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Abstract
Purpose of Review Bone marrow adipose tissue (BMAT) is a distinct adipose tissue with diverse local and systemic effects,
affecting both physiological processes and pathological conditions, including hematopoiesis, bone remodeling, osteoporosis,
obesity, anorexia nervosa, diabetes, and cancer. BMAT increases with age and bone loss, while the significance of this phenom-
enon has been neglected until recently. Bone cells and BMAT are mutually connected in terms of bone remodeling and energy
metabolism. It has been suggested that high BMAT is caused by a shift in bone marrow mesenchymal stromal cell (BMSC)
differentiation in favor of adipogenesis, and BMAT promotes bone loss through direct or indirect interaction with bone cells.
However, it remains unclear why osteoporosis accelerates BMATaccumulation and what is the role of BMAT in bone remodeling
and particularly in bone loss. The purpose of this review is to present the latest published data on the role of BMAT in
physiological bone processes and during osteoporosis progression.
Recent Findings BMAT secretes numerous endocrine factors designated as adipokines as well as pro-inflammatory cytokines,
which affect bone homeostasis through the regulation of osteoblast and osteoclast function. Most clinical data from osteoporotic
patients demonstrate a negative relationship between BMATand bone mass. Through technological advances in BMAT imaging,
investigators are now able to quantify BMAT in humans and animal models. Pharmaceutical interventions targeting either bone
loss or BMA expansion shed light in the understanding of the possible interactions between BMAT and bone cells.
Summary A neglected feature of osteoporosis progression is BMAT development. BMATappears as a Bnew tissue^ with unique
properties, which undoubtedly plays important physiological and pathological roles, but which remains insufficiently
understood.
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Introduction

Bone integrity is maintained through a dynamic process,
known as bone remodeling, on trabecular and cortical
bones, resulting from a continuous balanced interplay
between bone resorption caused by osteoclasts and bone
formation employed by osteoblasts. Osteoclasts initiate

the remodeling cascade by removing bone matrix and
subsequently osteoblasts refill these cavities with bone
matrix [1]. Disorders of bone loss, such as osteoporosis,
are associated with increased rates of bone remodeling
resulting in bone loss due to an overwhelming osteo-
clastic activity. Receptor activator of NF-κB ligand
(RANKL) is a central regulator of bone remodeling by
mediating osteoclast-induced bone resorption, through
binding to its transmembrane receptor RANK, while it
is naturally inhibited by the soluble decoy receptor os-
teoprotegerin (OPG) [2]. Osteoblasts are derived from
bone marrow mesenchymal stromal cells (BMSC),
which are multipotent and can give rise to several other
distinct cell types, including adipocytes. An imbalance
in the regulation of osteoblast and adipocyte differenti-
ation is commonly observed in osteoporosis, which is
associated with increased rate of bone marrow adipose
tissue (BMAT) formation.
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BMAT, an adipose tissue that lies within bone marrow, has
been surprisingly disregarded for many decades. In the past
years, BMAT was considered as an inactive filler of the bone
marrow (BM) cavity that substitutes hematopoietic cells in re-
sponse to a decreasing demand for hematopoiesis. It is only in
recent years that BMAThas become recognized as a specific and
active fat depot, with recent advances suggesting that BMAT
differs from other fat depots not only anatomically but also de-
velopmentally, functionally, andmetabolically [3, 4]. Because of
these unique characteristics, BMAT appears today as a Bnew
tissue^ with much potential for revealing new mechanisms on
human health and disease. During the last two decades, several
lines of evidence support the impact of BMAT expansion in
bone, metabolic and nutritional diseases including osteoporosis,
obesity, anorexia nervosa, diabetes and cancer, whereas the mo-
lecular mechanisms remain insufficiently understood [5].

BMAT Progression

In humans, BMAT is virtually absent at birth and bone cavities
are mainly filledwith red hematopoietic marrow, while BMAT is
innately programmed to expand during life, leading to a conver-
sion of the red marrow to fatty Byellow^ marrow [6, 7].
Interestingly, a medium-aged, healthy lean adult is estimated to
have BMAT that corresponds to approximately 10% of the total
fat mass, and by the age of 25 BMAToccupies 50 to 70% of BM
volume [8]. BMAT initially forms at terminal phalanges, and
then expands towards other peripheral skeletal sites such as ap-
pendicular skeleton and eventually in the axial skeleton [9].
BMAT initiates at femur and tibiae bones at the age of 7 and
continues until the age of 18. Thus, BMATarises during normal
human development, increases with age, and represents a major
class of adipose tissue. In mice, BMAT begins at the distal tibia
around day 7, and expands during body maturation and progres-
sion but with decreased rates compared to humans. Notably, 12-
week-old C57BL/6J male mice have less than 1% BMAT vol-
ume in the tibia diaphysis, as shown by osmium tetroxide stain-
ing combined with micro-computed tomography (microCT)
[10••].

