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Abstract
Purpose of Review Progress in stem cell research for blinding
diseases over the past decade is now being applied to patients
with retinal degenerative diseases and, soon perhaps, glauco-
ma. However, the field still has much to learn about the con-
version of stem cells into various retinal cell types, and the
potential delivery methods that will be required to optimize
the clinical efficacy of stem cells delivered into the eye.
Recent Findings Recent groundbreaking human clinical trials
have demonstrated both the opportunities and current limita-
tions of stem cell transplantation for retinal diseases. New
progress in developing in vitro retinal organoids, coupled with
the maturation of bio-printing technology, and non-invasive
high-resolution imaging have created new possibilities for
repairing and regenerating the diseased retina and rigorously
validating its clinical impact in vivo.
Summary While promising progress is being made, meticu-
lous clinical trials with cells derived using good manufactur-
ing practice, novel surgical methods, and improved methods
to derive all of the neuronal cell types present in the retina will
be indispensable for developing stem cell transplantation as a
paradigm shift for the treatment of blinding diseases.

Keywords Induced pluripotent stem cells (iPSCs) .

Mesenchymal stem cells (MSCs) . Retinal pigment epithelium
(RPE) . Retinal ganglion cells (RGCs) . Photoreceptors .

Age-related macular degeneration (AMD)

Introduction

After several decades of research, stem cell therapy is at a
turning point with the current wave of clinical trials testing
the efficacy of pluripotent stem cells for combating diseases of
the nervous, cardiovascular, digestive, and endocrine systems.
The eye and various ocular cell types have emerged as dom-
inant targets for stem cell-based regenerative medicine mainly
because (a) the eye is easily accessible for stem cell delivery,
(b) it is a small organ and the number of stem cells required for
therapy would be lower compared to larger organs, (c) it has
an immuno-privileged environment that can tolerate foreign
cells, (d) it can restrict and house the transplanted stem cells in
a discrete environment, and (e) its ocular cells can be non-
invasively monitored for structural and functional changes
during stem cell therapy.

Given that several ocular disorders ranging from age-
related macular degeneration (AMD), Stargardt’s disease
(macular dystrophy, STGD), and retinitis pigmentosa (RP)
lead to the degeneration of the light-sensing photoreceptors
and their underlying supportive retinal pigment epithelium
(RPE) in the macula [1], much of the research in the past
decade has focused on replacing these ocular cell types
with an autologous cell source and more recently on em-
bryonic, fetal, and bone marrow-derived stem cells. Retinal
diseases that result from progressive loss of neural cells
(photoreceptors, ganglion cells) or microvascular cells (en-
dothelial and pericytes) or supporting cells such as the RPE
are potential targets of stem cell therapy [2, 3]. Once
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photoreceptors are lost in cases of advanced retinal degen-
eration, the challenge of retinal stem cell therapy lies in the
generation and re-introduction of photoreceptors at the ideal
developmental stage to re-awaken the retinal circuits.

The recent success of generating a whole optic cup in vitro
containing large number of photoreceptors from embryonic
stem cells [4] provides compelling data supporting the need
of exploring regenerative neural stem cell therapies for the
treatment of blinding retinal disorders. Many basic research
programs and preclinical studies with animal models have
used both embryonic stem cells (ESCs) and induced pluripo-
tent stem cells (iPSCs) for differentiation into cells that display
many features and morphological similarities with photore-
ceptors and RPE cells [5•]. Since the source of ESCs is ethi-
cally contentious, other types of stem cells are being rigorous-
ly considered for reversing retinal pathology and accelerating
retinal repair. Using pluripotential stem cells (PSC) and iPSC-
derived RPEs, clinical trials are ongoing for tackling macular
degeneration and other related retinopathies in humans [6••].
In some trials, umbilical tissue-derived stem cells, fetal stem
cells, and adult stem cells from adipose or bone marrow-
derived stem cells are being directly transplanted into the
eye with the goal of rescuing the retina. Although results of
these trials are eagerly awaited, many of these clinical ap-
proaches were designed with the concept that transplanted
stem cells would produce trophic factors and rescue the dying
neurons, photoreceptors, and RPE in patients with AMD and
other blinding disorders.

