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Abstract
Purpose of Review An important number of newly identified molecular alterations in prostate cancer affect gene encodingmaster
regulators of chromatin biology epigenetic regulation. This review will provide an updated view of the key epigenetic mecha-
nisms underlying prostate cancer progression, therapy resistance, and potential actionable mechanisms and biomarkers.
Recent Findings Key players in chromatin biology and epigenetic master regulators has been recently described to be crucially
altered in metastatic CRPC and tumors that progress to AR independency. As such, epigenetic dysregulation represents a driving
mechanism in the reprograming of prostate cancer cells as they lose AR-imposed identity.
Summary Chromatin integrity and accessibility for transcriptional regulation are key features altered in cancer progression, and
particularly relevant in nuclear hormone receptor-driven tumors like prostate cancer. Understanding how chromatin remodeling
dictates prostate development and how its deregulation contributes to prostate cancer onset and progression may improve risk
stratification and treatment selection for prostate cancer patients.
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Introduction

Prostate cancer has traditionally been seen as an aging-asso-
ciated, low mutational load tumor with a tendency for geno-
mic rearrangements and a particular dependency on the activ-
ity of the androgen receptor (AR). As such, treatment strate-
gies have been focused on targeting the AR axis, either
through inhibiting steroidogenic pathways and the production
of testosterone, or by antagonizing the AR itself to prevent its
nuclear translocation and the activation of its transcriptional
network. While these strategies have doubtlessly improved
survival for prostate cancer patients, they are not curative in
many cases, and resistance eventually occurs in about 30% of

patients, who develop castration-resistant prostate tumors
(CRPC) for which limited treatment options exist. Moreover,
under the CRPC definition, a pool of diverse disease presen-
tations with variable outcomes exists, including neuroendo-
crine tumors.

Massive parallel sequencing of hundreds of tumor speci-
mens from prostate cancer patients at different stages of cancer
progression has provided an accurate picture of the landscape
of genetic alterations that accompany cancer evolution in the
prostate. Yet, despite several molecular classification systems
for prostate tumors have been proposed, clear association with
risk stratification remains to be provided. On the other hand,
whether these genetic classifiers predict treatment outcome
and to what extent genetic alterations in prostate cancer can
be exploited for personalized therapies is yet to be proven.
Interestingly, together with well-known drivers of cancer pro-
gression, an important number of new alterations have been
described, with an intriguing enrichment of those affecting
key players in chromatin biology and epigenetic master regu-
lators (see a summary in Table 1). This is particularly relevant
in metastatic CRPC and tumors that have transitioned to AR-
independent phenotypes after progressing on the newest
antiandrogen drugs.

Here, we introduce key concepts to understand how epige-
netic dysregulation is a plausible driving mechanism in the
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Table 1 Summary of epigenetic
master regulators implicated in
prostate cancer

Gene name Function in prostate cancer References

Methyltransferases

NSD2 H3K36 di-methyltransferase. Promotes prostate cancer
tumorigenesis and progression. It is overexpressed in
metastatic stage and associated with biochemical recurrence

[1••, 2, 3]

EZH2 H3K27 di- and tri-methyltransferase. Member of the polycomb
repressive complex 2, crucial driver of prostate oncogenesis

[4, 5]

SUV39H1 (KMT1A)

SETDB1 (KMT1E)

H3K9 tri methyltransferase. Enhance prostate cancer cell
migration and invasion

[6, 7]

SUV39H2 (KMT1B) H3K9 tri methyltransferase increases androgen-dependent tran-
scriptional activity by interacting with the AR

[8]

SMYD3 H3K4 di- and methyltransferase, promotes cell proliferation and
migration

[9, 10].

PRMT5 Drives prostate cancer cell growth through epigenetic
inactivation of several tumor suppressors through histone
arginine methylation at H4R3. Enhances AR-targeted gene
expression

[11, 12•,
13]

Demethylases

LSD1 H3K9 and H3K4 demethylase involved in prostate cancer
recurrence, CRPC, and poor survival. Regulates AR
transcriptional activity in a context-dependent manner

[14••, 15,
16•]

JARID1B (KDM5B) H3K4 mono, di-, and tri-demethylase. AR coactivator regulating
its transcriptional activity. Upregulated in prostate cancer
tissues

[17, 18],

JARID1C (KDM5C) H3K4 di- and tri-demethylase overexpressed in prostate cancer.
Proposed as a predictive marker for therapy failure in patients
after prostatectomy

[19].

JARID1D (KMD5D) H3K4 di- and tri-demethylase. Suppress invasion and progres-
sion of prostate cancer. Low levels were associated with poor
prognosis and resistance to docetaxel

[20, 21]

PHF8 H3K9, H3K27, and H4K20 demethylase. Transcriptional
coactivator of AR. Promotes prostate cancer cell proliferation,
migration, invasion, and neuroendocrine differentiation. Its
expression highly correlated with poor prognosis and is
induced by hypoxia

[22–29]

JMJD2A (KDM4A)
JMJD2C (KDM4C)

H3K9 and H3K36 tri demethylases. Modulates AR
transcriptional activity stimulating ligand-independent gene
transcription via H3K9 demethylation

[30, 31]

JMJD1A (KDM3A) H3K9 mono- and di-demethylase. Regulates AR activity by re-
cruitment to target genes only in the presence of androgens

[32, 33]

JMJD2B (KDM4B), H3K9 tri-demethylase, AR coactivator. Regulates AR
transcriptional activity via demethylation activity and via
inhibition of ubiquitination and increased AR stability

[34]

JMJD3 (KDM6B) H3K27 di- and tri-demethylase overexpressed in metastatic
prostate cancer

[35].