Two distinct populations of marrow adipocytes have been
identified, constitutive and regulated. Constitutive marrow ad-
ipocytes (cMAT) form a stable dense fat depot arising at early
stages of life, occupy distal parts of the appendicular skeleton
and are less responsive to stimuli [10••]. On the other hand,
regulated marrow adipocytes (rMAT) are located scattered
within the hematopoietic marrow of the axial skeleton and
the proximal appendicular bones, and their formation and ex-
pansion occur at later phases of life in response to nutritional,
hormonal, and temperature challenges [10••, 11].

Volumetric BMATanalysis is performed either with invasive
or non-invasive imaging methods. Invasive methods include
histological analysis of bone biopsies [12], while during the last

decade, non-invasive imaging approaches were developed to
visualize and quantify BMAT, including magnetic resonance
imaging (MRI), which is the gold standard method to estimate
BMAT [13, 14] and magnetic resonance spectroscopy (MRS),
which determines the fat fraction and the fat composition
distinguishing saturated from non-saturated lipids [15–17]. To
further study the interactions between BMAT and bone remod-
eling, these methods are combined with measurements of bone
mineral density (BMD) and structure with dual-energy x-ray
absorptiometry (DEXA) and PET-microCT [18, 19]. Lately,
the introduction of osmium tetroxide staining combined with
micro-CT opens new horizons in the visualization and quantifi-
cation of BMATin rodents [20••]. Based on the abovementioned
imaging methods, it has been recently shown that BMAT posi-
tively correlates with BMD in 4- to 10-year-old children [21],
while a clear negative correlation between BMAT and bone
mass was identified during aging and osteoporosis, suggesting
an interplay between BMAT and bone remodeling.

BMAT in Osteoporosis

Osteoporosis is a multifactorial metabolic disease which is
characterized by low bone density, reduced bone quality, and
increased risk of fractures [22]. Osteoporosis is usually
underdiagnosed and undertreated because of the lack of symp-
toms and it is often referred as the Bsilent epidemic^ since one
in three women and one in five men above the age of 50 will
experience osteoporotic fractures. Apart from bone pheno-
type, osteoporotic patients also exhibit high BMAT. Various
clinical studies have demonstrated that osteoporotic patients
have 10% higher BMAT compared to age-matched healthy
subjects [23–26]. All these clinical observations support a
negative correlation between BMAT and bone mass.
Numerous studies applying MRI methodology showed that
healthy adults display an increase of BMAT in spinal verte-
brae at a rate of 7% every 10 years and a comparison between
sexes revealed that BMAT is 10% higher in men than in wom-
en the period before menopause, but the ratio reverses after
menopause [27, 28].

Several clinical trials studying the effectiveness of anti-
osteoporosis treatments have reported effects on BMAT.
Various studies demonstrate that anti-resorptive drugs effec-
tively reduce BMAT expansion in osteoporotic women. For
example, postmenopausal osteoporotic women treated with
estrogen either at a long or at a short term showed a decrease
in BMAT as assessed by bone biopsies or MRI [29–31].
Similar results were shown upon treatment with the parathy-
roid hormone teriparatide [32••]. In addition, osteoporotic
women treated with the bisphosphonate risedronate showed
a reduction in BMAT and improved BMD compared to the
control group [33–36, 37•, 38•]. The new anti-osteoporotic
drug romosozumab, an antibody that targets the anti-
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anabolic protein sclerostin, efficiently improves bone mass
and ameliorates BMAT [39]. Even though most intervention
studies targeting improvement in bone quality manage to ame-
liorate BMAT, there are limited data regarding the opposite,
i.e., the effect of BMAT treatment in bone mass.

