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Abstract The global prevalence of insulin-dependent diabetes
mellitus is rapidly increasing. In spite of major improvements
in insulin treatment regimens and diabetes technology (e.g.,
artificial pancreas devices), glucose control remains problem-
atic in a substantial proportion of diabetic patients. Those pa-
tients may benefit from beta-cell replacement therapies.
Allotransplantation of pancreas or isolated pancreatic islets is
limited by the small number of organ donors. Thus, alternative
sources of beta-cells are being developed and tested. These
include endocrine progenitor cells or mature beta-cells derived
from pluripotent human stem cells and attempts to derive hu-
man pancreas tissue in animal hosts by interspecific chimeric
complementation experiments. Xenotransplantation of porcine
islets is a realistic alternative option. Immune rejection of
xenoislets can be prevented by immunosuppression of the re-
cipient or by encapsulation of the islets in microdevices or
macrodevices. Using precise and efficient genetic engineering
of donor pigs, immune-protected xenoislets with improved
functionality can be generated.
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Introduction

Current data from the International Diabetes Federation indi-
cates that 387 million people worldwide suffer from diabetes,
and this is predicted to increase to 592 million by 2035
(https://www.idf.org/diabetesatlas). About 10 % of these
subjects suffer from type 1 diabetes, which involves
immune-mediated destruction of the insulin-producing pan-
creatic beta-cells and thus requires exogenous insulin replace-
ment. Although the incidence and prevalence of type 1 diabe-
tes can vary substantially even between neighboring regions,
the global incidence of type 1 diabetes has been increasing for
several decades (reviewed in [1]). The absolute number of
insulin-dependent patients is huge: in 2012, the number of
type 1 diabetic children and adults in the USA was estimated
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at 1.25 million (http://www.diabetes.org/diabetes-basics/
statistics/), and—based on recently summarized incidence
data [2]—the worldwide prevalence is in the range of tens of
millions. It is likely that different therapeutic options will be
required for patient groups with different subtypes of insulin-
dependent diabetes.

Classical insulin treatment regimens involve multiple daily
injections (MDIs) of long-acting insulin providing basal insu-
lin and rapid-acting insulin administered before meals, dose-
adjusted to pre-meal blood glucose, carbohydrate intake, and
anticipated physical activity (reviewed in [3]). Continuous
subcutaneous insulin infusion (CSII) is an alternative option.
No systematic differences in glycated hemoglobin (A1C)
levels or severe hypoglycemia rates were observed between
these two forms of intensive insulin therapy in children and
adult patients [4].

Over the last decade, remarkable advances in diabetes tech-
nology have been made (reviewed in [5]). The latest insulin
pump technology and sensor-augmented insulin pumps, pref-
erably with an automated low-glucose suspend feature, have
entered diabetes therapy in patients with unstable glycemic
control, i.e. two or more episodes per year of severe hypogly-
cemia or one episode associated with impaired awareness of
hypoglycemia, extreme glycemic lability, or major fear and
maladaptive behavior [6]. Without doubt, novel diabetes tech-
nology has already had a major impact on diabetes care and
patients’ quality of life. However, closed-loop systems and
fully artificial pancreas devices still face several technical hur-
dles that prohibit their widespread application and preclude
the goal of physiological metabolic control [7]. These are (1)
insufficient accuracy and stability of continuous glucose mon-
itoring systems and unsuitable measuring sites; (2) lack of
“ultra-rapid” insulin with the appropriate pharmacokinetics,
i.e., fast onset, rapid peak, short duration of action; (3) insuf-
ficient algorithms including features for exercise, stress, sleep,
and illness; (4) suboptimal user interface (device-user, device-
sensor-pump-controller, device-cloud); and (5) inappropriate
sites for device application (nonphysiological route of insulin
delivery). Numerous study groups are involved in developing
advanced artificial pancreas systems, but implementation is
hampered by safety issues and tremendous economic hurdles.