With the invention of 3D bioprinting technology, the stem
cell field also has seen tremendous progress in tissue engineer-
ing which may prove to be a promising therapeutic approach
to eye diseases [7••]. In this review, wewill discuss the various
types of stem cells that are being used for RPE replacement to
restore function and/or prevent loss of photoreceptors, sum-
marize clinical advances in stem cell-based therapies for reti-
nal diseases, and outline future directions and challenges for
the field.

Intrinsic Retinal Regeneration in Vertebrates

The initial studies demonstrating isolation of neural stem/
progenitor cells from adult ocular tissues and successful
transplantation of these stem cells into the degenerating retina
has sparked widespread interest among vision scientists
[8–10]. However, fundamental questions remained about the
intrinsic and extrinsic properties of neural progenitor cells
and the impact of environmental signals on migration and
differentiation of these cell types. The retinas of amphibians
and teleost fish have an unprecedented capacity to regenerate
after damage, demonstrating the existence of stem and pro-
genitor cells in the eye [11–13]. Following damage, retinal
cells express genes typical for embryonic retinal progenitors

such as Pax6, Notch-3, and n-cadherin [14], and the relative
spatiotemporal patterns of expression of these genes mimic
the patterns observed during retinal neurogenesis.

Müller glia respond to retinal injury by acquiring stem cell
characteristics, allowing the generation of a proliferating pop-
ulation of multipotent Müller glia-derived progenitors, and
promoting progenitor cell cycle exit and neuronal differentia-
tion [15]. The initial injury response is reactive gliosis, which
includes Müller glia proliferation. Reactive gliosis is initially
beneficial to neurons because it protects the retina from glu-
tamate neurotoxicity and releases growth factors necessary to
promote neuronal survival [16, 17]. Recent studies also indi-
cate that many of the epigenetic changes associated with stim-
ulation of pluripotency in somatic cells are induced in Müller
glia as they redirect into a stem cell phenotype [18]. Together,
the robust regenerative capacity of fish and amphibians may
help pave the way for a deeper understanding of potential
retinal repair and regeneration approaches in mammals.

Stem Cell Programming in the Central Nervous
System

In mammals, the radial glia function as stem cells in the de-
veloping central nervous system (CNS) and they produce neu-
rons and glia [19, 20]. The Müller glia share a lineage with
retinal neurons and possess a latent neurogenerative capacity,
demonstrated in the postnatal chick retina. The appearance of
markers specific for retinal neurons in Müller cells confirmed
the source of retinal regeneration in this species. Likewise,
Müller cells with stem/progenitor characteristics have been
isolated from postmortem adult human retina. These cells ex-
press not only Müller glial markers but also neural progenitor
markers such as Nestin, CHX10, SOX2, and others. Human
Müller cells can grow indefinitely in culture, and the presence
of specific extracellular matrix and differentiation factors can
trigger the expression of post-mitotic neuronal markers such
as peripherin, recoverin, and S-opsin [21, 22]. Other putative
progenitor cells in the adult human retina may be found in the
ciliary body [23]. The ciliary marginal zone is a region of
potential interest because of the expression of Nestin, a stem
cell marker [21]. However, other studies have shown that cil-
iary epithelial cells have limited expression of neuronal
markers and do not appear to possess true retinal stem cell
properties [24].

These endogenous human stem/progenitor cells are easy to
differentiate because they have already undergone crucial
stages of development within the eye and are committed to-
wards a retinal fate. Transplantation of differentiated human
Müller cells in the subretinal space of dystrophic Royal
College of Surgeons (RCS) rats show poor migration into
the different retinal layers, whereas transplantation of neural
stem cells from the brain integrate with the host retina but
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fail to express retina-specific markers [25, 26]. This evidence
suggests that while stem/progenitor cells can be coaxed to
differentiate into retinal neurons and may be delivered to the
eye to replace or repair damaged retinal cells, effective cell-
based therapies for regenerating the adult human retina must
still solve important unanswered problems such as successful
targeting, synapse formation, and demonstration of meaning-
ful visual function.

