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Abstract
Purpose of Review Environmental stress is increasingly wear-
ing down crop productivity. As a consequence, a major prior-
ity of plant research is to get deeper insights on tolerance
mechanisms, providing solutions with the generation of
stress-tolerant cultivars. To this goal, a common target of ge-
netic modification is the polyamine signaling pathway. Its
association with a protective role against stressful stimuli is
widely acknowledged; however, the nature of this function is
highly complex. In consequence, this review aims to present
up-to-date evidence in regard with metabolic and physiologi-
cal role of polyamines, protecting plants during severe stress-
ful events (such as drought and soil salinization).

Recent Findings The most recent evidence from stress phys-
iology research highlight polyamines as key players in signal-
ing responses involved in central metabolism, sugar and lipid
homeostasis, maintenance, and induction of antioxidant ca-
pacity as well as osmotic regulation. Nevertheless, a number
of questions remain open, such as the extent of their roles and
whether they represent hub metabolic molecules. Recent ad-
vances on polyamine metabolism are therefore summarized in
relation to salt and drought stress tolerance and its possible
implication on the generation of tolerant crops.
Summary This review highlights recent findings related to
polyamine protective role during drought and salt stress. A
clear synergy is established between these amine compounds,
ABA, and reactive oxygen and nitrogen species. However, the
involvement of these amine compounds on stress physiology
goes far beyond the modulation of nitro-oxidative homeosta-
sis and ABA signaling, with an increasing body of evidence
demonstrating that polyamines are emerging metabolic hubs
of plant stress signaling.
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Introduction: Polyamines, Nitrogenous Molecules
Related to Several Processes

One of the biggest challenges of modern science is to apply
the fundamental discoveries from basic research in providing
solutions aiming at increasing food crop yield. Moreover, the
increment of the world population has added greater pressure
on the demand [1]. Global climate change is expected to in-
tensify the severity and frequency of water stress events and
soil salinization worldwide, causing decrease on growth rate
and pollen viability, which severely affect crop production [2,
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3]. As a result, plant stress physiology research has been wide-
ly directed towards the investigation of genetic determinisms
underlying stress tolerance of higher plants as well as
macroalgae, greatly due to their importance to cover global
nutritional needs. In regard with this research area, poly-
amines (PAs) are relevant molecules [4, 5].

PAs are aliphatic organic compounds with variable hydro-
carbon chains and two or more amino groups [6]. PAs have
been detected in all cells across all kingdoms [7]. PA biolog-
ical roles were initially thought to be structural. Their
polycationic nature enables the binding and stabilization of
anionic macromolecules in the cell. However, later studies
revealed that PAs are also involved in fundamental cellular
processes such as cell division, differentiation, transcriptional
regulation, and translation [8].

Genetic analyses indicate that the most abundant PAs in
plants (putrescine (Put), spermidine (Spd), and spermine
(Spm)) are required for plant stress tolerance [7, 9, 10]. In addi-
tion, these PAs are important sinks of assimilated nitrogen [11].
However, other quantitatively less abundant PAs have shown
unique roles in PA functions and stress signaling. Recently, it
has been shown that an isomer of Spm (thermospermine
(T-Spm)) found in higher plants [7] is not a minor polyamine
[12] and it is involved in tolerance responses [13]. In addition,
cadaverine (Cad), a formally recognized minor PA [14], is in-
volved in different PA-related signaling processes, modulating
plant development and response to external stimulus [15].

Recent and extensive reviews present compelling evidence
regarding the participation of PAs in abiotic and biotic stress
responses in plants [5, 8]. In reference to salt and drought
stress tolerance responses, there is no doubt about the impli-
cation of PAs in the physiological processes that leads to plant
resilience. However, the nature of the signaling mechanisms
and the number of interactions between PAs and other mole-
cules (such as sugars, nitric oxide (NO), ABA, and H2O2) are
not only far from being fully elucidated but are also increasing
in complexity. Currently, plant tolerance to salt and drought
stresses can be achieved by either transgenic approaches reg-
ulating PA homeostasis or exogenous addition of individual
PAs through the activation of priming phenomena [16]. This is
due to the implication of PAs in important pathways of central
metabolism and/or modulation of several functions in plant
organs such as roots and leaves. Thus, it is important to sum-
marize recent findings regarding the involvement of each PA
in drought and salt stress responses.