For patients with recurrent life-threatening hypoglycemia,
pancreas or islet transplantation is considered as ultimate ther-
apeutic option (reviewed in [6, 8]). Both can normalize glu-
cose homeostasis and prevent macrovascular and microvascu-
lar complications of diabetes [1]. Pancreas transplants are
mostly performed as simultaneous pancreas-kidney (SPK)
transplants in patients with end-stage kidney failure due to
diabetic microangiopathy. One-year insulin independence
rates of 77 % and 5-year graft survival of 72 % were reported
(reviewed in [9]). While pancreas transplantation is usually
performed in younger patients, islet transplantation is also
possible in older patients since the procedure is less invasive
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and islets can be isolated from pancreata that would not be
suitable for whole organ transplantation. The major advantage
of islet cell transplantation over whole organ transplantation is
constituted by the transplantation itself as a minimally inva-
sive procedure associated with very few complications [10].
Data from the Collaborative Islet Transplant Registry (CITR)
for the years 2007 to 2010 revealed 66, 55, and 44 % insulin-
independent patients at 1, 2, and 3 years after intraportal islet
transplantation [11], and more recently, even 50 % insulin-
independence at 5 years after transplantation has been report-
ed (reviewed in [9, 12]). Pancreas and islet transplants are
considered as complementary approaches and the only
evidence-based therapeutic options to overcome problematic
hypoglycemia in type 1 diabetes [6]. However, requirement of
livelong immunosuppression and the critical lack of human
donor organs are major limitations that urgently call for alter-
native options including porcine tissue.

Beta-Cells Derived from Stem Cells

Different strategies to generate new beta-cells are currently
being discussed (reviewed in [13]). One is the directed differ-
entiation of pluripotent stem cells through the various stages
of beta-cell development into endocrine progenitors or func-
tional beta-cells; the other involves reprogramming of termi-
nally differentiated cell types, such as acinar or alpha-cells,
in vivo to generate beta-cells. Very recently, reprogrammed
stomach tissue has been found to be a source of functional
beta-cells in a mouse model [14e].

Beta-cells derived in vitro from either embryonic stem cells
(ESCs) or induced pluripotent stem cells (iPSCs) of allogenic
or autologous origin are discussed as a possible alternative to
islet allotransplantation. In vitro derivation of beta-cells from
stem cells is obviously not easy and takes considerable time
(ESC 3 weeks, iPSC 3—-6 months). When successful, insulin
synthesis may be inconsistent and secretion dynamics do not
resemble normal patterns. De-differentiation to the original
state (ESC, iPSC) is possible and risks teratoma formation
[15, 162,17, 18]. Allogeneic cells would be an abundant source
but are immunogenic. This drawback and the need for immu-
nosuppression could be overcome by establishing haplobanks,
but this will be difficult to organize and require international
cooperation to provide tissues or cells with the best possible
MHC match for an individual patient. Stem cell-derived hu-
man beta-cells would still be prone to autoimmune attack, so
tolerance induction would be needed. An alternative is encap-
sulation. Recently, long-term (6 months) glycemic control in
streptozotocin (STZ)-induced diabetic, immune-competent
C57BL/6 mice has been observed after intraperitoneal trans-
plantation of human ESC-derived beta-cells microencapsulat-
ed in 1.5-mm spheres of triazole thiomorpholine dioxide
(TMTD) alginate [19¢]. Use of this chemically modified
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polymer prevents fibrosis of implanted microcapsules [20¢].
After demonstrating the preclinical safety and efficacy of hu-
man ESC-derived pancreatic progenitor cells transplanted in a
retrievable Encaptra macroencapsulation device subcutaneous-
ly into SCID/beige mice [21], the Californian company
Viacyte Inc. has recently commenced a phase VI clinical study
of this product (http://www.jdrf.ca/jdrf-cctn/currently-
recruiting/viacyte-encapsulation-trial/). So far, no long-term ef-
ficacy studies with stem cell-derived beta-cells in diabetic large
animal models or patients have been completed.

