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Abstract
Purpose of Review Cell-based therapies to treat articular car-
tilage and osteochondral defects as a result of osteoarthritis or
traumatic injury are a promising approach. Traditional sources
of cells have been autologous chondrocytes which are culture
expanded and implanted; however, dedifferentiation of these
cells results in a type of fibrocartilage which has reduced ther-
apeutic benefit. Advances in cellular reprogramming technol-
ogy are either through generation of induced pluripotent stem
cells (iPSCs) and subsequent chondrogenic or through direct
reprogramming of adult cells to chondrocytes. These ap-
proaches have the potential to provide an unlimited source
of cartilage for therapeutic applications; however, challenges
remain in terms of efficient cellular differentiation and ability
to integrate and repair tissues.
Recent Findings Growth factor-based strategies previously
used in chondrogenic differentiation of adult stem cells and
embryonic stem cells have been successfully applied to in-
duced pluripotent stem cells, enhancing the ability of iPSCs
to produce both patient-specific chondrocytes and to produce
large quantities of these cells. A combination of novel bioma-
terials and additive bioprinting have also opened new

approaches to recapitulate zonal cartilage structure and repair
of osteochondral defects.
Summary The development of innovative protocols to gener-
ate chondrocytes from a variety of primary cells continues to
proceed rapidly, allowing fine tuning of differentiation pro-
cesses to produce an articular cartilage phenotype with im-
proved mechanical and tissue integration capabilities.
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Introduction

Bone, cartilage, tendons and ligaments make the basic com-
ponent of the skeletal system that enables humans and other
animals to retain structural form and function. Of these, carti-
lage acts as a template in skeletogenesis during embryonic and
neonatal development [1]. In the adult, articular cartilage tis-
sue lines the ends of long bones reducing frictional forces
while maximising shock absorption. It is a highly specialized
tissue consisting of chondrocytes and the extracellular matrix
(ECM) secreted by the chondrocytes, which is a network of
mainly type II collagen and proteoglycans giving cartilage its
strength, unique shape and resistance to torsion [2].

Cartilage lesions lead to joint degeneration and diseases
such as osteoarthritis (OA) [3]. The self-healing capacity of
articular cartilage is reduced when damaged, due to the lack of
a vasculature and poor wound-healing response from local-
ized progenitors [4]. OA is the leading cause of pain and
disability among the elderly population, and those affected
amount to three million in Australia, approximately 15% of
the population, adding an approximated 40,000 cases of oste-
oarthritic sufferers annually [5]. The high prevalence of the
illness in society impacts the economy significantly with age,

This article is part of the Topical Collection on Molecular Biology of
Skeletal Tissue Engineering

* Padraig Strappe
p.strappe@cqu.edu.au

1 Graham Centre for Agricultural Innovation, Charles Sturt University,
Boorooma St, Wagga Wagga, NSW 2678, Australia

2 OBI Department, St Vincent’s Institute of Medical Research,
Melbourne, VIC 3065, Australia

3 School of Health, Medical and Applied Sciences, Central
Queensland University, Rockhampton, QLD 4701, Australia

Curr Mol Bio Rep (2017) 3:276–287
https://doi.org/10.1007/s40610-017-0082-6

mailto:p.strappe@cqu.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1007/s40610-017-0082-6&domain=pdf


genetic predisposition and injury considered as the major risk
factors associated with the epidemiology of the disease.
Current treatment strategies involve encouragement of bone
marrow stimulation, in which subchondral bone is accessed
by micro-fracture to encourage bone marrow-derived cells
and cytokines to migrate to the site of injury through multiple
perforations or abrasion [6]. These techniques usually result in
the formation of fibrocartilage that is biochemically and bio-
mechanically inferior to articular cartilage and increase the
risk of tissue degradation [7, 8].

Autologous chondrocyte implantation (ACI) was the first
cell therapy applied to cartilage repair where an implantation
of an autologous periosteal flap was carried out, with the in-
sertion of culture-expanded articular chondrocytes [9]. Two
years post-implantation, the majority of the implantations
were successful, yielding pain-free and operational knee
joints. However, in a few patients, the development of fibrous
cartilage required trimming and a second operation. The main
disadvantages observed in ACI were donor site morbidity and
the need for in vitro expansion of chondrocytes limiting their
therapeutic potential. Poor proliferation and reduced ECM
production by culture-expanded chondrocytes reduced suc-
cessful integration of the transplanted cells [10].