Brief and Essential Insights in PA Metabolism:
Homeostasis Mechanisms

Metabolic studies indicate that the intracellular levels of PAs
in higher plants are mostly regulated by anabolic and catabolic
processes, as well as by their conjugation to hydroxycinnamic

acids (HCAA) [9] and transport by specific membrane trans-
porters [17].

PA biosynthesis is initiated by the synthesis of the diamine
Put. In plants, Put is derived from arginine (Arg) through
multiple sequential steps catalyzed by the enzymes arginine
decarboxylase (ADC), agmatine iminohydrolase (AIH), and
N-carbamoylPut amidohydrolase (CPA). Higher PAs Spd,
Spm, and its isomer T-Spm are synthesized by the action of
aminopropyltransferases (APT) Spd synthase (SPDS), Spm
synthase (SPMS), and tSpm synthase (tSPMS, ACL5) which
catalyze the addition of aminopropyl groups to Put or Spd,
producing Spd, Spm, or T-Spm, respectively. Decarboxylated
S -adenosylmeth ionine (dSAM), a product of S -
adenosylmethionine (SAM) decarboxylation by SAM decar-
boxylase (SAMDC), is the donor of the aminopropyl groups
required for PA biosynthesis [6, 18, 19]. On the other hand,
there is less information about Cad biosynthesis in plants. It is
known that it is mainly synthesized from lysine by lysine
decarboxylase (LDC) and homoagmatine or homoarginine
to a lesser extent [14, 20].

Amine oxidases (AO) involved in oxidation of PAs are
classified in copper-containing amine oxidases (CuAO) and
FAD-dependent polyamine oxidases (PAO) [8, 10] releasing
in all cases hydrogen peroxide (H2O2). CuAO enzymes pref-
erentially oxidize the primary amino groups of Put and Cad
and show less affinity for Spd and Spm [11] and participate in
PA final catabolism in peroxisomes and the apoplast [21, 22].
PAOs catalyze the oxidation of higher PAs Spd, Spm, and T-
Spm at their secondary amino groups [23]. Classification of
PAOs is dependent on whether they catalyze the terminal ox-
idation of PAs or mediate the PA back-conversion, which is
related to the position of the carbon in which PAO is able to
oxidize the PA molecule. First group of PAO oxidize Spd and
Spm, producing hydrogen peroxide, diaminopropane, 4-
aminobutanal (from Spd), and 3-(aminopropyl)-4-
aminobutanal (from Spm) [11]. The second group oxidize
Spd and Spm (and/or their acetylated derivatives) producing
Put and Spd, respectively [24, 25].

In plants, PAs occur in free amine forms but also conjugate
to hydroxycinnamic acids to form hydroxycinnamic acid am-
ides (HCAA), in a process catalyzed by N-acyltransferases.
Recently, several proteins with Spd N-acyltransferase activity
have been reported in Arabidopsis supporting the role of
HCAA in pollen tube development [26]. Several years ago,
PA conjugates were considered to be inactive forms.
However, evidence in the last decade indicates that they are
essential for development and biotic interactions [8]. Indeed,
an emerging area of research is the characterization of PA
conjugates and their pathways involved [8].

PA transport also plays a pivotal role in the regulation of PA
cell homeostasis [17]. To date, few PA transporters have been
identified in plants, with special attention to rice [27] and
Arabidopsis [17]. Recent discovery of PA transporters by
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genetic analyses has involved the analysis of oxidative toler-
ance or PA uptake capacity [28]. This investigation opened a
new branch of PA research. Interestingly, over the last few
years, it was found that transporter AtOCT1 is implied in
Cad efflux process [29] and also that Cad flux can be regulated
by overexpression of genes encoding transporters (OCT1 in-
cluded) due to Spm accumulation, proposing a new role for
Spm in the regulation of intracellular Cad concentration,
which is also redox-dependent [30]. Research on PA trans-
porters will provide deeper insights into the molecular func-
tion of PAs and its homeostasis and better understanding into
the PA antioxidative properties [17].