Attempts to Develop Human Pancreas in Animal
Hosts

Proof of concept for developing an entirely allogeneic or xe-
nogeneic pancreas in intraspecific or interspecific chimeras
was first provided by the group of Hiromitsu Nakauchi
(Tokyo University) [22]. They used mouse blastocysts with
defective copies of the pancreatic and duodenal homeobox 1
(Pdx1) gene, which is essential for pancreas development.
Embryos and fetuses developing from these blastocysts have
an empty pancreas niche, and apancreatic offspring die shortly
after birth from severe hyperglycemia. This lethal phenotype
could be rescued by injecting ESC or iPSC from Pdx/-intact
mouse strains into the Pdx/-defective blastocysts. The
resulting chimeras had a pancreas derived from injected plu-
ripotent stem cells. Injection of rat iPSC into Pdx/-defective
mouse blastocysts resulted in interspecific chimeras with a
mostly rat-derived pancreas, demonstrating that intraspecific
and interspecific blastocyst complementation with pluripotent
stem cells can form an entire organ in a host engineered to
have a free organogenic niche.

As a first step toward generation of a human pancreas in an
animal host, Matsunari and coworkers [23¢] generated
pancreatogenesis-disabled transgenic pigs that express Hairy
enhancer split-1 (Hes1) under PDXI promoter control. Since
no fully functional porcine pluripotent stem cells are available,
blastocyst complementation was performed with embryonic
blastomeres expressing the fluorescent marker Kusabira-
Orange (K-O). Resulting chimeric fetuses and offspring had
pancreata derived from the K-O-labeled cells. The availability
of specific organogenesis-impaired pig hosts opens the possi-
bility of targeted organ generation from human pluripotent
stem cells, but whether this is feasible between phylogeneti-
cally distant species remains to be seen. Masaki et al. [24]
developed an assay to test the ability of pluripotent stem cells
to form interspecies chimeras, and found that human iPSC
failed to integrate into the epiblast of mouse egg-cylinder
stage embryos. This they ascribed to different gastrulation
mechanisms and incompatibility of ligands or adhesion mol-
ecules and proposed the use of host embryos from more close-
ly related species.

In addition to biological difficulties, such use of human
pluripotent stem cells raises ethical issues, for example the
possibility of unanticipated human contributions to neurons
or even germ cells [25]. A possible solution would be stem
cells with limited differentiation potential. Kobayashi et al.
[26] have demonstrated that inducible expression of Mix-
like protein 1 (MixII) limits the differentiation potential of
mouse pluripotent stem cells to derivatives of the endodermal
germ layer. Such cells could still form pancreas, but not neu-
rons or other ectoderm or mesoderm derivatives. Different
concepts of interspecies chimeric complementation using to-
tipotent, pluripotent, or multipotent stem cells from one spe-
cies in a different host species to generate tissues mainly de-
rived from the stem cell donor species have been extensively
discussed in a recent review [27¢].

An alternative for human tissue formation is the generation
of vascularized complex organ buds from stem cell-derived
tissue-specific progenitor cells, endothelial cells, and mesen-
chymal stem cells (MSCs). Takebe et al. [28] demonstrated
that murine beta-cells (MIN6), human umbilical vein endothe-
lial cells (HUVECSs), and MSCs formed condensed tissue
buds when cocultured on a hydrogel substrate of appropriate
stiffness. After several days in culture, these cell condensates
developed into large, mechanically stable, self-organizing 3D
tissues, which—after transplantation to mice—formed islet-
like structures and a functional microvascular network which
was connected to the recipient’s circulation. Importantly, after
transplantation under the kidney capsule, these in vitro de-
rived pancreatic buds were able to restore normal weight gain
and blood glucose levels of diabetic mice. While such pancre-
atic progenitor tissue buds could also be formed from differ-
entiated human iPSC derivatives, the size of a mouse as host
for further differentiation into pancreatic progenitor tissue is
not sufficient to generate tissue grafts for human patients. Pigs
could be more suitable interim hosts for this approach, as
demonstrated by the development of de novo kidneys of rea-
sonable size from metanephroi transplanted into the omentum
of pigs ([29]; comment in [30]). Potential immune rejection of
human tissue buds in pig hosts could be overcome by using
genetically immuno-compromised or immune-deficient pigs
[31].