DNA methylation

DNMTs Control of transcriptional program during prostate cancer and
CRPC progression

[36]

GSTP1 Silencing of GSP1 upon promoter hypermethylation is a
potential prognostic biomarker and occurs early during
prostate carcinogenesis

[37–39]

Histone acetylation

P300 Histone acetyltransferase. Besides canonical histone acetylation
activity, it acetylates the AR and enhances its transcriptional
activity (coactivator) and drives prostate cancer growth

[40, 41]

SIRT1 Histone deacetylase; regulates cellular growth through AR
deacetylation

[42, 43].

SIRT2 Histone deacetylase; its downregulation has been associated with
increased acetylated H3K18 and poorer outcome and
decreased sensitivity to androgen deprivation therapy

[44]

BET bromodomain epigenetic readers

BRD4
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reprograming of prostate cancer cells as they lose AR-
imposed identity. Beyond reviewing the current status of epi-
genetic biomarkers and classifiers and their clinical impact,
we will discuss the scientific basis for therapeutic targeting
master regulators of chromatin remodeling and integrity and
the current state of epigenetic drugs for prostate cancer.

DNA Methylation and Histone Modifications
in Prostate Carcinogenesis

Perturbed DNA methylation patterns have long been reported
during prostate cancer progression [75]. Among the most
well-described alterations is the GSTP1 promoter hyperme-
thylation and subsequent silencing [37], which is thought to
occur early during prostate carcinogenesis [38] and has thus
been proposed as a potential prognostic biomarker [39]. Yet,

numerous other key genes have been implicated in DNA
methylation changes. In fact, the promoter of the Androgen
Receptor (AR) itself appears to be hypermethylated in up to
30% of CRPCs, resulting in the loss of AR expression [76].
Moreover, PTEN silencing is often a consequence of promoter
CpG islands hypermethylation [77], while hypermethylation
of the p16 tumor suppressor gene is associated with a prolif-
erative advantage, thus contributing to carcinogenesis and dis-
ease progression [78]. Similarly, the hypomethylation and
consequent upregulation of genes like heparanase and uroki-
nase plasminogen activator (uPA) was reported to contribute
to tumor cell invasion and metastasis [79]. More globally,
DNA methylation signatures have been identified and pro-
posed as molecular biomarkers of prostate cancer progression
and treatment response [80].

Histone modifications also play an important role in the
progression of many tumor types including prostate cancer.

Table 1 (continued)
Gene name Function in prostate cancer References

Bromodomain and extra-terminal protein, interacts with AR and
promote its activity and antiandrogen resistance

[45•,
46–48]

TRIM24 Epigenetic reader and transcription co-regulator, overexpressed
in CRPC and associated to disease recurrence. Required for
prostate cancer cell proliferation in CRPC

[49].

CHD1 H3K4me2-3 epigenetic reader whose loss is related with prostate
cancer aggressiveness and DNA repair defects, thus
sensitizing tumor cells to PARP inhibitors

[50, 51]

Pioneer transcription factors

FOXA1 FOXA1 activity on chromatin results in increased accessibility
and increased chromatin-bound AR. High FOXA1 expression
leads to a restricted AR cistrome regulation. FOXA1 also has
the potential to reprogram GATA2

[52, 53]

GATA2 GATA2 activity in human prostate cancer is strongly associated
to AR levels and is hence considered a prostate cancer
oncogene

[53–55]

Epigenetic regulators of lineage plasticity

SOX2 Overexpressed TF in prostate cancer, regulating CRPC
proliferation, and evasion of apoptosis. Promotes tumor
metastasis by inducing EMT. Associated to NEPC emergence

[56–61,
62••,
63••]

MYC Master regulator of prostate cancer transcriptional program.
Associated with prostate cancer recurrence and poor prognosis

[64, 65]

MYCN Driver of NEPC by inducing an EZH2-mediated transcriptional
program

[64, 66]

Oncogenic pathways

Hsp90 Initiates ERK signaling and leads to the recruitment of EZH2 to
the E-cadherin promoter and repression of E-cadherin
expression, driving EMT and invasion in prostate cancer cells

[67].

DAB2IP Tumor suppressor Ras-GAP. Negatively controls Ras-dependent
mitogenic signals and modulates TNFα/NF-κB,
WNT/β-catenin, PI3K/AKT, and androgen receptors path-
ways

[68–70].

RB1 This tumor suppressor gene is commonly loss in metastatic and
antiandrogen resistant prostate cancer and NEPC. Directly
repress the expression of Sox2 and Ezh2

[71, 72,
63••]

ACK1 Tyrosine kinase correlated with poor prognosis and interacts with
AR to drive ADT resistance and CRPC growth. Regulates
transcription of AR and AR-v7 via epigenetic regulation

[72–74]
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Lysine methyltransferases (KMT) and demethylases (KDM)
are important epigenetic histone modifiers implicated in the
control of gene transcriptional regulation as well as in non-
histone protein posttranslational modifications and activity
modulation [81]. More specifically, SUV39H1 (KMT1A)
and SETDB1 (KMT1E) have been shown to enhance prostate
cancer cell migration and invasion and to be upregulated in
human prostate cancer specimens, and hence suggested as
potential therapeutic targets [6], while SUV39H2 (KMT1B)
interacts with the AR to increase androgen-dependent tran-
scriptional activity [8]. Furthermore, levels of SETDB1 have
been recently associated with prognosis and the development
of bone metastases from prostate cancer [7]. Similarly, SET
and MYND domain-containing protein 3 (SMYD3) has also
been identified as an upregulated H3 and H4 lysine methyl-
transferase promoting cell proliferation and migration, thus
emerging as a predictive marker of prostate cancer [10].
Alternatively, protein arginine methyltransferase 5 (PRMT5)
was described as a prostate cancer oncogene driving cancer
cell growth through epigenetic inactivation of several tumor
suppressors [11] through histone arginine methylation at
H4R3. PRMT5 has also recently been shown to enhance
AR-targeted gene expression by arginine methylation and in-
teraction with the transcription factor Sp1 [13].