Types of Stem Cells

Stem cells have an intrinsic capacity to proliferate indefinitely,
and by definition, they have the potential to differentiate into
virtually any cell type. Based on their differentiation capabil-
ities and origin, stem cells are broadly classified into (a) om-
nipotent stem cells that differentiate into embryonic and extra-

embryonic tissues, (b) pluripotent stem cells that form embry-
onic tissue (ectoderm, endoderm, and mesoderm, iPSC), and
(c) multipotent stem cells capable of differentiating into a
limited number of cell types (e.g., mesenchymal stem cells)
(Fig. 1) [27•]. During stem cell therapy, differentiated cells can
physically replace the damaged cells in the tissue and, thereby,
restore function. Alternatively, transplanted stem cells may
secrete trophic, paracrine factors including cytokines, growth
factors, and extracellular matrix which can promote neuronal
cell survival [28]. Although stem cells can be differentiated
into photoreceptors, RPE, and retinal ganglion cells (RGCs),
recent studies have also investigated the intrinsic regenerative
potential of Müller glia and RPE, to differentiate into retinal
cells [29]. TheMüller stem cells isolated from the neural retina
of human donor eyes can be differentiated into RGC precur-
sors. Upon transplantation of these precursors, these cells
expressed RGC markers in vivo demonstrating the possibility

Fig. 1 Schematic of the current
sources of various types of stem
cells under investigation and the
retinal cells derived from them
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of deriving stem cells from adult tissues. On the other hand,
transplantation of humanMüller glia cells obtained from adult
human retinas resulted in differentiation of these cells into rod
photoreceptors. Several experimental approaches have shown
that the embryonic or fetal retinal progenitors and iPSCs are
capable of migrating into the degenerating retina and differ-
entiating into mature retinal cell types including photorecep-
tors, RPE, and RGCs, supporting the concept that retinal pro-
genitors and precursors are useful stem cell sources and can be
used effectively for mechanistic studies of RGC and photore-
ceptor differentiation, as well as for RGC survival.

Embryonic Stem Cells

With their constitutive capacity to differentiate into all cell
types and their migratory potential, pluripotent ESCs are ideal
candidates for treating human retinal diseases [30–32]. Since
studies suggest that ESCs can spontaneously differentiate into
a neuronal fate in the absence of a specific intracellular signal
[33], experimental manipulation of culture conditions by
using a combination of growth factors including BMP antag-
onists, Wnt pathway inhibitors, and IGF-1 [34], or ectopic
over-expression of retinal progenitor genes [35], or co-
culturing with embryonic retinal explants [36] can lead to
the induction of retinal fate in ESC cultures. These experimen-
tally derived photoreceptors from ESCs have been shown to
restore visual function in a mouse model of Leber’s congenital
amaurosis [37]. Studies have shown that TrK receptor binding
enhances ESC cell survival, suggesting the release of
neurotrophins in an autocrine fashion [38], and transplantation
of ESC-derived photoreceptors promotes the survival of near-
by endogenous photoreceptors [39]. Emerging new data fur-
ther demonstrate that ESCs can be directed towards a retinal
ganglion cell fate by culturing cells on poly-L-lysine and lam-
inin in the presence of serum followed by differentiation in the
presence of FGF2 and sonic hedgehog (SHH). However,
transplantation of these differentiated cells with RGC-like
properties into rat eyes did not result in integration of these
cells with the ganglion cell layer [40]. As an alternative, pho-
toreceptors can be generated from human embryonic stem cell
(hESC)-derived embryoid bodies when cultured in the pres-
ence of IGF-1, noggin, and DKK1 [34], or grown in the pres-
ence of LEFTY [41, 42]. To support transplantation of photo-
receptors in AMD patients, it was conceptualized that the RPE
should be concomitantly replaced, and a recent study con-
firmed that survival of photoreceptors significantly increased
when co-cultured with hESC-derived RPE line [43], indicat-
ing that dual replacement is a promising therapeutic strategy.
Additional new studies showed formation of entire optic cups
containing a complex of neural retina and RPE from mouse
ESCs [44] and hESCs [45].