Essentially, the PA pool is dynamic and fluctuates over
time. PAs undergo rapid exchange through what has been
referred to as the BPA cycle,^ in which different cycles of
biosynthesis and back-conversion lead to the release of
H2O2 [9]. This mechanism has been proposed to induce plant
stress tolerance [23] and stress signaling affecting multiple
cellular compartments [15, 31–34]. In agreement with this,
recent findings in plants with impaired production of Spd
and Spm by SAMDC depletion suggested that SAMDC-
mediated higher PA biosynthesis is a putative modulator of
the trade-off between stress tolerance and plant growth and
developmental traits [34]. Furthermore, Cad has been demon-
strated to affect the accumulation of higher PAs in plant tissues
[15]; therefore, its contribution to plant stress response cannot
be assessed on its own. In any event, it seems reasonable to
argue that PA homeostasis modulated by SAMDC, APTs, and
AOs is not a simple PA biosynthesis/degradation process.

Interactions of PAs with ROS, NO, ABA, and Other
Metabolites

A common acceptance in current research regarding plant
stress physiology relates with a number of essential interactions
between PAs and signaling molecules such as H2O2, NO, and
ABA [35–38]. PAs have been related to ROS through H2O2

production via their catabolism pathway [19, 22, 39].
Nonetheless, their cross-talk appears to be far more complex.
ROS derived from oxidation of PAs are vital to trigger stress
response signaling. However, the size and rate of its accumu-
lation determine cell fate, which means that ROS should not
exceed specific thresholds; if so, it shifts the balance between
gene expression modification to programmed cell death [40].
Recent findings established that Spd homeostasis by AtPAO3
is involved in ROS production other than H2O2. The ratio of
O2

−/ H2O2 showed to be an important signal in transcription
[31] and might be a mediator of PA contribution to plant adap-
tation under suboptimal conditions [41].

On the other hand, it is widely accepted by PA researchers
that PA metabolism and NO biosynthesis are tightly intercon-
nected. NO biosynthesis is stimulated by Spd and Spm in the

root tip and primary leaves of Arabidopsis seedlings [42]. A
recent study in citrus demonstrated the tissue-specific modu-
lation of PAO expression upon nitro-oxidative stress, after
which pretreated plants show increased tolerance to salinity,
suggesting that PAs may mediate the link between oxidative
and nitrosative signaling [43] and are able to reprogram the
nitro-oxidative status as well as the proteome of salinity-
stressed plants [44]. It is also known that Spm and Spd mod-
ulate the arginine-linked NO synthase and nitrate reductase
pathways [45]. NO is filling gaps between several physiolog-
ical effects of PAs and the amelioration of stress [31, 46, 47],
which is essential for further understanding of stress physiol-
ogy events.

With regard to tolerance mechanisms and stomatal closure,
the role of ABA is undeniable, especially during stress re-
sponse [48, 49]. Interestingly, SPMS is an ABA-inducible
gene [50], which is associated with Spm protective role found
in Arabidopsis during water stress [51]. However, Put accu-
mulation is also related with increased drought tolerance [52].
Transcriptional upregulation by drought of PA biosynthetic
enzymes AtADC, AtSPDS, and AtSPMS and resulting in-
creases in PA content are ABA-dependent [53]. Similar trends
were recorded in ADC expression patterns in response to sa-
linity [54] and cold stresses [55]. Conversely, Put was found to
promote ABA biosynthesis in response to drought in Lotus
tenuis [56]; therefore, a cross-regulation between ABA and
Put is not excluded. In support to this, transcriptomic analyses
of transgenic SAMDC1 or SPMS overexpressing Arabidopsis
plants exhibiting higher Spm levels revealed the transcription-
al upregulation of the ABA biosynthesis gene NCED, ABA
accumulation, and induction of genes involved in water dep-
rivation and defense responses, including several transcription
factors [57]. The relationship between PAs and ABA is sig-
nificant, and overlapping functions between Put and Spm in
regard with ABA have been documented [58].