Dedifferentiation of Chondrocytes

Articular cartilage homeostasis is maintained by the interac-
tion of three main components: chondrocytes, ECM and
growth factors [11]. Mechanical stimuli such as stretch and
directional load also effects articular cartilage structure
[12–14]. Chondrocytes secrete components of the ECM and
maintain higher ratios of the different types of collagen such
as collagen type II:type I and collagen type II:type X [15].
However, during the progression of osteoarthritis (OA)
or during monolayer expansion of chondrocytes for ACI,
this interaction is lost and the chondrocyte phenotype
drastically changes [16]. This is referred to as chondrocyte
dedifferentiation.

Previous work has shown that monolayer expansion of
chondrocytes in two-dimensional culture results in dedifferen-
tiation within a few passages [17]. Two-dimensional culture
disrupts the extracellular three-dimensional ECM-laden natu-
ral scaffolds that chondrocytes reside in and lose cell-ECM
signals via intermembraneous receptors known as integrins
[11]. Cell-ECM commnication is maintained via many
integrins, of which some are known to be associated with
collagen type I, collagen type II and fibronectin [18, 19].
Specifically, the α5β1 fibrinectin receptor expression has
been shown to suppress chondrocyte differentiation when
chondrocytes were cultured as a monolayers by promoting
cell proliferation while inhibiting chondrocyte specific gene
expression [20, 21].

Cell-cell and cell-ECM communication in chondrocytes is
also carried out by growth factors. In particular, it has been
shown that members of the transforming growth factor β
(TGFβ) superfamily of growth factors are affected during
chondrocyte differentiation. mRNA expression of TGFβ-2
has been shown to decrease significantly during monolayer
expansion of human chondrocytes [22], while a significant
reduction has been reported in expression of insulin-like
growth factor 1 (IGF-1) during monolayer expansion of hu-
man chondrocytes [23]. The expression of the major
chondrocyte-specific transcription factor Sox9, and concur-
rently, the expression of collagen II also decreases significant-
ly during chondrocyte dedifferentiation [24].

Another aspect of chondrocyte dedifferentiation is the effect
of catabolic gene expression encoding inflammatory cytokines
and proteases. In particular, interleukin 1 β (IL-1β) expression
increases in dedifferentiated chondrocytes and contributes to
the dedifferentiated phenotype [25]. Its expression was shown
to reduce Col2a1 expression and also enhance the expression
of Col1a1 and Col3a1 mRNA transripts. It has been shown
that IL-1β elicits this result through the activation of canonical
Wnt signalling and activation of β-catenin [26]. It has also
been shown to degrade articular cartilage through the stimula-
tion of nitric oxide (NO) which enhances extracellular signal-
regulated kinase (ERK-1/2) [27]. Furthermore, IL-6 has also
been shown to inhibit aggrecan expression through activation
of the Notch signalling pathway [28].

Proteolytic enzymes such as matrix metalloprotease
(MMP) and a disintegrin and metalloproteinase with
thrombospondin motifs (ADAMTS) are both involved in car-
tilage degradation [29]. The expression of MMP-1, 3, 7, 8, 9
and 14mRNAhas been shown to increase during chondrocyte
dedifferentiation [23, 30]. Also, MMP-13 has been shown to
cleave collagen type II during osteoarthritis and express
strongly in dedifferentiated chondrocytes [31, 32].
ADAMTS-4 and 5 have been shown to specifically cleave
aggrecan and do not cleave other ECM components such as
type II or type I collagen [33–35].

Strategies for Chondrocyte Redifferentiation

As chondrocyte senescence and dedifferentiation are major
roadblocks in the application of chondrocytes for the
treatement of cartilage defects, many studies have focused
on enhancing the proliferation and maintainence of the
chondrogenic phenotype. A number of studies have shown
the effects of growth factors to enhance the chondrocyte phe-
notype of cultured chondrocytes. Jakob [36] and others dem-
onstrated that epidermal growth factor (EGF), platelet-derived
growth factor (PDGFbb), fibroblast growth factor (FGF)-2
and TGFβ-1 treatment in monolayer-expanded chondrocytes
enhanced proliferation while also increasing dedifferentiation
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characteristics. However, three-dimensional pellet culture of
the cells with growth factor treatment regained the chondro-
cyte phenotype with strong expression of GAG and specifi-
cally collagen type II. Olney and co-workers [37] also showed
that growth plate chondrocyte proliferation was increased fol-
lowing the addition of IGF-1, TGFβ1-3 and FGF-2 in mono-
layer culture while BMP 2, 4 and 6 showed an inhibitory
effect on chondrocyte proliferation.