Demethylases also play an important role in prostate cancer
d e v e l o pmen t . Ly s i n e - s p e c i f i c d eme t h y l a s e 1
(LSD1/KDM1A) has been proposed as an oncogene whose
overexpression has been positively correlated with the malig-
nancy of many cancer types, including prostate [14••, 82],
promoting carcinogenesis by multiple mechanisms.
Increased LSD1 expression is associated with prostate cancer
recurrence and poor survival and appears to have distinct
functions in androgen-dependent [14••, 83] and refractory
prostate cancer [15]. Recently, it was discovered that LSD1
is a co-regulator of vitamin D receptor activity in prostate
cancer and its expression is correlated with shorter
progression-free survival in primary and metastatic patients
[84]. In a recent study, it was found that LSD1-mediated epi-
genetic reprogramming drives CRPC and was associated with
the activation of CENPE, which was regulated by the co-
binding of LSD1 and AR to its promoter region, which was
associated with loss of RB1 [16•].

The overexpression of other histone demethylases (HDMs)
has also been observed in prostate cancer. An exhaustive func-
tional screen [27] identified 32 enzymes belonging to the fam-
ily of JmjC domain-containing histone demethylases as criti-
cal for prostate cancer proliferation and survival. KDM5 fam-
ily members are H3K4 demethylases; JARID1B (KDM5B) is
upregulated in prostate cancer tissues and acts as an AR coac-
tivator [17], while JARID1C (KDM5C), overexpressed in
prostate cancer, emerged as a predictive marker for therapy
failure in patients after prostatectomy [19]. JARID1D
(KMD5D) was found to suppress the invasion and

progression of prostate cancer cells; thus, it is highly down-
regulated in metastatic prostate tumors and those low levels
were associated with poor prognosis [20]. In addition, KDM5
loss has been associated with resistance to docetaxel in pros-
tate cancer [21]. The PHD-finger protein 8 (PHF8) is a histone
demethylase and a transcriptional coactivator of AR via
H4K20 demethylation [28]. Its expression, highly correlated
with poor prognosis, is induced by hypoxia and promotes
prostate cancer cell proliferation, migration and invasion
[28], and neuroendocrine differentiation [29].

The Histone Methyltransferase NSD2

NSD2 (nuclear receptor binding SET domain protein 2), also
known as WHSC1 (Wolf-Hirschhorn syndrome candidate 1)
and MMSET (multiple myeloma SET domain), is a member
of the histone methyltransferase NSD family of proteins also
including NSD1 and NSD3. NSD2 catalyzes the
dimethylation of histone H3 at lysine 36 (H3K36me2), a per-
missive mark associated with open chromation conformation
and active gene transcription [85]. NSD2 was first linked to
oncogenesis by the involvement in the t(4; 14) translocation
identified in up to 20% of multiple myeloma patients [86]. In
the past years, NSD2 has been shown to be overexpressed in a
variety of solid tumors including prostate cancer, where it has
been found overexpressed in metastatic PCa compared to pri-
mary tumors and is associated with biochemical recurrence
[1••]. Further In vitro studies strengthened the role of NSD2
in prostate cancer tumorigenesis; it has been shown that NSD2
modulates Twist family bHLH transcription factor 1
(TWIST1) to promote epithelial to mesenchymal transition
and invasiveness in prostate cancer cell lines [2]. Moreover,
Asangani and colleagues had reported that EZH2mediates the
overexpression of NSD2 and that the oncogenic properties of
EZH2 are NSD2 dependent [3]. Interestingly, transcriptional
targets of NSD2 in prostate cancer cells are highly enriched
for components of the NF-kB-network, including IL-6, IL-8,
survivin/Birc5, and VEGFA. In fact, NSD2 has been linked to
constitutive activation of NF-kB signaling in CRPC, promot-
ing cancer cell proliferation and survival via an autocrine pos-
itive loop in which NSD2 expression is in turn stimulated by
inflammatory cytokines, such as TNFα and IL-6, via NF-kB
[87].

Very recently, work from Li and collaborators showed that
NSD2 is activated in PTEN null tumors by the AKT pathway
and that its expression is required for metastatic progression.
Mechanistically, AKT-mediated phosphorylation of NSD2
prevents its degradation by CRL4Cdt2 E3 ligase leading to
NSD2 stabilization and overexpression. By directly inducing
RICTOR expression, NSD2 mediates a positive feedback
loop sustaining AKT signaling [1••].

Finally, NSD2 has been shown to physically interact with
the AR DNA-binding domain and to be recruited to the
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enhancer region of the PSA gene and enhance AR transcrip-
tional activity [88], suggesting that NSD2might be implicated
in resistant to ADTor androgen signaling inhibition. Of note is
the recent identification of NSD2 as a candidate gene promot-
ing androgen independence through an unbiased insertional
mutagenesis screen [89]. In fact, unpublished data and data
from our laboratory currently under peer-review for publica-
tion strongly suggest that NSD2 is an actionable mechanism
in CRPC.