Another important component under consideration is the
role of PAs in central metabolic networks. Recent reports sug-
gest the interplay between PAs and primary metabolism dur-
ing exposure to stress and/or plant development [59–64]. Put,
proline (Pro), and GABA are derived from glutamate (Glu), a
hub molecule of nitrogen metabolism [59]. Glu signaling im-
pacts amino acid metabolism, which is directly linked to car-
bon mobilization pathways. In this regard, GABA has been
suggested to mediate C/N balance [65, 66] via Glu receptors
[67]. PA and GABA accumulation has been reported under
both optimum and stressful conditions [68]. Similarly, a met-
abolic interaction has been detected between PA and sugar
metabolism [69]. This is intriguing since sugar signaling is
known to be important in the stress response [62, 70, 71].
Apart from known metabolic connections previously report-
ed, PAs have also been implicated in the modulation of me-
tabolite levels for which no metabolic connections are known.
Put over-producing Arabidopsis plants revealed the
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differential regulation of stress-responsive, hormone, and
signaling-related genes, involved in the biosynthesis of hor-
mones such as auxin, ethylene, and ABA among others [57].
Overexpression of SPDS induced the transcription of various
putative stress-related genes in chilling-stressed transgenic
Arabidopsis plants compared with wild-type ones [72]. In
addition, transgenic Arabidopsis plants accumulating Spm ex-
hibited modified transcript levels of genes involved in the
biosynthesis of jasmonates, salicylic acid and ABA,
mitogen-activated protein kinases, receptor-like kinases, and
genes linkedwith calcium regulation [57]. In that sense, recent
findings from our group revealed that lack of Spm degradation
mechanisms by knocking out PAO4 expression inArabidopsis
leads to an increase in metabolites of central sugar and lipid
metabolism such as pyruvate or myo-inositol as well as an
enhancement of the antioxidant capacity [61]. In support of
this, it was also shown that T-Spm accumulation triggers met-
abolic and transcriptional reprogramming, enhancing among
others, osmoprotectants such as proline, sugars, polyols, and
TCA cycle intermediates [64]. In addition, it has been demon-
strated that T-Spm modifies the expression of auxin-related
genes [33]. Regarding Cad, this PA serves as a critical precur-
sor for the synthesis of secondary metabolites and specific
alkaloids involved in defense in Leguminosae as well as sev-
eral other plants [20]. The identification of PA-regulated
downstream targets and the discovery of the interplay between
PAs and other stress-responsive molecules have opened new
possibilities to investigate the function of individual PAs at
molecular level [73]. Therefore, the progressive investigation
about the involvement of PAs in several pathways of central
metabolism is essential to further understand the role of these
molecules under optimum and stress conditions.

Current PA-Related Research Towards Drought
and Salt Stress Protection

PAs provide tolerance against several stresses including water
and salt stress, through different mechanisms and in relevant
species of agronomic use such as maize, wheat, rice, tomato,
potato, grape, cacao, or lettuce among others [74–83]. This
might be the result of their accumulation in the cell providing
direct protection against stress or because of PA degradation
products which act as signal molecules triggering stress pro-
tection. The following sections summarize recent findings re-
garding PAs and their protective roles against drought and
salinity (see Table 1).

PA Implications in Drought Tolerance

The adaptation of plants to drought involves a series of com-
plex physiological processes and alterations that can take
place over the short or long-term (e.g., stomatal closure

limiting carbon assimilation) [105]. After drought imposition,
plants must coordinate processes to alleviate both cell
hyperosmolarity and oxidative stress as well as osmotic im-
balance [106]; therefore, physiological alterations at several
levels of metabolism must be expected. PA application in-
creases the levels of osmoprotectant molecules and alleviates
oxidative damage, which is caused by the stressor and it is
additionally involved in other important plant tolerance met-
abolic processes. Furthermore, a link between PAs and well-
known stress-core molecules such as reactive nitrogen and
sulfur species has been described.