Like ESC-derived photoreceptors, several experimental ap-
proaches have been proposed to direct the conversion of ESCs

into RPE cells. These protocols include spontaneous differen-
tiation of ESCs following removal of fibroblast growth factor
from the culture medium [46], which results in overgrowth of
stem cell colonies and concomitant appearance of pigmented
areas, resembling RPE cells. Culturing of embryoid bodies in
suspension followed by plating of adherent colonies in neural
differentiation medium can also trigger spontaneous differen-
tiation into RPE [47]. ESCs can be specifically directed to-
wards RPE differentiation by inhibiting the Wnt and Nodal
signaling pathways with Dickkopf (DKK1) and left-right de-
termination factor (LEFTY), respectively [48]. Also, sequen-
tial treatment with nicotinamide followed by activin A has
been shown to induce ESC differentiation into RPE [49].
RPE cells derived from ESCs display many characteristics
of the native RPE including a monolayer of hexagonal cells
with apical microvilli, pigment-containing melanosome gran-
ules, apical orientation of Na+/K+ATPase confirming polari-
zation [46] and associated tight junction proteins expressed on
cell borders [43], apical secretion of PEDF, and capability of
phagocytosis both in vitro and in vivo [49, 50].
Transplantation of ESC-derived terminally differentiated
RPE cells into the subretinal space of RCS rats slowed the
degeneration of photoreceptors [51, 52]. Transplanted hESC-
derived RPE cells (MA09-hRPE) into the submacular spaces
of human eyes with dry AMD and Stargardt’s macular dys-
trophy (STGD) in phase 1 clinical trials (Clinical Trials:
NCT01469832, NCT01345006, others) found no evidence
of teratoma formation or loss of vision in these individuals.
New pigment was eventually detected in the patient with
STGD demonstrating restoration of RPE function [53]. The
London BProject to Cure Blindness^ developed a hESC-
derived RPE line that can be cultured as a monolayer on a
sheet of polymer, mimicking Bruch’s membrane and designed
to overcome the disorganized attachment of RPE cells to
Bruch’s membrane when injected as a suspension [54]. The
clinical trials that are ongoing using hESC-derived RPE have
demonstrated that transplanted RPE cells are well tolerated
without evidence of tumorigenicity or adverse proliferation.
Long-term data showed improved visual acuity in several pa-
tients with dry AMD and STGD in a phase I trial [55••]. These
promising results represent the next therapeutic frontier for
restoring sight through retinal tissue transplantation.

Fetal Stem Cells

Fetal retina is a potential source of isolating retinal pre-
cursors that can be used for restoring vision in individuals
with AMD and the many forms of retinitis pigmentosa
(RP) because these precursors have the potential to reinte-
grate into the mature retina and differentiate into rod pho-
toreceptors. Transplantation of these precursors from fetal
retina improved visual function in mice and humans with
photoreceptor loss [56–58]. The use of fetal progenitor/
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stem cells remains controversial due to ethical concerns
and is currently limited to existing cell lines in the
USA. These advanced strategies can be pursued for devel-
oping a dual graft of RPE/photoreceptors, which can be
transplanted for repairing and regenerating laminated hu-
man retinal tissue. Towards this goal, the National Eye
Institute recently announced the B3-D Retina Organoid
Challenge,^ a prize competition designed to generate lab-
grown, reproducible 3-D retina organoids that can be used
to speed the discovery of treatments for blinding diseases.

Mesenchymal Stem Cells

Adult stem cells such as MSCs are one of the promising cell
types with high potential for regenerative properties in various
diseases [59, 60, 61•]. Of the many sources of MSCs, bone
marrow, adipose tissue, dental pulp, peripheral blood, cord
blood, and fetal liver and lung are well known. Because
MSCs comprise only a minor fraction of bone marrow (BM)
tissues (0.0001–0.01%) [62], adipose tissue-derived stem cells
(ASC) have gained more interest recently [61•]. ASC are easy
to isolate (mechanical and collagenase digestion) and in abun-
dant supply since 500,000–1million cells can be isolated from
1 g of isolated adipose tissue [63]. Furthermore, fat is a med-
ical Bwaste^ tissue, minimizing ethical limitations for its use.
Purity, characterization, and scaleup manufacturing of cell
lines for clinical use are well documented [64], giving ASCs
an advantage over BM-MSCs and other less well-defined
stem cell populations. MSCs are shown to express RPE
markers upon induction with RPE-conditioned medium [65],
and have been shown to differentiate into neurons, rods,
Müller cells, and retinal ganglion cells [66, 67, 68•]; however,
their use in vivo is less established at this time. In some elegant
studies, neuroretinal organotypic cultures and co-cultures
have been developed to understand the pathophysiology of
retinal degenerative diseases. These included MSCs, RPE,
and neuroretinal explants, but demonstrated limited or no neu-
roprotective effects on the retina [69, 70]. Animal studies con-
ducted in RCS rats or P23H rats have shown promising results
with MSCs [71, 72, 73•, 74, 75]. Multimodal mechanisms for
MSC-mediated retinal protection differ by administration
route and may synergize in combination [76••]. These data
come from the RCS rat model; additional studies using other
retinal dystrophy models are needed for further translational
evaluation of MSCs.