Epigenetic Control of Androgen Receptor
Activity

Histone modifying enzymes, and LSD1 in particular, are
among the best-known modulators of AR transcriptional ac-
tivity. LSD1 is an important enzyme involved in AR regula-
tion and prostate cancer that interacts with AR and can stim-
ulate [14••] or suppress [15] the transcriptional expression
depending on promoter/enhancer context. This interaction
promotes ligand-dependent transcription of AR target genes,
resulting in enhanced tumor cell growth. Its coactivator activ-
ity seems to be associated with H3K9me1,2 demethylation
leading to transcriptional de-repression of AR target genes
[14••]. Intriguingly, LSD1 also plays a role as co-repressor,
via H3K4me1,2 demethylation [90] and the recruitment of co-
repressor complexes. This highlights the dual role of many
chromatin remodelers and may explain why translating them
to new therapeutics has so far been limited. A possible way
forward may be to define the context specificities for this
duality. For example, it has been shown that in high androgen
levels, AR recruits LSD1 to mediate AR gene silencing [15];
however, this negative feedback loop is apparently disrupted
in CRPC, where low androgen levels promote AR overex-
pression. Additionally, post-transcriptional modifications can
regulate LSD1 activity and may become better targets; LSD1
phosphorylation [91] results in a switch of substrate from
H3K4me1,2 to H3K9me1,2, and the promotion of its coacti-
vator activity. Jumonji C domain-containing trimethyl lysine
demethylases JMJD2A (KDM4A) and JMJD2C (KDM4C)
also play a significant role in modulating AR transcriptional
activity [30, 31], stimulating ligand-independent gene tran-
scription via H3K9 demethylation. On the contrary,
JMJD1A (KDM3A) recruitment to target genes only occurs
in the presence of androgens, regulating AR activity and iden-
tifying KDM3A-dependent genes involved in androgen re-
sponse, hypoxia, glycolysis, and lipid metabolism [33], again
evidencing the complex balance between chromatin modify-
ing enzymes in controlling different but interconnected cellu-
lar processes. Of note is the case of JMJD2B (KDM4B),
which is an AR coactivator, emerging as a suitable therapeutic
target for the treatment of prostate cancer. JMJD2B controls
AR transcriptional activity via demethylation and inhibition of

ubiquitination and increased AR stability [34]. Finally, JMJD3
(KDM6B) is progressively overexpressed in metastatic pros-
tate cancer [35].

Histone Acetylation and AR

Acetylated chromatin is generally associated to active tran-
scription and the enzymes regulating this process are histone
acetyltransferases (HAT) and deacetylases (HDAC).
Accordingly, acetylated histone H3 in the vicinity of AR-
bound chromatin has been shown to reduce androgen depen-
dence in castration resistance models [92, 93]. That is the case
for canonical HAT like p300 and CREB-binding protein,
which, besides canonical histone acetylation activities, have
been shown to acetylate the AR and enhance its transcriptional
activity [40]. Importantly, two groups have recently indepen-
dently developed small molecule inhibitors targeting
p300/CBP. Lasko and colleagues reported a selective catalytic
p300/CBP inhibitor able to downregulate the AR transcrip-
tional program both in castration-sensitive and castration-
resistant prostate tumors and to inhibit tumor growth in
CRPC xenograft models [94], while Jin and colleagues found
that targeting the p300/CBP bromodomain had remarkably
similar effetcs [41]. More broadly, a recent study highlights
the important role of histone acetylation in prostate cancer
beyond active promoters via activation of AR associated en-
hancers and the increase in chromatin accessibility [95•].

Conversely, a variety of HDACs are also capable of
deacetylating the AR and inhibit its activity, for example via
regulation of heat-shock protein 90 (Hsp90), a chaperone con-
trolling AR nuclear localization and activation through its
acetylation/deacetylation, or sirtuin 1 (SIRT1), which regu-
lates cellular growth through AR deacetylation [42, 43]. In
fact, acetylation of H3K18, putatively via downregulation of
SIRT2 deacetylase, has been associated to poorer outcome
and decreased sensitivity to androgen deprivation therapy
(ADT). Finally, at the mechanistic level, the Wu lab has re-
cently demonstrated that HDAC inhibitors can suppress
HMGA-driven EMT, reduce tumor growth and metastasis
and, importantly, resensitize prostate cancer cells to [96].

The Role of EZH2/Polycomb Repressive
Complex in Prostate Cancer

The enhancer of zeste homolog 2 (EZH2) is a critical member
of the Polycomb Repressive Complex 2 (PRC2) that regulates
histone methylation mainly via lysine 27 at histone H3
(H3K27), a modification associated to transcriptional silenc-
ing [97] that is found upregulated in many tumor types. In
prostate cancer, its elevated expression associates with poorer
outcomes and has therefore been proposed as an oncogene [4,
98]. A major function of EZH2 is to repress lineage-
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specifying factors, thereby promoting stemness features [99],
epithelial-mesenchymal transition (EMT), and ultimately met-
astatic progression [100]. A wealth of recent evidence has
confirmed these previous observation in the prostate cancer
field. Back-to-back recent articles in Science by the Sawyers
and Goodrich groups demonstrated that lineage plasticity and
neuroendocrine differentiation in androgen independence is
partly driven by Ezh2 and Sox2 in prostate cancer mouse
models carrying loss of function alleles for p53 and Rb tumor
suppressors [62••, 63••]. This came to confirm two previous
reports by Dardenne and colleagues [64] and by Xu and col-
leagues [101] showing that N-myc induces EZH2-driven neu-
roendocrine prostate cancer [64] and it cooperates with E2F1
in castration resistance [101].

Yet, EZH2 has also PRC2-independent roles as coactivator
of transcription factors, including an AKT-dependent methyl-
ation of the AR, via PI3K/AKT phosphorylation of EZH2 at
serine 21 [102], and modulation of AR recruitment to its target
sites [103••]. Not surprisingly, EZH2 inhibitors are the focus
of intensive development and have been widely tested in vivo
[5] and in clinical trials (see Table 2 for details). Beyond a
promising drug target, EZH2 and TOP2A have been proposed
as prognostic as well as predictive biomarkers of treatment
response against EZH2 inhibitors [104].