Recent studies involving growth factor-mediated
redifferentiation of chondrocytes heavily utilize three-
dimensional scaffolds to promote the chondrocyte phenotype
by increasing cell-cell and cell-ECM interactions. Human
chondrocytes from osteoarthritic cartilage have been shown
to both proliferate and redifferentiate with a growth factor
combination of TGFβ-1, FGF-2 and PDGFbb when cultured
with horse serum and stimulated by three-dimensional culture
in alginate beads [38]. Dahlin and others [39] demonstrated
that the use of a hypoxic culture system with 5% O2 and a
porous, electro spun poly (ε-caprolactone; PCL) scaffold en-
hanced chondrogenic redifferentiation of bovine articular
chondrocytes while also increasing cell proliferation. They
also utilized a flow perfusion bioreactor to enable uniform
flow of culture media, which further contributed to chondro-
cyte redifferentiation through constant exposure to the growth
factors and nutrients.

Stem cells have been suggested as an alternative source of
cells for the treatment of degenerative diseases with unique
characteristics in comparison to differentiated cells. They are
unspecialized cells capable of self-renewal through indefinite
cell division, while maintaining their differentiation potential
[40]. They are also capable of differentiation into cells of
particular lineages under certain physiological and chemical
conditions. Three different types of stem cells have been de-
scribed in the literature: embryonic stem cells, umbilical cord
blood or placenta-derived stem cells, and adult or somatic
stem cells [41].

Embryonic Stem Cells

Embryonic stem (ES) cells are derived from the inner cell
mass of the blastocyst and can proliferate indefinitely, in an
undifferentiated state while being able to differentiate into any
cell type of the developing body or into extra-embryonic tis-
sues, in vivo, referred to as totipotency [42]. In particular, they
have been shown to differentiate to end-stage cell types of the
mesoderm including chondrocytes [43, 44], osteoblasts
[45–47] and adipocytes [48, 49]. This versatility of ES cells
to produce many cell types makes them an ideal source of cells
for use in tissue engineering applications. However, the sourc-
ing and use of ES cells has many ethical considerations and is
strictly regulated [50]. Furthermore, they have also been
shown to result in teratoma formation following in vivo

transplantation of undifferentiated ES cells in mouse knee
joints where site-specific differentiation of ES cells to osteo-
blast was expected [51]. Furthermore, human ES cells have
displayed genomic instability over multiple population dou-
blings resulting in amplification of some genes while having
no effect on others making tissue-specific differentiation of
stem cells difficult [52].

Induced Pluripotent Stem Cells

Takahashi and Yamanaka demonstrated for the first time that
ectopic expression of the transcription factors Oct3/4, Sox2, c-
Myc and Klf4 (OSKM) reprogrammed mouse embryonic fi-
broblasts and mouse adult fibroblasts, to exhibit ES cell mor-
phology and growth characteristics [50]. The reprogrammed
cells were named induced pluripotent stem (iPS) cells.
Following the success with mouse iPS cell generation, it was
extended to adult human fibroblasts where the iPS cells de-
rived were described as having similar growth and differenti-
ation characteristics to human ES cells [53]. Importantly, it
was shown that the transgene expression was silenced follow-
ing full reprogramming of the donor cells to iPS cells. An
important consideration in these early experiments was the
possibility of reactivation of the oncogene c-Myc which may
lead to tumour formation. However, Nakagawa et al. showed
that iPS cells could be derived by the expression of only
Oct3/4, Sox2 and Klf4 (OSK) [54]. Omitting c-Myc resulted
in a significantly lower number of reprogrammed colonies,
but stopped the tumour incidences in chimeric mice relative
to the chimeric mice derived with the four original factors.

Since their discovery, iPS cells have been derived from
monkey [55], dog [56], horse [57, 58], swine [59, 60] etc.
Alternative methods for delivering transgenes for iPS genera-
tion have been studied with the central aim of either control-
ling integrated transgene expression or using non-integrating
vectors. To this end, iPS cells have been derived using a
doxycycline-driven lentiviral Tet-On system, transient plas-
mid transfection [61, 62], adenovirus [63, 64], mRNA [65]
and protein delivery of the four pluripotency factors [66].

Adult Stem Cells

As an alternative to ES cells, adult mesenchymal stem cells
(MSCs) have become popular in recent years for derivation of
tissue-specific cells of the mesoderm [67]. The relative ease of
isolation, efficient in vitro culture expansion and multipotency
signal their importance as an alternative source of cells [68,
69]. They have been shown to successfully differentiate into
chondrocytes, adipocytes and osteoblasts while the differenti-
ation potential is also a requirement for the characterisation of
the cell type as a mesenchymal stem cell [70]. Functional
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niches of adult stem cells fulfil the role of regenerating dam-
aged or diseased tissue throughout the lifetime of an individ-
ual [71]. However, this self-healing capacity reduces with age.
While the differentiation potential of MSCs is limited when
compared to ES cells, as an allogenic cell source, it shows
great potential for immunosuppression [72, 73]. However,
the maintainence of the immunosuppressive qualities in vivo
is debatable with a recent study showing host immune reac-
tivity following the chondrogenic differentiation of
transplanted allogeneic MSCs in a rat model [74].