Exogenous Spm treatment in mung bean conferred toler-
ance to separate or combined drought/heat stress [84] and salt
stress [94] by upregulating the gene expression of important
essential antioxidant enzymes (e.g., SOD, CAT) and enhanc-
ing the glyoxalase system, which reduced methyglyoxal tox-
icity, a stress-induced compound [84]. A similar trend was
also reported in tomato [85]. Furthermore, recent reports on
white clover showed that exogenous application of Spd im-
proves drought tolerance by increasing the level of soluble
carbohydrates (WSC) such as sucrose, fructose, and sorbitol
as well as dehydrin synthesis [86]. Inhibition of PA biosyn-
thesis reduced cytosolic Ca2+ and antioxidant enzyme activi-
ties, while these effects were mitigated by the external appli-
cation of Spd. Besides this, Spd enhanced the activation of NR
and NOS which are the two most known enzymatic sources of
NO in the cell. Both NO and Spd enhanced drought stress
tolerance by triggering the signaling cascade to enhance the
levels of enzymatic antioxidative machinery in a NO-
mediated process [87]. Interestingly, it has been recently

Table 1 Selected studies in PA-related research towards drought and
salt stress protection employing genetic modification of PA pathway
components or exogenous application of PAs

Abiotic stress Plant species Reference(s)

Drought Mung bean [84]

Tomato [85]

White clover [86, 87]

Arabidopsis [88, 89]

Spinach [90]

Wheat [91, 92]

Triticale [93]

Salinity Mung bean [94]

Tomato [95, 96]

Cucumber [97–99]

Soybean [100]

Arabidopsis [101]

Muskmelon [102]

Zoysiagrass [103]

Barrel medic [104]
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reported that NO also modulates ABA signaling in
Arabidopsis during drought imposition, demonstrating that
stomatal closure is not only ABA-dependent but also NO-
dependent [88]. Remarkably, PA content increased after H2S
treatment thus providing important evidence that another re-
active species interacts with PAs, in this case by controlling
PA levels under drought conditions. More specifically, it was
demonstrated that H2S significantly enhances the tolerance of
Spinacia oleracea to drought stress, by changing the transcript
levels of genes associated with sugar and PA biosynthesis,
which in turn promoted higher sugar and PA accumulation
[90]. Recently, it was also shown that drought alleviation by
H2S inwheat involves the ABA signaling pathway [91], there-
by adding further support to the considerable evidence about
the critical role of H2S in physiological andmetabolic process-
es in plants [89, 107].

In addition, some reports have attempted to unravel the in-
volvement of PAs in species- or tissue-specific processes dur-
ing drought stress condition. A pioneering study on Triticale, a
synthetic hybrid of wheat and rye, demonstrated that drought
stress tolerance on this species at late developmental stages was
linked with a gradual increase in cell wall-bound PAs and a
decline in free PAs, thus suggesting a possible role of cell wall
strengthening by PAs under abiotic stress conditions [93]. In
regard with wheat, it has been found that higher PAs under
drought conditions are not only involved in tolerance to stress
but also in grain filling [92], which is severely inhibited during
water deprivation. More specifically, it was demonstrated that
particularly in grains, Spd and Spm significantly increased
ABA and zeatin concentrations and decreased the ethylene
evolution rate, which promoted wheat grain filling under water
deficit conditions, suggesting that this process mediated by
hormone interactions is PA-related [92].

PAs and Salt Stress Tolerance

Among the various abiotic stress factors, soil salinization is
one of the main harmful factors limiting crop productivity,
especially on species highly sensitive to salinity such as ce-
reals [3]. It has been reported that more than 6% of global land
area and 20 % of irrigated lands are affected by this kind of
stress, often simultaneously with soil alkalinization, severely
reducing plant growth due to concomitant nutrient limitation,
ion toxicity, high-osmotic, and oxidative stress [95, 108].