Bromodomain-Containing Proteins
in Prostate Cancer

Bromodomain-containing proteins are chromatin readers that
recognized mono-acetylated histones and trigger chromatin
remodeling to initiate transcription. Mutations and deregula-
tion of BRD-containing proteins is a common feature of a
variety of cancers. More than 50% of primary and metastatic
prostate tumors and more than 70% of neuroendocrine pros-
tate cancer present genomic alterations in any of the 42 known
BRD-containing proteins [105]. Further, BRD-containing
proteins have a diversity of catalytic and scaffolding functions
and may act as transcription factors, transcriptional co-factors
recruiting other proteins in the transcriptional complex, meth-
yltransferases, HATs, Helicases, and ATP-dependent chroma-
tin remodelers, therefore playing a central role in gene expres-
sion regulation [106].

The subgroup of BET proteins (bromodomain and extra-
terminal), and in particular BRD4, have been the best charac-
terized in prostate cancer, and several inhibitors of BET
bromodomains have been developed and are currently in clin-
ical trial (see Table 2). The conserved BET family includes
BRD4, BRD2, BRD3, expressed ubiquitously, and BRDT,
specifically expressed in the testis. BRD4 recognizes acetylat-
ed lysines at enhancers/superenhancer [107••, 108••] and re-
cruits the elongation factor P-TEFb and stimulates RNA po-
lymerase II-dependent transcription [109]. A provocative new

finding by Zuber and colleagues with implications in risk
assessment shows that tissue-specific SNPs in super-
enhancer sequence bound by BRD4 are significantly associ-
ated with increased prostate cancer risk and show better en-
richment for risk loci than AR [110].

BRD4 physically interacts with high-affinity with the N-
terminal domain of AR leading to AR translocation into the
nucleus and AR recruitment to target loci, promoting AR ac-
tivity and expression of AR target genes in CRPC [45•]. A
recent study showed that the small molecule BET inhibitor
ABBV-075 could disrupt the recruitment of BRD4 at enhanc-
er of AR target genes and repress their expression, whithout
affecting AR protein levels [111]. Moreover, BET proteins
have a role in resistance to antiandrogens and BET inhibitors
can effectively resensitize resistant tumors to enzalutamide
[112]. One of these mechanisms of resistance to antiandrogens
is the upregulation of the glucocorticoid receptor (GR), and
the co-option of the AR regulon, thus favoring CRPC progres-
sion by overcoming AR dependency [46, 47, 113].

BeyondAR signaling, BRD4 has been shown to bind to the
truncated ERG (ERGΔ39) encoded by the TMPRSS2-ERG
fusion, co-regulating the expression of ERG target genes in
CRPC, thereby stimulating cell growth and invasion [114].
Additionally, SPOP, an E3 ligase substrate binding protein
frequently mutated in prostate cancer, was also reported to
target BET proteins for ubiquitination-mediated degradation.
Interestingly, SPOP mutants fail to ubiquitinate BET proteins,
leading to their stabilization and to resistance to BET inhibi-
tors [48, 115]. This mechanism of resistance causes activation
of AKT-mTORC1 signaling and consequently resistance to
BET inhibitors can be overcome by combination with AKT
inhibitors [116].

It is well known that one of the major aging-associated
drivers of prostate carcinogenesis is oxidative stress and its
impact on DNA [117]. Interestingly, Hussong and colleagues
have recently established a link between BRD4 and oxidative
stress response genes in prostate cancer, such as the KEAP1/
NRF2 axis and HMOX1, and reactive oxygen species (ROS)
production [118].

Other than BET, several BRD-containing proteins have
been associated to prostate cancer progression and are at dif-
ferent validation stages for therapeutic targets in mCRPC.
TRIM24, tripartite motif-containing protein 24, is an epige-
netic reader and transcription co-regulator overexpressed in
CRPC and associated to disease recurrence. Recurrent SPOP
mutants stabilize TRIM24 [119], enhancing AR signaling and
promoting tumor growth via binding with the proteins TIP60
and BRD7 [120], which has led to the proposition of TRIM24
as an essential gene for prostate cancer cell proliferation in
CRPC [49].

Finally, the role of chromodomain proteins, and in partic-
ular chromodomain helicase DNA-binding protein 1 (CHD1),
has in the recent years been elucidated in the context of
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Table 2 Clinical trials for epigenetic drugs including prostate cancer patients

Trial ID Drug Phase Conditions Patients Status

BET bromodomain inhibitors

NCT02259114 OTX015/MK-8628 I NUT midline carcinoma, triple negative
breast cancer, non-small cell lung cancer
(rearranged ALK or mut KRAS), CPRC,
pancreatic ductal adenocarcinoma

47 Completed

NCT02698176 I NUT midline carcinoma, triple negative breast
cancer, non-small cell lung cancer, CRPC

13 Terminated

NCT01987362 I Solid Tumors 120 Active

NCT02711956 ZEN003694 I Metastatic CRPC (+enzalutamide) 58 Recruiting

NCT02705469 I Metastatic CRPC 44 Active

NCT03266159 GSK525762 II Solid tumors 150 Not recruiting

NCT02419417 BMS-986158 I/II Advanced solid tumors 150 Recruiting

NCT02391480 ABBV-075 I Advanced cancer, breast cancer, non-small,
ell lung cancer, acute myeloid leukemia,
multiple myeloma, prostate cancer,
small-cell lung cancer, non-Hodgkins lymphoma

150 Recruiting

NCT02630251 GSK2820151 I Advanced or recurrent solid tumors 60 Recruiting

NCT02369029 BAY 1238097 I Neoplasms 8 Terminated

NCT02431260 INCB054329 I/II Advanced cancer 69 Active, not recruiting

NCT02711137 INCB057643 I/II Advanced cancer 230 Recruiting

NCT02607228 GS-5829 I/II Metastatic CRPC (+enzalutamide) 132 Recruiting

NCT02711137 INCB057643 I/II Advanced solid tumors and hematologic
malignancy (+abiraterone)