Sources of Mesnchymal Stem Cells and Effect
of Ageing on the Differentiation Potential

MSCs were first isolated from the bone marrow by
Friedenstein et al. and referred to as colony-forming unit-fi-
broblasts (CFU-Fs) [75]. Other tissues have also been identi-
fied to contain niches of MSCs. MSCs from ‘adipose, perios-
teum, synovial membrane, synovial fluid, muscle, dermis, de-
ciduous teeth, pericytes, trabecular bone, infra-patella fat pad,
articular cartilage and umbilical cord’ have been successfully
isolated from all of these tissues [76]. However, the source of
MSC has been shown to play an important role in their differ-
entiation potential under identical culture conditions. As such,
a comparison between the differentiation potential in bone
marrow mesenchymal stem cells, umbilical cord blood-
derived stem cells and adipose-derived stem cells revealed
that umbilical cord blood-derived stem cells could not differ-
entiate towards adipocytes whereas the stem cells from the
bone marrow and adipose demonstrated differentiation poten-
tial to all three lineages [77]. Importantly, it was noted that the
stem cell populationwas heterogeneous and that some colony-
forming units were only able to differentiate to one or two of
the lineages. Apart from the source of the stem cells, the age of
the donor and the passage used for differentiation have a
strong influence on the differentiation potential. Kretlow
et al. demonstrated that cell attachment and proliferation de-
crease with the increasing age in mouse bone marrow-derived
stem cells [78]. They also showed that the differentiation po-
tential of the isolated cells to adipocytes, osteoblasts and
chondrocytes decreases dramatically with age and passage.
This observation has been supported in recent experiments
using in vitro differentiating human bone marrow-derived
MSC [79] and human adipose-derived stem cells [80].

Immunophenotype and Characterisation of MSC

In terms of standardising MSCs across the many tissue
sources, the international society of cell therapy (ISCT) re-
quires the fulfilment of the following criteria for the charac-
terisation of multipotent mesenchymal stromal cells: ‘(a)

adherence to plastic (b) specific surface antigen (Ag) expres-
sion (c) multipotent differentiation potential’ [81].
Furthermore, it is required that the expression of cell surface
markers, CD105, CD73 and CD90, is required in 95% ormore
of the cell population. The standard also states that the cell
surface markers CD45, CD34, CD14 or CD11b, CD79α or
CD 19 and HLA class II should not be expressed in over 2%
of cells. Thirdly, the mesenchymal cells need to be capable of
differentiation to osteoblasts, adipocytes and chondrocytes un-
der standard in vitro differentiation conditions. Interestingly,
greater understanding of the immunophenotype of MSC al-
lows phenotypical separation of chondrocytes from MSC, al-
though they show striking similarity in morphology and
growth characteristics during monolayer culture. Diaz-
Romero and others showed that the immunophenotype of
chondrocytes and particularly dedifferentiated chondrocytes
varies considerably in comparison to MSC [82]. Their find-
ings also demonstrate that dedifferentiated chondrocytes have
significantly different cell surface antigen presentation to
those of MSC and primary chondrocytes. The study suggests
CD14 and CD90 as indicators of distinct chondrocyte pheno-
type and state of dedifferentiation, respectively, as CD90 ex-
pression is significantly upregulated following monolayer ex-
pansion of chondrocytes whereas CD14 expression is not ev-
ident in MSC whereas it is strongly expressed in primary
chondrocytes.

Chondrogenic Differentiation of MSC

Chondrogenesis of MSCs in vivo involves the chondrogenic
lineage commitment of cells, aggregation of committed cells
and differentiation to mature chondrocytes, with further mat-
uration leading to chondrocyte hypertrophy and matrix
mineralisation [83]. Figure 1 shows the stages involved in
the expression of site-specific ECM proteins during chondro-
genesis. The in vitro differentiation of MSCs to chondrocytes
involves the proliferation of sufficient numbers of cells that
can be used in a three-dimensional, high-density cell culture
system increasing cell-cell interaction, in the presence of
growth factors [85].

Previous studies have shown efficient chondrogenesis of
mesenchymal stem cells with growth factor stimulation. As
such, TGFβ-2 and TGFβ-3 [86], and TGFβ-3 and IGF-1
[87, 88] have been shown to possess chondroinductive proper-
ties. Similarly, accelarated chondrogenic differentiation of
adipose-derived stem cells has been shown with the use of
the mitogenic factor fibroblast growth factor (FGF)-2 [89,
90], BMP6 [91], TGFβ-2 and IGF-1 [92] and BMP2 and
IGF-1 [93]. Recent studies have investigated the combination
of growth factor supplementation with culture in three-
dimensional scaffolds, both natural and synthetic. The main
advantages noted were accelarated cell proliferation and
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chondrogenic differentiation potential due to targeted increase
in collagen type II expression while suppressing collagen type I
expression [94–96]. These studies have shown great potential
for the use of adult stem cells in cartilage tissue regeneration.
However, some previous reports comparing growth factor-
mediated chondrogenic differentiation have highlighted that
cartilage tissue derived from MSCs was inferior with regard
to articular cartilage-specific collagen II production when com-
pared to that from redifferentiated chondrocytes [97, 98].