In summary, the concept to generate human tissues in ani-
mal hosts via interspecies chimeric complementation is inter-
esting, but at present not mature for clinical application [27¢].

Xenotransplantation of Porcine Islets

A number of reasons argue for the use of pigs as islets donor
species for the treatment of insulin-dependent patients [32].
These include (i) the similarity of porcine and human insulin
and the fact that porcine insulin has been used for decades in
diabetes therapy; (ii) the high fecundity of pigs; (iii) the
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availability of efficient and precise techniques for genetic
modification; (iv) the possibility of maintaining pigs under
designated pathogen-free (DPF) conditions; and (v) less
socio-cultural and ethical concerns compared to research in-
volving nonhuman primates (NHPs) or dogs.

Islets from adult donor pigs or neonatal islet cell clusters
(NICCs) have been most widely used. In addition, experi-
ments with fetal pig islets and also with pancreatic primordia
from pig embryos have been performed. The pros and cons of
these sources have recently been summarized [33].

Islets from adult pigs are characteristically mature in struc-
ture and fully functional as demonstrated by their glucose-
stimulated insulin secretion in vitro and their ability to imme-
diately restore normoglycemia after transplantation into dia-
betic recipients. Retired female breeders of large size are usu-
ally favored as islet donors as they appear to be most consis-
tent in islet yield and quality. Nevertheless, the isolation of
adult pig islets remains technically challenging and expensive.

In contrast, the isolation of NICCs is well established and
standardized. The procedure is more robust and less costly
than islet isolation from adult donor pigs. Since NICCs have
the capacity to proliferate, their cell mass can increase after
transplantation. However, freshly isolated NICCs are not fully
functional and require maturation in vitro or—after
transplantation—in vivo until beta-cells secrete enough insu-
lin to be therapeutically effective. The optimal transplantation
site and efficient vascularization of NICCs after transplanta-
tion are additional issues to be solved [33].

In general, there are three strategies to facilitate engraft-
ment and prolonged function of porcine xenoislets:

—  Free pig islets are transplanted with immunosuppression
and tolerance inducing protocols

— Pig islets are encapsulated, in which case immunosup-
pression will not be needed

—  Genetically modified islets are used under the protection
of refined immunosuppression with reduced toxicity

Preclinical Studies with Free Islets
and Immunosuppression in Nonhuman Primates

Remarkable progress has been made in restoring glucose con-
trol by transplanting wild-type (WT) porcine islets into dia-
betic NHP with immunosuppression. In 2006, two publica-
tions reported long-term maintenance of normoglycemia after
intraportal transplantation of porcine NICCs (about 6.2 x 10°
beta-cells/kg) in pancreatectomized rhesus macaques [34] or
adult pig islets (25,000 islet equivalents/kg; cultured for 48 h)
in STZ-induced diabetic cynomolgus macaques [35]. For this
success, massive immunosuppression of the recipients, in-
cluding CD154-specific monoclonal antibodies, was neces-
sary that would not be acceptable in a clinical setting.
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Thompson and coworkers [36] treated STZ-induced dia-
betic rhesus macaques with intraportal infusions of ~50,000
islet equivalents/kg WT neonatal porcine islets. Maintenance
immunosuppression of cohort 1 included belatacept and my-
cophenolate mofetil (MMF) plus induction with basiliximab
and lymphocyte function-associated antigen-1 (LFA-1) block-
ade. Cohort 2 had additional tacrolimus induction. Cohort 3
received alefacept instead of basiliximab and a more intense
LFA-1 blockade. In contrast to cohort 1, cohorts 2 and 3
achieved sustained insulin-independent normoglycemia (me-
dian rejection-free survivals 60 and 111 days) demonstrating
that sparing the CD40/CD154 pathway blockade is possible.