420 Recruiting

EZH2 and PRC1/2 inhibitors

NCT03213665 Tazemetostat II Advanced solid tumors, non-Hodgkin
lymphoma, or histiocytic (EZH2, SMARCB1,
or SMARCA4 mutations)

49 Recruiting

NCT01897571 I/II Advanced solid tumors 420 Recruiting

NCT02875548 II Advanced solid tumors 300 Recruiting

NCT03217253 I Metastatic malignant solid neoplasm 48 Not recruiting

PRMT5 inhibitor

NCT02900651 MAK683 I/II Diffuse large B cell lymphoma,
advanced solid tumors

113 Recruiting

LSD1/KDM1A inhibitors

NCT02712905 INCB059872 I/II Advanced cancer 180 Recruiting

DNMT inhibitors

NCT01118741 Disulfiram Prostate cancer 19 Completed

NCT00503984 Azacitidine I/II Metastatic CRPC (+docetaxel, prednisone) 22 Terminated

NCT00384839 II CRPC 53 Completed

NCT02998567 Guadecitabine I Non-small cell lung cancer, CRPC
(+pembrolizumab)

35 Not yet recruiting

HDAC inhibitors

NCT01075308 Pracinostat (SB939) II Metastatic CRPC 32 Completed

NCT00670553 I Prostate cancer, head and neck
cancer, esophageal cancer

7 Completed

NCT00878436 Panobinostat (LBH589) I/II CRPC (+bicalutamide) 52 Completed

NCT00667862 II Metastatic CRPC 35 Completed

NCT00663832 I CRPC (+docetaxel and prednisone) 44 Completed

NCT00493766 I CRPC (+docetaxel and prednisone) 16 Terminated

NCT00419536 I CRPC (+docetaxel and prednisone) 108 Terminated

NCT00330161 Vorinostat (SAHA, MK0683) II Metastatic CRPC 29 Completed

NCT01174199 I Metastatic CRPC 13 Terminated

NCT00589472 II Primary prostate cancer (+bicalutamide.) 19 Completed
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prostate cancer progression. This H3K4me2-3 epigenetic
reader has been reported mutated in 43% of Gleason 7
or higher prostate cancer tumors, associated with ETS
gene fusion negative status [121] and its loss related
with prostate cancer aggressiveness [50] and DNA re-
pair defects, hence sensitizing tumor cells to PARP in-
hibitors [51]. More recently, Zhao and colleagues at the
DePinho laboratory have demonstrated in PTEN null
prostate tumors that CHD1 depletion dramatically sup-
pressed cell proliferation, survival, and tumorigenic po-
tential by activating the pro-tumorigenic TNF-NF-κB
gene network [122].

Pioneer Factors in Prostate Cancer
Progression

Different from other DNA bound proteins and tran-
scription factors, pioneer factors can access their targets
in nucleosomes and in highly compacted chromatin re-
gions, facilitating chromatin accessibility and the re-
cruitment of additional TFs and co-TF and the tran-
scriptional machinery [123]. Among paradigmatic
pioneering factors are some of the members of the
GATA and FoxA gene families, known mainly for their
key role as chromatin-factors during early development
[124–127].

The best-known pioneering factor for its role in pros-
tate cancer is FOXA1. Through the interaction and re-
cruitment of AR to chromatin site, FoxA1 defines and
controls the AR cistrome resulting in context-dependent
positive or negative regulation [52, 55, 128, 129]. In
particular, because FOXA1 activity on chromatin re-
sults in increased accessibility [52] and increased
chromatin-bound AR, high FOXA1 expression leads
to a restricted AR cistrome regulation [53].

GATA genes, and GATA2 in particular, have proved
to be crucial for prostate development via modulating
AR function [54, 55]. However, despite the role is com-
parable to that of FoxA1, the mechanisms have shown

to be quite different. GATA2 depletion did not seem to
have a reprogramming effect on AR binding sites and in
fact correlated with a downregulation in AR expression.
Accordingly, GATA2 activity in human prostate cancer
is strongly associated to AR levels and is hence consid-
ered a prostate cancer oncogene. Provocatively, it was
found that FOXA1 also has the potential to reprogram
GATA2 and act as a pioneering effect for both AR and
GATA2, suggesting that FOXA1 regulates a transcrip-
tional network that controls AR-mediated gene expres-
sion in prostate cancer [53].

Lineage Plasticity in Prostate Cancer Stem
Cells

Aside from their ability to induce pluripotency, the Yamanaka
factors (OCT4, SOX2, KLF4, and c-MYC) [130], and other
reprograming factors like NANOG or LIN28, have been
widely implicated in tumorigenesis in various cancers includ-
ing the prostate.

SOX2 is required for survival , p lur ipotency,
clonogenicity, and self-renewal of ESCs. A relationship
between SOX2 overexpression in tumorigenesis has
been established in different types of cancer, including
prostate [56] and its expression linked to tumor grade
[58]. SOX2 is an epigenetic reprogramming factor and
oncogene shown to regulate androgen-independent
CRPC proliferation and evasion of apoptosis [57, 58]
and to promote tumor metastasis by inducing EMT
[59]. Further evidence suggests that SOX2 promotes
self-renewal of the CSCs population by acting down-
stream of EGFR [131]. Importantly, in the recent years,
SOX2 activity has been tightly associated to neuroen-
docrine transdifferentiation from prostate adenocarcino-
ma cells and the subsequent androgen independence of
neuroendocrine prostate cancer phenotypes (NEPC).
While the exact mechanisms remain unclear, substantial
progress was made over the last couple of years. In
particular, Russo and colleagues showed that SOX2