Co-culture of chondrocytes and MSCs has been shown to
increase the differentiation potential of MSCs while suppress-
ing chondrocyte differentiation and hypertrophy. A previous
study showed that co-culture of MSCs with chondrocytes in a
methacrylated hyaluronic acid hydrogel enhanced the
chondrogenic potential of the MSCs while suppressing chon-
drocyte hypertrophy [99]. Utilizing a PCL scaffold for three-
dimensional culture, Meretoja and others showed a similar
outcome in co-cultures of MSCs and chondrocytes from bo-
vine and rabbit species with TGFβ-3 inclusion [100].

Cellular Reprogramming

In OA, the loss of cartilage integrity and the phenotypical
changes in resident chondrocyte populations occur due to

the reduction in growth factor production, low response to
growth factors by chondrocytes and chondrocyte senescence.
An earlier study showed that chondrocytes in cartilage regions
closer to a lesion undergo mitotic division during OA,
resulting in telomere erosion in the chondrocytes and also
resulted in an increase in the expression of cartilage-
degrading matrix metalloprotease (MMP) enzymes MMP8
and MMP13 throughout the joint [101]. This result demon-
strates that cartilage degradation due to OA is not isolated to a
distinct region, but widespread throughout the joint surface.
Chondrocytes from human OA joint cartilage and culture-
expanded chondrocytes have similar gene expression profiles
for collagen types I and II [102]. The chondrocyte phenotype
lost through dedifferentiation has been shown to recover with
anabolic growth factor treatment such as transforming growth
factor β (TGF β) superfamily of proteins, including bone
morphogenetic protein (BMP) and TGF β, in effect regaining
cartilage homeostasis. Of these, BMP2 has been shown to
induce chondrogenesis through its binding to the TGFβ re-
ceptors which then activate the Smad signalling pathway
[103]. The downstream effect of this cascade is the transcrip-
tional activation of Sox9 leading to the enhancement of colla-
gen type II expression. However, Sox9 expression also results
in the enhancement of osteogenic factors such as Runx2 and
the hypertrophic marker collagen type X [104]. Similarly, fi-
broblast growth factors (FGFs) have been used for enhancing
proliferation in culture-expanded chondrocytes and for main-
taining the chondrogenic phenotype. FGF-2 in particular not
only is required for long-term monolayer expansion of
chondrocytes but also drives hypertrophic differentiation ear-
lier than untreated cultures [90, 105]. TGFβ-1 and 3 have
been used for chondrogenic enhancement of differentiating
mesenchymal stem cells [106]. We have also shown previous-
ly that TGFβ-3 inclusion during chondrocyte redifferentiation
in Sox9-overexpressing canine chondrocytes had a synergistic
effect with a significant increase in the chondrogenic pheno-
type [107].

Reprogrammed somatic cells which can recapitulate the
articular chondrocyte phenotype have been suggested as an
alternative to growth factor supplementation for regaining
the chondrocyte characteristics. Previous work has shown
that a select group of pluripotency factors Klf4, c-Myc
and chondrogenic factor Sox9 differentiates mouse and
human fibroblasts directly to articular chondrocytes
[108, 109]. Similarly, human placental cells have also been
reprogrammed directly to chondrocytes using the transcription
factors BRACHYURY, c-Myc, MITF and BAF60C [110].
Such reprogrammed cells have the distinct advantage of
tissue-specific gene expression leading to chondrocytes that
actively suppress dedifferentiation and chondrocyte hypertro-
phy. In a previous study, we demonstrated that this approach is
also applicable to reprogramming extensively culture-
expanded canine chondrocytes to an articular chondrocyte
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Fig. 1 Chondrogenic differentiation of MSCs and endochondral
ossification. MSC condensation initiates chondrogenic differentiation
followed by chondrocyte maturation resulting in ECM synthesis,
predominantly with collagen types II, VI, IX and XI and aggrecan.
Further maturation of chondrocytes leads to chondrocyte hypertrophy,
laying the template for endochondral ossification. The predominant
collagens secreted change to types I and X upon maturation. Adapted
from Woods et al. 2007 [84]
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phenotype, with suppression of dedifferentiation and signifi-
cantly lower hypertrophic differentiation when compared
to chondrocytes differentiated with Sox9 overexpression
alone [107].