In a more recent study, Shin and coworkers [37¢] used adult
WT porcine islets for intraportal treatment of STZ-induced
diabetic rhesus macaques. Immunosuppressive induction in-
cluded cobra venom factor (CVF), anti-thymocyte globulin
(ATG), anti-TNF« antibody (adalimumab), and maintenance
treatment was performed with anti-CD154 monoclonal anti-
body and low-dose sirolimus. The islet grafts survived and
were able to control glucose homeostasis for >603, 512,
303, 180, and 167 days.

In spite of these promising results with WT pig islets, im-
mediate translation into clinical application is hampered by
the large number of islets required and by the need for immune
suppression. In particular, anti-CD154 monoclonal antibody
is clinically not applicable because it is thrombogenic [38].

Microencapsulation and Macroencapsulation
of Wild-Type Porcine Islets

Encapsulation of pancreatic islets within mainly alginate-
based microcapsules or macrocapsules with various physical
configurations may allow protection of the islet graft without
the need for immunosuppressive agents and safe extension of
the donor pool to animal tissue [39]. A large number of trans-
plantation studies with encapsulated islets of different origin
have been performed in different rodent models, and several in
large animal models or even human clinical trials (reviewed in
[40]). While in rodents many different studies with encapsu-
lated islets showed promising results, most of these ap-
proaches failed or revealed more disparate results when tested
in large animal models or human patients.
Xenotransplantation studies of porcine islets into NHP
were mostly done using the microencapsulation approach.
Dufrane et al. [41] showed that microencapsulated porcine
islets transplanted under the kidney capsule of nondiabetic
cynomolgus macaques can survive and function for 6 months.
However, the potential of microencapsulated porcine islets to
restore normoglycemia in diabetic NHP models was limited
(reviewed in [32]). This may—at least in part—be due to
species-specific differences in insulin/C-peptide levels re-
quired to maintain sustained normoglycemia (C-peptide levels
of 0.47 to 3.14 nmol/l in NHP compared to 0.11 and
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0.32 nmol/l in pigs). After transplantation of pig islets into
diabetic NHP, recipients with porcine C-peptide levels within
the normal range for nondiabetic pigs showed improved glu-
cose homeostasis, but only in some cases insulin indepen-
dence [42]. This limitation is, however, specific for widely
used NHP models and would be less critical in human patients
as their blood glucose and C-peptide levels are more similar to
pig than to NHP [42].

The main issues to be resolved in islet xenotransplan-
tation are associated with graft oxygenation, sufficient
immune protection, inflammatory response, material bio-
compatibility, and optimal transplantation. The long-term
success of encapsulation strategies may be hampered by
pericapsular fibrosis and limited survival of the encapsu-
lated islets, especially after intraperitoneal implantation
[43]. Recent evidence indicates that these problems may
be partially overcome by choosing encapsulation mate-
rials with improved biocompatibility [20e, 44].

At the IPITA-IXA-CTS Conference 2015 in Melbourne,
the New Zealand Company LCT in cooperation with
Diatranz Otsuka Limited (DOL), Japan (http://www.
dolglobal.com/) presented the results of two clinical phase
I/lla trials involving treatment of type 1 diabetic patients
with alginate/ornithine microencapsulated islets performed in
New Zealand [n=14; 5000 and 20,000 islet equivalents
(IEQs) [45]] and Argentina (n=8; between 5000 and 10,000
IEQ, given in two doses).

Summarizing the two studies, the following conclusions
were reported (Shinichi Matsumoto, Otsuka Pharmaceutical
Factory Inc., personal communication):

—  The number of hypoglycemic attacks decreased in the
treated patients, and levels of glycated hemoglobin
(A1C) decreased to less than 7 %.

—  Porcine insulin levels were not measured and the efficacy
was classified as “not stable.”

— Improvements, such as better encapsulation techniques
and anti-inflammatory treatment, are required.

—  There was no transmission of PERV or other microorgan-
isms [46].