Table 2 (continued)

Trial ID Drug Phase Conditions Patients Status

NCT00565227 I Non-small-cell lung carcinoma, prostate
cancer, bladder cancer, urothelial carcinoma

12 Terminated

NCT00511576 Mocetinostat (MGCD0103) I Breast cancer, lung cancer, prostate cancer,
gastric cancer (+docetaxel)

54 Terminated

NCT00020579 Entinostat (MS-275) I Advanced solid tumors, lymphoma 75 Completed

NCT00413075 Belinostat (PXD101) I Advanced solid tumors, lymphoma 121 Completed

NCT00413322 I Advanced solid tumors (+5-fluorouracil) 35 Completed
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was expressed in NEPC murine models [60] whereas
others found its expression restricted to NEPC areas
of advanced human prostate cancer [61]. Recent studies
by Bishop and collaborators at the Zoubeidi laboratory
have shown that SOX2 is transcriptionally regulated by
neural transcription factor BRN2 [132••], which in turn
is negatively suppressed by the AR, hence revealing an
AR-dependent suppression of cell differentiation to-
ward a neuroendocrine AR-independent phenotype.
Additional support to the central role of SOX2 in the
emergence of NEPC and AR-independence after
Enzalutamide treatment came from studies at the Ku
and Mu and co l l abora to r s a t the Sawyers and
Goodrich laboratories [62••, 63••].

c-MYC (MYC) is a well-known oncogene proposed
as a marker of disease progression in prostate cancer
[133] and associated with prostate cancer recurrence
and poor prognosis [134]. MYC activation cooperates
with loss of PTEN to drive prostate cancer progression
[135] and metastasis [136]. MYC proteins also drive
epigenetic activation of gene expression in prostate
cancer; the PRC2 member EZH2 is directly upregulated
by MYC [137] and MYCN, which was shown to be a
driver of NEPC [66] by inducing an EZH2-mediated
transcriptional program [64]. Additionally, MYC ex-
pression was found to be regulated by the histone
demethylase JMJD1A, controlling proliferation and sur-
vival of prostate cancer cells [138]. MYC also regulates
the expression of histone demethylases PHF8 and
KDMA3 in NEPC and CRPC [29]. Interestingly, while
AR signaling in the normal prostate represses MYC
expression, its expression is stimulated by AR during
tumorigenesis, [139, 140]. It was also recently reported
that MYC overexpression deregulates the AR transcrip-
tional program by altering AR chromatin occupancy
and H3K4me1 and H3K27me3 marks distribution, an-
tagonizing clinically relevant AR target genes such as
PSA [65].

Oncogenic Pathways Involved in Epigenetic
Regulations

Together with the AR, the oncogenic pathways most frequent-
ly altered in prostate cancer onset and progression are the RB,
PI3K/AKT, and Ras/Raf pathways due to mutations in several
members [72]. While the Ras/Raf pathway is activated in 43%
of primary and 90% of metastatic prostate cancer, the trigger-
ing mechanisms remain to be fully understood. The Whitte
laboratory demonstrated a synergistic interaction between Ras
pathway activation and AR signaling that leads to elevated
EZH2 expression and expand prostate cancer progenitor cells
in vivo. It has been long suggested that this pathway is a major

contributor of aggressiveness via the activation of EMT tran-
scriptional programs. Nolan and colleagues proposed a model
in which the secreted extracellular protein Hsp90 initiates
ERK signaling and leads to the recruitment of EZH2 to the
E-cadherin promoter and repression of E-cadherin expression,
driving epithelial to mesenchymal transition (EMT) and inva-
sion in prostate cancer cells [67]. Additionally, DAB2IP (dis-
abled homolog 2 interacting protein) is a tumor suppressor
Ras-GAP that negatively controls Ras-dependent mitogenic
signals and modulates TNFα/NF-κB, WNT/β-catenin,
PI3K/AKT, and androgen receptors pathways [68–70].
EZH2-induced DAB2IP silencing activates Ras and NF-
kappaB and triggers metastasis [141, 142]. Data from our
laboratory showed that concomitant activation of the PI3K
and MAPk pathways in mice results in highly aggressive
and fully metastatic tumors that are inherently castration resis-
tant [143, 144]. Interestingly, by targeting the PI3K/MAPk
pathways with small molecules in vivo, we demonstrated that
the drug response network was highly enriched in epigenetic
modulators, including SUV39H1, WHSC1, TOP2A, or
UHRF1 [145], suggesting that epigenetic control of gene ex-
pression plays a central role in the aggressive phenotype im-
posed by the activation of Ras signaling. Accordingly, we
have found that a core signature of chromatin modifiers and
DNMTs drive the cancer cell intrinsic mechanisms of metas-
tasis and CRPC (unpublished).

The retinoblastoma tumor suppressor gene RB1 is more
commonly loss in metastatic and antiandrogen resistant pros-
tate cancer (74% of cases) and NEPC (90% of cases) [71] than
it is in primary tumors (34% of cases) [72]. It has been recently
described an activity of Rb1 in the epigenetic regulation of
expression, since RB1 directly repress the expression of Sox2
and Ezh2. Consequently, Rb1 loss in prostate cancer lead to
EZH2 and Sox2 increase and gene expression widespread
changes that leads toward a stem cell-like state that would
facilitate the onset of metastasis, neuroendocrine
transdifferentiation, and the acquisition of ADT resistance.
The authors show that Ezh2 inhibition restores enzalutamide
sensitivity in NEPC variants and recurrent prostate cancer
cells by opposing lineage transformation [63••] .
Furthermore, mutations in TP53 and RB1 tumor suppressor
genes can promote a cellular plasticity state mediated by in-
creased expression of SOX2 that, when it is compromised
with antiandrogen therapy promotes resistance through line-
age switching [62••]. It has also recently been shown that the
Hedgehog (HH) signaling pathway and SOX2 co-operate in
androgen-independent prostate cancer to promote carcinogen-
esis [146].