CRISPR-Cas9 as a Tool to Investigate Chondrogenic
Pathways

Gene editing is revolutionising molecular and cellular biology
at a rapid pace, and applications of this technology to further
understanding chondrogenic pathways and translational appli-
cations to enhancing differentiation of adult stem cells are
promising.

CrispR-Cas9 has been used to generate chondrocyte cell
lines with specific gene knockout (KO) results in novel phe-
notypic characteristics; Yang et al. established an aggrecan-
specific KO through modification of the commonly used rat
chondrosarcoma cell line (RCS) to stably express the Cas9
nuclease allowing subsequent editing specific guide RNAs
[111]. An aggrecan KO displayed interesting in vitro charac-
teristics, including string attachment to tissue culture plastic,
and surprisingly, the loss of Ag reduced the ability of the Ag
Ko cells to form a chondrosarcoma in athymic mice and the
upregulation of host-infiltrating T cells suggested that lack of
the aggreccan promoted immune surveillance. Comparing the
gene expression profile of the Ag KO cells with WT also
revealed fold changes in genes associated with cell extracel-
lular interactions. Hyaluron (HA) plays an important role in
cartilage integrity through maintaining aggrecan via interac-
tion with the cell plasma membrane. Huang et al. generated
HA-deficient chondrosarcoma cell lines through Cas9-
CrispR-mediated ablation of the HA-Synthase-2 (HAS-2) en-
zyme [112•]. The HAS-2 KO cells showed a deficit in their
ability to produce a functioning ECM, and exogenous addition
of purified aggrecan failed to produce substantial matrix.
Particle exclusion from matrix was also impacted upon loss
of aggrecan, over expression of Has-w via an adenoviral vec-
tor restored aggrecan incorporation and yielded a similar ECM
profile to wild-type cells. CrispR-Cas9 provides a rapid means
of specific gene knockout which can aid in the elucidation of
signalling pathways involved in chondrogenesis and
highlighting the importance of key cartilage matrix proteins
in KO cell lines. Clinical translation of Crispr-Cas9 in carti-
lage repair may be through the ability to produce engineered
cells that enhance ECM production or are protected from
immune-mediated destruction. The latter rational is demon-
strated in a study by Brunger et al. who applied Crispr-Cas9-
mediated knockout of interleukin 1 (IL-1) receptor type I in
murine induced pluripotent stem cells (iPSCs) and subse-
quently differentiated these cells into chondrocytes as an ap-
proach to generate inflammation-resistant cells which may
have enhanced survival in vivo [113••]. This study highlighted

the need to achieve complete homozygous removal of the IL-
R1 gene, as only these cells were completely resistant to IL-
1alpha cytokine-mediated damage compared to heterozygous
mutants and wild-type cells. In a similar study, the same group
targeted the inflammatory cytokine receptors, TNFR1 and
IL1R, in human adipose-derived stem cells (ADSCs) with
CrispR/Cas9 and showed in vitro resistance to cytokine me-
diated damage in chondrogenic-differentiated cells which also
maintained their immunomodulatory properties and ability to
produce cartilage-specific ECM [114].

Induced Pluripotent Stem Cells and Cartilage
Regeneration

The landmark work of Yamanaka in the generation of iPSCs
has continued to provide the field of chondrogenesis and car-
tilage repair with powerful cell-based reagents. Efficient differ-
entiation of iPS cells towards a chondrogenic lineage has been
demonstrated in numerous studies using a variety of chemical/
small molecule or gene modification techniques. Early studies
revealed the potential of murine iPSC differentiation towards
chondrogenic lineage using BMP-4 and dexamethasone in a
3D micromass culture [115]. Initial passage 1 cells showed
significant chondrogenic gene expression in cells purified on
the basis of a Col2a1-driven GFP promoter. However, subse-
quent monolayer expansion revealed reduced expression of
chondrogenic-associated Col2a1 and Acan and increased hy-
pertrophic Col10a1. Human iPS cells as a potential source of
chondroprogenitors were investigated by Guzzo et al. [116],
and using a differentiation approach combining BMP-2 and
micromass culture showed the development of a heteroge-
neous cell population with articular and fibrocartilage charac-
teristics. The challenges of efficient chondrogenic differentia-
tion of iPS cells have been highlighted [117] and include for-
mation of mesenchymal progenitors through stepwise forma-
tion of embryoid bodies and subsequent outgrowth of mono-
layer cells. A landmark paper by Yamashita et al. successfully
differentiated human iPSCs over a period of 42 days using a
cocktail of ascorbic acid, BMP-2, TGFbeta1 and GDF-5 and
suspension culture [118••]. Transplantation of differentiated
cells into subcutaneous spaces in SCIDmice showed formation
of hyaline cartilage without tumour formation together with a
degree of repair of an articular cartilage defect in SCID rats and
in mini-pigs. The use of cartilage-specific promoters driving
expression of a reporter gene is commonly used to select dif-
ferentiated iPS cells, such as Col2a1-eGFP [119] or Col11a2-
eGFP [118••], and the use of potential Col10a1 promoters may
allow monitoring of hypertrophic markers. Generation of
iPSCs using an integrating viral vector may leave a genetic
footprint which may interfere with reprogramming; in an ap-
proach to reduce this risk, Borestrom et al. used synthetic
mRNA expressing the Yamanaka factors to generate iPSCs
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from donor human chondrocytes [120]. Subsequent differenti-
ation of iPS cells to chondrocytes in a monolayer culture, led to
redifferentiated chondrocytes displaying enhanced cartilage
matrix characteristics similar to primary chondrocytes and su-
perior to cells derived from fibroblasts. Articular chondrocytes
are readily available from patients undergoing arthroplasty, and
in a similar study, Guzzo et al. demonstrated that
redifferentiation of chondrocyte-derived iPS cells resulted in
an improved cartilage gene expression and proteoglycan pro-
file compared to differentiation of fibroblast-derived iPS cells
to chondrocytes [121].