The challenges of using live stem cells for regenerative
therapies include issues of cell viability in vivo, differentiation
and function in hostile potentially pro-inflammatory tissue
environment following transplantation, and poor cell retention
and integration into the target retinal tissue [77]. An alterna-
tive approach available withMSCs is to useMSC-conditioned
media as a neurotrophic, paracrine product to protect the ret-
ina. To this end, several studies have been conducted that

support the trophic effects of paracrine factors released by
MSCs in the regeneration of retina [78, 79, 80, 81•], similar
to the implant (NT-501 ECT, Neurotech) which elutes the
ciliary neurotrophic factor from encapsulated RPE cells as a
neuroprotective agent. One of the recent advances in three-
dimensional (3D) bioprinting technology is the use of a printer
device where one can deposit and layer building blocks of
bioink (a composition of cells and structural scaffolds).
Mesenchymal stem cells were used in this 3D bioprinting
technology for cardiovascular diseases [7••] and has been pro-
posed for retinal use [82, 83•].

Induced Pluripotent Stem Cells

Programming of differentiated somatic cells (including fibro-
blasts) by forced expression of specific transcription factors
including Oct4 and Sox2 (plus Myc, Klf4 or Nanog, Lin28)
can induce the conversion of somatic cells to ESC-like cells
with pluripotent qualities, termed iPSCs [84–88]. Several pro-
tocols have been developed demonstrating conversion of
iPSCs to RPE-like cells with cobblestone morphology, pig-
mentation, formation of tight junctions, expression of RPE-
specific protein RPE65, and intrinsic capacity to phagocytose
shedding photoreceptor outer segment tips [89]. iPSCs were
used to derive RPE [89–91], and transplantation of iPSC-
derived RPE improved visual function in RCS rats [91–93].
iPSCs have been differentiated into photoreceptors [41, 89,
94] by culturing ES cell clumps on matrigel in the presence
of Noggin, Dickkopf-1, IGF-1, and SHH, followed by supple-
mentation of culture medium with human Activin-A to en-
courage the exit of photoreceptor progenitor cells from the cell
cycle and induce further maturation and differentiation. In
recent studies, both hESCs and iPSCs have been differentiated
into mature retinal ganglion cells (RGCs) capable of transmit-
ting action potentials [95•, 96].

Human iPSCs have been used as models for the study of
many different diseases such as monogenic disorders, com-
plex disorders, and early-onset and late-onset diseases. They
are an indispensable tool in translational research because
reprogramming of any patient-derived somatic cell ranging
from fibroblasts to blood cells with a wide range of donor ages
enables the generation of new iPSC lines modeling human
genetic disorders [97, 98, 99••]. Of note, residual somatic
epigenetic memory may persist in iPSC after differentiation,
thereby affecting utility in disease models [100, 101].
Reprogramming somatic cells to pluripotent cells has been
driven by concerns related to immunological incompatibility,
which has been resolved by developing banks of undifferen-
tiated cells that can be differentiated and transplanted to recip-
ients based on matching of human leukocyte antigens [102].
Nonetheless, iPSC-based therapies are rapidly emerging as
exciting avenues of personalized medicine and ongoing stud-
ies are using iPSC cells to model retinal diseases ranging from
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Stargardt’s disease to AMD. The use of an iPSC line will be an
asset for organ module integration into a human-on-a-chip
[103•]. Human-on-a-chip technology will allow a robust mod-
el for personalized drug responses and provide valuable in-
sight into an individual’s reaction to specific treatment regi-
mens and compound tolerability. More in-depth knowledge
should be gained with regard to various population differ-
ences, including genetics, gender, and demographics. Even
in special cases, such as patients with rare diseases, tissue
samples can be obtained and examined to learn about mecha-
nisms and potential therapeutics. iPSCs are being investigated
for developing patient-specific therapies and providing cell-
based models for neurodegenerative disorders as well. For
instance, iPSCs derived from a patient with glaucoma were
used to determine the contribution of the TBK1 gene in gan-
glion cell death through autophagy [104•], and iPSCs from
patients with retinitis pigmentosa were used as a cell-based
platform to screen for drugs that could reduce the harmful
consequences of rhodopsin point mutations [105].