The PTEN/PI3K/AKT pathway is altered in 42% of prima-
ry and 100% of metastatic cases; loss of PTEN and activation
of the PI3K/AKT signaling pathway are hallmarks of prostate
cancer, and cooperate with the activation of the RAS/MAPK
pathway to promote EMTand metastatic CRPC development.
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Epigenetically, it has also been shown that PTEN depletion
contributes to a switch from a global H3K27 acetylatilation to
H3K27 trimethylation, resulting in increased expression of
EZH2 and decrease of the target genes DAB2PI together with
negative regulator of cell growth p27KIP1 and p21CIP1 [147].
As mentioned above, increased AKT activity phosphorylates
NSD2 at S172, preventing its degradation by CRL4Cdt2 E3
ligase, hence leading to its stabilization, which in turn
upregulates RICTOR (mTORC2). This results in further en-
hancement of AKT signaling in a AKT/NSD2/mTORC2 pos-
itive feedback loop that sustains AKT signaling [1••].

Constitutive activation of TGF-β signaling is a well-
recognized mechanism for induction of EMT and prostate
cancer metastasis development. TGF-β1-induced EMT in
prostate cancer is mediated by the histone methyltransfer-
ase RbBP5. RbBP5 is a conserved component of the
COMPASS/ - l ike complex , wh ich ca t a lyzes the
trimethylation of histone H3 lysine 4 that is considered
an epigenetic mark of actively transcribed genes. RbBP5
activity is in turn modulated by the binding of SMAD2/3, a
downstream signaling factor to the TGF-beta pathway, to
the Snail promoter [148]. Snail activates the EMT process
by inhibiting transcription of E-cadherin via the recruit-
ment to its promoter of the polycomb repressive complex
2 (PRC2) and the histone methylstranferase G9a, leading
to repressive H3K27 and H3K9 methylation [149, 150].
An interesting new perspective was provided recently
linking ERG signaling with TGF-β. Data suggest that
ERG regulates the transcription of the transcription factor
SOX4 and together they cooperate in TGF-β1-induced
EMT of prostate cancer cells [151]. This is not surprising
taking into account that the oncogenic role of SOX4 has
been proposed in several other tumor types. In particular,
SOX4 regulates EZH2 expression and chromating remod-
eling, and is a key component of the PI3K/AKT pathway in
prostate cancer. In fact, SOX4 inhibition reduces AKT and
β-catenin pathways activation and decreases prostate can-
cer invasiveness through positive feedback loop between
SOX4 and PI3K-AKT-mTOR [152].

Finally, a tyrosine kinase, namely ACK1, has been found
to link oncogenic signaling with epigenetic regulation.
ACK1 was found upregulated in primary PCa and CRPC
[72, 73], correlated with poor prognosis and reported to
interact with AR to drive ADT resistance and CRPC growth
[74]. A recent study demostrates that ACK1 regulates tran-
scription of AR and AR-v7 via epigenetic regulation. In
particular, ACK1 would phosphorylate histone H4 up-
stream of the AR transcription start site, recruiting the
WRD5/MLL2 complex, therefore mediating H3K4
trymethylation and transcriptional activation. Inhibition of
ACK1 with a small molecule inhibitor confirms that this
epigenetic activity is required to maintain AR transcription
and CRPC tumor growth [153].

Drug Development on Epigenetic Regulators
as Therapeutic Targets

Mounting evidence from basic and preclinical investigations
suggest that targeting key components of the epigenetic ma-
chinery will have clinical benefit for cancer patients including
prostate cancer ones. Yet, clinical development for those ther-
apies is still very limited. On the one hand, this may be partly
due to the inherent difficulty in targeting nuclear effector
mechanisms. On the other hand, the fact that most epigenetic
master regulators exert their functions over an extensive tran-
scriptional network in a context-dependent manner makes it
particularly challenging to achieve cancer cell specificity, thus
resulting in significant toxicity. Despite these limitations, a
number of drugs are currently in clinical trials at different
phases, being BET bromodomain inhibitors, HMT/HDMT
inhibitors, DNMT inhibitors, and HDAC inhibitors the focus
of most intense drug development efforts. Table 2 summarizes
the most relevant ongoing or recently completed clinical trials
involving epigenetic drugs.

Conclusion

In view of the accumulated evidenced supporting the key
role of the dysregulated epigenome to prostate cancer onset
and progression, three mechanisms emerge as the most sig-
nificant contributors. First, a number of alterations in epi-
genetic master regulators result in enhanced transcriptional
activity and pro-oncogenic role of the Androgen Receptor
signaling. This is largely mediated by either remodeling of
the chromatin to facilitate AR binding and assembly of the
transcriptional complex and posttranslational modifications
in the AR itself or essential co-factors resulting in gain of
function features. Secondly, the aberrant activation of tran-
scriptional programs tightly associated to developmental
pathways and stem features, either via alterations in
pioneering factors or pluripotency master regulators, con-
tributes to the acquisition of treatment-resistant phenotypes
that are highly aggressive. Finally, a significant number of
alterations in epigenetic master regulators also result in the
activation of oncogenic signaling pathways that contribute
to the aggressiveness and androgen independence in ad-
vanced prostate tumors. In summary, the epigenome is
emerging as an attractive and plausible target for anticancer
therapy in general and prostate cancer in particular. While
drug development is still limited, and faces inherent chal-
lenges associated with the unique nature of these targets, it
seems evident that efficacy of such treatments will be max-
imized in combination with standard of care treatments for
which most lethal prostate cancer ultimately develop resis-
tant mechanism.
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