The spatiotemporal pattern of BMAT formation in rodents is
considered to be quite similar to humans. Through histological
analysis and osmium tetroxide staining, it has been demonstrat-
ed that the BMAT accumulation in long bones substantially
increases with aging. However, the percentage of BMAT in
rodents is lower compared to humans and varies among differ-
ent mouse strains [10••]. The negative association between
high BMAT and low BMD in osteoporotic patients [40] was
reproduced in ovariectomized mice [41, 42•] and other genetic
osteoporotic mousemodels [43••]. The use of animal models of
osteoporosis can substantially improve our understanding on
the pathophysiological mechanisms involved in bone resorp-
tion and BMAT expansion. Our group has recently established
two distinct genetic mouse models of osteoporosis through the
expression of human RANKL (huRANKL) in transgenic mice
(TgRANKL). Themild osteoporosis Tg5516model expressing
huRANKL at low levels develops trabecular bone loss and
adjacent increase in BMAT, while the severe osteoporosis mod-
el Tg5519 overexpressing huRANKL displays trabecular bone
loss, cortical porosity, and extended BMAT throughout the BM
cavity [43••]. Based on these observations, it seems that BMAT
recruitment is linked with sites of active bone resorption.
However, it is still unclear howBMATand bone loss are linked
during osteoporosis and which process precedes the other.

The impact of bone resorption on BMAT formation has
been confirmed in various clinical and animal studies through
pharmaceutical inhibition of bone resorption [29, 30, 33, 37•,
44]. However, it remains unclear whether BMAT affects bone
resorption in vivo since the current data are limited [41].
Paradoxically, pharmaceutical inhibition of BMAT with a
PPARγ2 antagonist bisphenol-A-diglycidyl-ether (BADGE)
in normal and diabetic male mice as well as genetic studies
in PPARγ knockout mice demonstrated that the loss of BMAT
induced osteogenesis due to increased osteoblast activity
without affecting osteoclasts and bone loss [45, 46].
Therefore, more efforts must be made in the understanding
of BMAT effect on bone resorption and in osteoporosis.

Molecular Basis of BMAT Interaction
with Bone Cells

First of all, BMAT could contribute as an energy supply,
through lipid release, to neighboring cells like osteoblasts
and hematopoietic stem cells (HSCs). The increased adipocyte
numbers observed during aging and osteoporosis, may con-
tribute to the energymaintenance of bone cells andHSCs. This
hypothesis is mainly supported by in vitro experiments, where

it is demonstrated that adipocytes can transfer free fatty lipids
(FFAs) to hematopoietic cells through a controlled process
termed lipolysis to support proliferation and survival [47, 48].

As both BM adipocytes and osteoblasts are derived from
BMSCs, also known as skeletal stem cells (SSCs), it is rea-
sonable to assume that increased BMAT formation is associ-
ated with a reciprocal suppression of osteogenesis [49–51].
Distinct sets of transcription factors are activated during the
commitment of precursor cells into osteoblasts or adipocytes.
Runt-related transcription factor 2 (RUNX2) and transcription
factor Sp7 (Osterix) regulate osteoblast differentiation [52,
53], while CCAAT/enhancer binding proteins (C/EBP) and
peroxisome proliferative activated receptors gamma
(PPARγ) promote adipogenesis [54–57]. In animal model
studies, it has been demonstrated that upregulation of
PPARγ results in high BMAT and low bone mass, while
downregulation of PPARγ leads to a low BMAT and high
bone mass phenotype [45, 58–61].

The differentiation of BMSCs to either adipocytes or oste-
oblasts is a two-step process, including lineage commitment
and maturation. The lineage commitment of BMSCs is fine-
tuned by the action of various extracellular matrix compo-
nents, growth factors, cytokines, and chemokines, which in
turn activate a cascade of signaling events regulating the key
transcription factors such as PPARγ and C/EBPs or Runx2
and Osterix for adipogenesis or osteogenesis, respectively.
The lineage commitment of BMSCs towards adipocytes or
osteoblasts is regulated by a complex network of signaling
pathways including transforming growth factor-beta
(TGFβ)/bone morphogenic protein (BMP) signaling,
wingless-type MMTV integration site family (Wnt) signaling,
Hedgehogs (Hh), Notch, and fibroblast growth factors (FGFs)
[62–70]. In general, the activation of Wnt signaling and
Hedgehogs induces osteogenic differentiation, while activa-
tion of TGFβ/BMP, Notch, and FGFs signaling may exert a
dual effect either favoring osteogenesis or adipogenesis de-
pending on the ligand. These observations clearly show that
all signaling pathways do not take place individually but rath-
er act synergistically to promote BMSC’s shift depending on
the stimuli. Estrogen deficiency, increased glucocorticoid
levels, oxidative stress, and immobilization favor adipogene-
sis over osteogenesis. Thus, treatment with estrogen, or inter-
mittent PTH results in increased bone mass and reduced
BMAT [29, 32••, 40]. Similarly, sclerostin, an inhibitor of
bone formation expressed by osteocytes, stimulates adipogen-
esis [39], while OPG, an inhibitor of RANKL and bone re-
sorption, inhibits adipocyte differentiation in vitro [71].
Considering that OPG functions as a blockage of RANKL
activity, it is possible that RANKL regulates BMAT formation
either directly or indirectly.