PAs are commonly applied exogenously at a range of con-
centrations on many plant species, in order to protect plants
upon salt stress imposition. Recent findings in cucumber seed-
lings under salt stress suggested that exogenous Put addition
alleviates stress by regulating protein production at transcrip-
tional and translational levels. Interestingly, Put application
caused an increase in the levels of endogenous PAs, mainly
Spd and Spm, which in turn enhanced fatty acid mobilization
that leads to a stabilized photosynthetic apparatus [97]. In

addition, omics analyses revealed that Put was able to restore
root growth in cucumber seedlings grown under salt stress by
enhancing the expression of genes encoding proteins that are
involved in defense responses and carbohydrate and amino
acid metabolism [98]. Similar findings were also observed
after exogenous Spd treatment [99]. Interestingly, another im-
portant class of protein which was enhanced by Spd applica-
tion was proteins related to maintenance of C/N balance [99].

Counteracting positive results on salt stress alleviation ob-
tained by Put application, it has been found that GABA de-
rived from Put degradation ameliorates the deleterious effect
of salt stress [100, 101]. However, positive regulation of PA
biosynthetic pathway has been reported after GABA exoge-
nous addition to muskmelon seedlings under ionic/osmotic
stress [102]. Overall, the implication of Put on salt stress re-
sponses is clear, with GABA potentially playing a key role
promoting synergistic dynamics with PA levels.

Regarding higher PAs, exogenous application of Spd in
zoysiagrass exposed to salt stress caused enhancement of PA
biosynthetic pathway and antioxidative enzymatic machinery
[103]. Proteomic analysis of tomato seedlings exposed to Spd
exogenous pretreatment followed by salt/alkaline stress impo-
sition demonstrated that the protective effect of Spd was me-
diated by the enhancement of five major categories of proteins
involved in energy, sugar, and amino acid metabolism [95].
Later on, a more specific protective effect of Spd was demon-
strated on chlorophyll and D1 protein content, which collab-
orates with the maintenance of photosynthetic apparatus and
continuation of photosynthesis rate, thus facilitating the
growth of tomato seedlings under salt/alkaline stress [96].

A recent study onMedicago plants under salt stress report-
ed an Spm protective effect due to interactions with
epibrassinolide, a plant hormone highly involved in salt stress
response. Exogenous addition of epibrassinolide induced PA
biosynthetic pathway and concomitant Spm increase caused
amelioration of oxidative damage and modulation of Pro
levels [104]. In agreement with this, recent findings reported
the accumulation of Pro, sugars, and other osmoprotectants, in
atpao5 mutants impaired in T-Spm oxidation [64].

The involvement of sugars, amino acid, and oxidative me-
tabolism in the PA signaling pathway after stress imposition
has been established. However, further research is imperative
in order to fully elucidate the complex physiological responses
observed.

Conclusions and Future Perspectives

Drought and salinity lead to yield penalties in modern agricul-
ture. A lot of studies have been conducted to understand and
solve the complexity of the processes that occur in plants
during stress imposition. In this context, several molecules
have been described to play a pivotal role in plant tolerance
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against stresses, with PAs shaping up as important players.
PAs are molecules involved in several fundamental cellular
processes, and their production is enhanced under drought
and salinity. Remarkably, not only the most abundant PAs
(Put, Spd, Spm) are playing a role in stress tolerance but also
the quantitatively less abundant ones such as T-Spm and Cad.
Different approaches, such as transgenic technologies in the
PA pathway and exogenous application of PAs, have been
employed to unravel the effects of PAs on drought and salin-
ity. Clearly, there is involvement of PAs in central metabolism
and in triggering several mechanisms related to plant stress
tolerance (such as through osmoprotection and by inducing
the antioxidant machinery). However, a more detailed descrip-
tion on the mechanistic involvement of PAs and the interac-
tion with other molecules to accelerate plants’ tolerance is far
from being elucidated because of the complexity of their roles.
The dynamic nature of these metabolites, which is related to
rapid degradation/interconversion from one to another in the
PA cycle, and the interactions between PAs and signaling
molecules, such as hormones and reactive species, provide
solid evidence on their role in plant stress tolerance. For these
reasons, research in that area is ongoing and must to be con-
tinued with state-of-the-art approaches such as systems biolo-
gy technologies, in order to get a better understanding of the
contribution of PAs on plant stress tolerance.
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