they demonstrated that CDK4/6 inhibition decreased
tumor growth [70•]. These results suggest yet another poten-
tial pathway to target oncogenic drivers of ES at the molecular
level (Fig. 1f).

Currently, the CDK4/6 inhibitor, abemaciclib is being evalu-
ated in a phase I clinical trial in children and adults with recurrent
and refractory ES, neuroblastoma, rhabdomyosarcoma, and os-
teosarcoma [71]. The main toxicity associated with CDK4/6 in-
hibition is hematologic in nature, and there is growing interest in
combining CDK4/6 inhibitors with cytotoxic chemotherapeutics
that have non-overlapping toxicities [72]. There is also interest in
combining CDK4/6 inhibitors with MEK, mTOR, and IGF-1R
inhibitors, exploiting multiple pathways focusing on targets that
can influence tumor growth in ES [73–75].

PARP-1 Inhibitors

Olaparib Mechanistically, poly adenosine diphosphate ribose
polymerase (PARP) is an enzyme that has been shown to both
drive transcription and to accelerate base excision repair (Fig.
1g) [76–78]. Initial interest in PARP1 inhibitors have shown
promising activity particularly in BRCA-mutant cancers

defective in homologous repair (HR), in which they have
demonstrated replication fork stalling and subsequent synthet-
ic lethal cell death [79–81]. PARP inhibitors have also recent-
ly been of interest for the treatment of ES. It has been reported
that ES cells express high levels of PARP mRNA and protein
which translates to high PARP activity related to an increase in
copy number compared with other cancers [82]. Increased
PARP activity has led to the report that inhibition of PARP
sensitizes ES cells to ionizing radiation [82]. In more recent
studies Brenner et al. showed increased sensitivity of three ES
cell lines to the PARP inhibitor olaparib, as opposed to an
osteosarcoma and rhabdomyosarcoma cell line [83•]. In this
study, however, olaparib was not effective as a single agent in
xenograft experiments. They subsequently combined olaparib
with temozolomide, a DNA alkylating agent, results displayed
a marked decrease in tumor size of the xenograft models.
These data represent the potential for elucidating synthetic
lethality in ES cells in the presence of a PARP inhibitor and
a DNA damaging agent [83•]. In 2014, a phase II clinical
study was conducted evaluating the antitumor activity of
olaparib, as a monotherapy in patients with refractory ES fol-
lowing failure of standard chemotherapy [84•]. This study
concluded that olaparib administration was safe and well tol-
erated in patients. However, as a monotherapy, there were no
significant responses or durable disease control [84•].
Currently a phase I study of olaparib and temozolomide for
the treatment of ES is ongoing [85] .

Microtubule Inhibitors

Eribulin Microtubules help support organelles, transport mol-
ecules, and give shape to the cell. The microtubule inhibitor
eribulin inhibits polymerization of tubulin subunits by
preventing lengthening and shortening of microtubules during
cellular division (Fig. 1h) [86, 87]. When these unstable poly-
mers of tubulin aggregate the result is apoptosis [88, 89].
Eribulin is approved by the FDA for treating metastatic breast
cancer and may have promising activity in other cancers [90].
In ES, EWS-FLI1 drives expression of proteins that regulate
microtubule stability, making this an attractive drug target. In
pre-clinical studies, testing of eribulin in ES cell lines demon-
strated Bcl-2 induced apoptosis [91]. Additionally, eribulin is
FDA-approved for adult patients with liposarcoma who pre-
viously received an anthracycline [92]. An ongoing phase 2
trial is evaluating eribulin in patients with relapsed/refractory
rhabdomyosarcoma and ES [93]. Another phase 1/2 clinical
trial is evaluating the combination of eribulin with irinotecan
in children with refractory and recurrent rhabdomyosarcoma
and ES as well [94]. Overall, eribulin has shown strong pre-
clinical and clinical results in ES, thus giving it great potential
as either a monotherapy and in combination with another ap-
proved chemotherapeutic.
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Conclusion

ES treatment relies on combinations of surgery, radiation, and
traditional chemotherapeutic regiments. In many ES patients,
these conventional treatment approaches are not enough to
remedy this aggressive cancer. Additionally, ES patients in
remission must deal with considerable acute and long-term
toxicities associated with these therapies. Improving the out-
comes for patients with ES will require development of
targeted therapies. Therefore, a thorough understanding of
the activity, translation, and verification of novel agents is vital
in targeting biologically relevant drivers of ES. This is impor-
tant for clinical development of successful targeted therapies.
In this review, we focused on several approaches targeting
specific pathways that play a part in ESFT growth in patients.
Targeting the EWS–FLI1 transcription factor directly is an
approach that has shown promising results but has also been
met with many challenges. A major challenge will be to dis-
cover a pharmacologic inhibitor that selectively acts to disrupt
the function of EWS-FLI1. Alternatively, blocking important
pathways, inhibiting the downstream gene signature of EWS-
FLI1 and exploiting PARP inhibitor sensitivities have shown
promising preclinical results that have yet to be translated in
the clinic. Continued efforts toward developing novel thera-
peutics targeting specific molecular abnormalities in ES are
currently ongoing in efforts to improve survival outcomes for
these patients.
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administered to children and adolescents with refractory or
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ages of 4 and 16 years old with refractory solid tumors received
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one patient had dose limiting anorexia and fatigue. At 1.7 mg/
m(2), two patients experienced dose limiting toxicity, dehydra-
tion, and gamma glutamyl transpeptidase elevation. Non-dose
limiting toxicities included elevated serum transaminases,
myelosuppression, nausea, emesis, and fatigue. Plasma phar-
macokinetic parameters were similar to historical data in
adults. One partial response was observed in a patient with

Curr Mol Bio Rep (2019) 5:153–166 161

https://doi.org/10.1039/c9md00100j
https://doi.org/10.1021/bi960306b
https://doi.org/10.1038/91008
https://doi.org/10.1200/jco.2008.21.0088
https://doi.org/10.1200/jco.2001.19.5.1256
https://doi.org/10.1158/1078-0432.Ccr-08-0730


neuroendocrine carcinoma. Stable disease (>/=6 cycles) was
achieved in three patients (osteosarcoma n = 2, desmoplastic
small round cell tumor n = 1). CONCLUSIONS: The MTD of
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This effect was rooted in the wild-type functions of the EWSR1,
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