Although iPSCs represent exciting opportunities in disease
modeling and drug screening, caution must be taken in ex-
tending iPSC-based therapies to the clinic [5•] because (a)
iPSCs harbor subtle differences in gene expression and
DNA methylation and the epigenetic differences can poten-
tially impact differentiation capacity and their utility as disease
models [106], (b) somatic point mutations and copy number
variations have been reported in iPSCs [107], and (c) chromo-
somal telomeres may be significantly shortened in iPSC lines
compared with native RPE [108].

Conclusions

Although stem cell-based therapies for retinal regeneration con-
tinue to advance, there are many hurdles to overcome. The first
challenge for ongoing clinical trials is to determine whether the
transplanted cells successfully integrate into the degenerating
retina. This is important because the degenerating retina con-
tinues to remodel leading to the formation of unconventional
synapses [109]. While neural stem cells transplanted into the
adult retina have shown evidence of being capable to integrate
into the host retina, they have failed to differentiate into retinal
phenotypes [26]. On the other hand, stem cells easily differen-
tiate into retinal phenotypes, but have difficulty migrating and
integrating with the host adult retina [110]. Furthermore, the
survival of transplanted cells depends on environmental cues
in the eye, which may be altered by disease progression [111•].
Second, it is unclear whether delivery of cells in suspension,
autologous RPE-choroid grafts, or sheets of fetal RPE, or as a
retrievable permeable capsule loaded with stem cells [112], will
be appropriate for rescuing retinal function in patients with
retinal degenerative disease [113]. The disadvantage of using
RPE cell suspensions is that the RPE cells are distributed with

an uncertain fate [114], as they need to attach to the (diseased)
Bruch’s membrane [115] often forming clumped rosettes [46]
or undergoing anoikis [116]. Patients transplanted with autolo-
gous RPE-choroid sheets also did not exhibit better outcomes
in part because optical coherence tomography imaging showed
irregularities in the cell layers within the graft [112]. Third, with
regard to neuronal transplantation including photoreceptors, it
is still unclear how to generate appropriate GMP-manufactured
donor cells for transplantation so that they are genetically sim-
ilar enough to the recipient to avoid rejection. Culturing and
differentiation of patient-derived stem cells/somatic cells or ge-
netically modifying a laboratory-derived stem cell to neurons
will require a deeper understanding of developmental biology
and the identification of key regulators in the neuronal differ-
entiation pathway. Fourth, we need irrefutable donor cell label-
ing since the interpretation of cell transplantation experiments is
dependent on the presence of an exogenous label for the iden-
tification of implanted cells.

To accurately assess cell survival after injection to the liv-
ing subject, we will need a high-resolution, non-invasive im-
aging and monitoring strategy. Several studies have success-
fully used quantum dot bioconjugates to label stem cells with
high efficiency and to track stem cells longitudinally in live
rats [117–119]. Though the transplanted cells may demon-
strate integration and evidence of function, more validation
studies are required [120•, 121•, 122••]. Finally, one of the
most difficult challenges will be the precise product character-
ization of a stem cell, iPSC, or its derived product that meets
the standards of regulatory authorities, methods of
manufacturing, and scaleup potential that will meet FDA re-
quirements for human use.

In conclusion, many challenges remain for the implemen-
tation of stem cell therapy for degenerative retinal diseases.
These include the delivery and integration of functional retinal
neurons and RPE, reconnection of the transplanted cells to
circuits within with the degenerating retina, potentially reviv-
ing endogenous stem cells in the retina, and restoring visual
function. While the therapeutic use of stem cells for retinal
diseases is still in its infancy, based upon the progress seen
over the past decade, one can reasonably expect that this ap-
proach will ultimately yield an effective treatment strategy for
restoring visional function in the not too distant future.
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