Methods to differentiate embryonic stem cells (ESCs) to
chondrocytes have been successfully applied to iPS cells,
and Cheng et al. developed a stepwise approach to differenti-
ate ESCs and iPS cells to mesendoderm with Activin A,
Wnt3A and BMP4 followed by differentiation towards meso-
derm and then chondrogenic differentiation using a cocktail of
GDF5, FGF-2 and NT-4, over a total period of over 3 weeks
with a substrate consisting of fibronectin and gelatin [122].
Chondrogenic differentiation of iPS cells yielded a high pro-
portion of Sox9-positive cells together with increased Col2a1
expression. Applying a similar differentiation protocol, Lee
et al. first directed human iPS cells towards mesoderm and
used follistatin to suppress endodermal differentiation with
subsequent chondrogenic differentiation resulted in cells with
a high expression of Sox9 and Col2a1 and together with re-
duced expression of hypertrophic and fibrocartilage markers
[123]. With loss of pluripotency gene expression, in vivo
transplantation of iPS-derived chondrocytes in a PEG-
chondroitin sulfate hydrogel implanted subcutaneous showed
similar levels of GAG production when compared to primary
chondrocytes. Teratoma detection in transplanted iPS cell-
derived chondrocytes is a safety concern; Saito et al. showed
the development of an immature teratoma in one of 36
NOD/SCID mice transplanted with iPS cell-derived
chondrocytes following the above differentiation protocol
[119]. Improvements in the safety profile of iPS cell-derived
chondrocytes may also include approaches to generation of
iPS cells without the use of virus-mediated vectors have in-
cluded transposon-mediated delivery of the iPS cell factors by
‘Piggy Bac’ [124] and subsequent in vitro chondrogenic dif-
ferentiation of the reprogrammed rat embryonic fibroblasts.

For successful in vivo repair, transplanted iPS cell-derived
chondrocytes should not cause an immune response that
would lead to targeted cell removal and an exacerbated in-
flammatory reaction. While an autologous source of cells
would limit this possibility, allogeneic sources of
chondrocytes could allow large-scale expansion of well-
characterised cell banks. In a promising in vitro study by
Kimura et al., iPS-derived cartilage was found to be no more
antigenic than primary human cartilage showing suppression
of Tcell proliferation limited expression ofMHC classes I and
II [125].

Traditional methods to induce chondrogenesis includes 3D
pellet formation which can have a profound effect on cell
proliferation and ultimately gag production which impact on
efficacy of transplanted cells in repairing cartilage defects. In
an approach to maintain cell proliferation in differentiated
murine iPS cells, the cell cycle inhibitor p12 was targeted by
short hairpin RNA (shRNA) which had a profound effect on
proliferation while maintaining GAG production [126].

Employing a novel viral gene delivery system for human
iPS cell generation based on minicircle plasmid DNA [127]
and subsequent stepwise differentiation to MSCs and
chondrocytes and avoiding embryoid body formation resulted
in increased GAG and Col2a1 expression and transplantation
of iPS derive chondrocytes seeded within a Polyethylene-
Methacrolate hydrogel into osteochondral defects of arthritic
rats produced in vivo matrix production compared to undif-
ferentiated iPS cells. Non-invasive assessment of therapeutic
benefit of transplanted cells allows measurements over a time
course, and in this study, a novel application of MRI was used
to determine T2 relaxation times as an indicator of decreasing
water content and increasing matrix formation.