BMAT can interact with its microenvironment through the
secretion of numerous factors, while the secretion profile of
BMATand its functional endocrine and paracrine implications
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remain largely unexplored. So far, it has been shown that
BMAT secretes endocrine factors designated as adipokines
such as adiponectin, as well as other pro-inflammatory mole-
cules, such as tumor necrosis factor (TNF) and interleukin-6,
which affect bone homeostasis through the regulation of oste-
oblast and osteoclast functions. In vitro studies report that
human adipocytes derived from BMSCs secrete cytokines,
including macrophage inflammatory protein (MIP-1), granu-
locyte colony-stimulating factor (G-CSF), and granulocyte
macrophage colony-stimulating factor (GM-CSF) [72],
whereas adipocytes from mouse BMSCs may also secrete
chemokines such as chemokine (C-X-C motif) ligand 1
(CXCL1) and chemokine (C-X-C motif) ligand 2 (CXCL2)
[73]. Adipose tissue secretes also a series of cytokines, which
are termed adipokines including leptin, adiponectin,
chemerin, omentin, and resistin. These have profound effects
on surrounding and/or remote cell types [72, 74–79]. In the
BM of osteoporotic postmenopausal women, the levels of
leptin and adiponectin were significantly lower, whereas the
effects of leptin on bone are not conclusive [74, 80–83].

The coexistence of increased BMAT and bone destruction
with aging and osteoporosis, also suggests a mechanistic link
between adipogenesis and osteoclastogenesis. Indeed, BM ad-
ipocytes produce RANKL, and thus can promote osteoclasto-
genesis [84–86]. A subpopulation of Pref-1+ pre-adipocytes
was recently identified in BM that notably expresses
RANKL and increased numbers of these cells coincide with
aging [87]. A working hypothesis could be that RANKL+/
Pref-1+ pre-adipocytes may contribute to bone loss through
stimulation of osteoclastogenesis. In a recent study, mice lack-
ing PTH receptors in mesenchymal stem cells develop high
BMAT and reduced bone mass. In this model, BMAT was
shown to produce high levels of RANKL, and there was also
abundance of the RANKL+/Pref-1+ pre-adipocytes, suggest-
ing that pre-adipocytes may contribute to bone loss [32••].
Therefore, BMAT could regulate osteoclast formation either
directly through RANKL production or indirectly through
adiponectin secretion, which stimulates osteoblasts to produce
RANKL [77, 88–90]. Paradoxically, the impact of BMAT on
bone resorption in vivo remains unclear and further studies are
needed to take this further. In addition, the positive effect of
numerous anti-resorptive therapies in BMAT attenuation sug-
gests that osteoclasts are associated with BMAT formation.
However, the underlying molecular mechanisms that connect
osteoclasts with BMAT progression remain unknown.

Conclusion

A Bneglected^ feature of osteoporosis progression is BMAT
development. BMAT is a Bnew tissue^with unique properties,
which remains insufficiently understood. Animal and clinical
studies have revealed that BMAT increases during aging and

is further enhanced in osteoporosis, emphasizing its potential
impact in bone remodeling. The detrimental role of BMAT has
been highlighted through the identification of secreted endo-
crine and/or paracrine factors (RANKL, pro-inflammatory cy-
tokines and adipokines) that regulate bone metabolism.
However, interventions targeting BMAT are limited and as a
result the impact of BMAT on bone remodeling is far from
conclusive. On the other hand, a positive effect of anti-
resorptive therapies on BMAT progression has been
established, while the underlying mechanisms have not been
defined yet. Therefore, further studies are needed in order to
shed light on the mechanistic basis of BMAT formation during
osteoporosis and its pathophysiological role in bone
remodeling.
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