Disease Modelling of Musculoskeletal Disease

Probing patient- and disease-specific changes in iPSC-derived
cartilage has yielded interesting findings in a number of recent
studies. Phillips et al. highlighted how results from in vitro
differentiation assays may not be recapitulated in vivo, and
vice versa, especially human iPS cells derived from either skin
or bonemarrow stromal cells which showed potent osteogenic
in vitro differentiation but yielded low levels of bone forma-
tion in vivo [128]. Interestingly, patient-derived iPS cells and
subsequent chondrogenic differentiation allow modelling and
elucidation of cellular signalling pathways in a specific dis-
ease which may lead to improved drug screening and design.
In a proof of principle study, Lee et al. demonstrated the suc-
cessful generation of patient-specific iPS cells from fibroblast
like synoviocytes harvested from patients suffering from rheu-
matoid arthritis or osteoarthritis [123]. Lentiviral vector deliv-
ery of factors resulted in iPS cells showing characteristic
pluripotency markers and the ability to form tissues corre-
sponding to developmental lineages when transplanted
in vivo. Recapitulation of a disease phenotype has been
shown by Yamasaki et al. who generated iPS cells from
cleidocranial dysplasia (CCD)-specific patient dental pulp
cells reprogrammed using a novel integration-free sendai virus
vector [129•]. CCD is characterised by a missense mutation in
exon 3 in Runx2 which affects chondrocyte maturation, tera-
toma formation of the subcutaneous transplanted cells resulted
in cartilage tissue containing swollen cytoplasm and a lack of
normal hypertrophic chondrocytes. Xu et al. took a similar
approach in analysing cartilage tissue associated with
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teratoma from subcutaneously transplanted retroviral vector
generated-iPS cells from patients with familial osteochondritis
disecans (FOCD) [130]. FOCD is characterised by a hetero-
zygous mutation in the aggrecan gene, and phenotypic reca-
pitulation of this disease was seen in the iPS-derived cartilage
showing aggrecan primarily within chondrocytes and deple-
tion within the ECM. A sparse ECM and ER stress are also
characteristics of a type II collagenopathy and showed irreg-
ularities in teratoma/cartilage tissue with accumulated colla-
gen derived from patient-specific iPS cells [131].

Enhancing iPSC-Chondrocyte Differentiation
and Articular Repair with Biomaterials

A number of studies have now refined chondrocyte differen-
tiation protocols from iPS cells which will contribute to con-
sistency and scale up, necessary for clinical translation.
Biomaterials acting as novel cellular substrates or scaffolds
may contribute to differentiation and in vivo therapeutic po-
tential. In a study by Liu et al., murine iPS cells were seeded
onto an electrospun polycaprolactone/gelatin scaffold and dif-
ferentiated in chondrogenic media [132]. Scaffolds were used
to repair an articular cartilage defect in rabbits and showed
increased matrix production and cartilage gene expression
profiles compared to treatment with scaffold alone.
However, an analysis of hypertrophic or fibrocartilage
markers was not performed or how these cell-laden scaffolds
might perform in a weight-bearing environment. Indeed, load
bearing may be a synergistic approach to in vitro iPS cell
differentiation together with specific growth factors. Using
ESCs, McKee et al. demonstrated that cells seeded on a poly-
dimethylsiloxane scaffold and subject to compression
underwent chondrogenic differentiation with RhoA playing
a pivotal role in mechanical stimulation [133].

Summary

Strategies to enhance chondrogenesis of adult stem cells have
been a major focus of regenerative medicine; however, limi-
tations have been associated with differentiation efficiency
and long periods of growth factor exposure. Successful culture
expansion of cells is often challenged by donor age, and in-
creasing incidence of co-morbidities such as diabetes which
can contribute to rapid cell senescence. Chondrogenic differ-
entiation of adult stem cells in vitro has remained largely de-
pendent on a similar set of growth factors, with increasing use
of biomaterial-based scaffolds to recapitulate zonal changes in
articular cartilage and the osteochondral interface while main-
taining cells in a 3D growth environment. Recent advances in
bioprinting [134•] and the development of cartilage-specific
bioinks will contribute to enhanced in situ chondrogenic

differentiation and tissue integration. Reprogramming cells
to pluripotency through generation of iPS cells and then sub-
sequent differentiation to chondrocytes shows potential in pro-
viding large quantities for therapeutic applications based on an
allogeneic cell source. However, efficient in vitro differentia-
tion is dependent on a relatively complex schedule of growth
factors and stepwise progress through developmental line-
ages. Generation of iPS cells through reprogramming of read-
ily accessible blood cells [135, 136] reduces the need to access
tissue though invasive methods may also provide a source of
chondrogenic differentiated cells for cartilage repair.
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