Since microcapsules with islets are too large (0.5-1.0 mm)
for intraportal transplantation and have diffusional limitations,
attempts to immune-protect pig islets using a thin layer of
photopolymerizable polyethylene glycol (PEG) have been
published already two decades ago [47]. Recently, this con-
formal coating approach was refined to achieve high-
throughput encapsulation of individual mouse islets into
nanoliter droplets of optimized PEG gel, resulting in a thin
(tens of micrometers) continuous layer of hydrogel.
Conformal coating did not impair the ability of the islets to
restore normoglycemia in chemically diabetic syngeneic mice
[48+]. However, to our knowledge, no efficacy studies of

conformal coated xenoislets in diabetic large animal models
have been published.

In contrast, macroencapsulated porcine islets were shown
to restore glucose homeostasis in diabetic NHP models.

Pierre Gianello’s group (Catholic University of Louvain,
Belgium) reported on a small trial with diabetic NHP treated
with macrodevices (alginate patches incorporating porcine is-
lets) that were able to control hyperglycemia for up to
6 months [49]. Although no fibrosis or complement deposi-
tion was observed on explanted macrodevices, IgG anti-pig
antibodies, mainly against the Gal-«1,3-Gal («xGal) epitope,
were found in the NHP recipients after explantation.

In the macroencapsulation device developed by the com-
pany Beta-O, Technologies (Rosh-Haayin, Israel), pancreatic
islets are embedded in a multilayer immune-protective mem-
brane of alginates and a polytetrafluoroethylene (PTFE) mem-
brane which prevents the access of immunoglobulins while
allowing for sufficient supply of oxygen from a central cham-
ber in the device for optimal function of the islets [50].
Oxygen (ambient air) is supplied via two subcutaneous ports
[S1e, 52]. After the concept of islet macroencapsulation had
been successfully proven in different transplant models in
large animals (biocompatibility, efficacy, immune-protection)
[52] and in a first trial of macroencapsulated allogeneic islet
transplantation in man [51¢], a study of porcine islet xeno-
transplantation in diabetic NHP was initiated. The first prom-
ising results were reported at the IPITA-IXA-CTS Conference
2015 in Melbourne [53].

Genetic Modification of Islets Donor Pigs

The goal of genetic modification is to generate improved do-
nor pigs of pancreatic islets which (i) are protected against the
different mechanisms of xenogeneic immune rejection; (ii)
exhibit improved survival during isolation and culture, and
after transplantation; (iii) are readily revascularized after trans-
plantation; (iv) have improved structural and functional prop-
erties compared to WT islets; and (v) have reduced risk to
spread infectious agents such as porcine endogenous retrovi-
ruses (PERVs). During the past two decades, the spectrum of
genetic engineering techniques for pigs has expanded rapidly,
facilitating efficient and targeted modifications of islet donor
pigs [54]. The combination of genetic modifications depends
on several factors, including the type of islets (adult, neonatal,
fetal) and the transplant site (intraportal, intraperitoneal, intra-
muscular, under the kidney capsule, etc.).

Intraportal delivery of xenoislets, the main application
route in islet allotransplantation [6], may trigger the instant
blood-mediated inflammatory reaction (IBMIR), which
causes significant islet destruction through activation of com-
plement and coagulation and infiltration by innate immune
cells, in particular if NICCs expressing high levels of the
xeno-antigen «Gal are used [55]. Therefore, islets from
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alpha-1,3-galactosyltransferase (GGTA1) deficient (GTKO)
pigs lacking «Gal and/or expressing human complement reg-
ulatory proteins have been tested in NHP. GTKO did not in-
fluence the outcome of intraportally transplanted adult pig
islets, presumably due to the reduction of «xGal epitopes dur-
ing postnatal islet development [56]. Expression of hCD46
had no effect on islet loss in the early post-transplant period,
but was beneficial for long-term survival of the islets [57]. In
STZ-induced diabetic thesus monkeys with immunosuppres-
sion, GTKO was shown to be advantageous for survival and
engraftment of NICCs, which express high levels of xGal
[58]. In combination with transgenic expression of hCD55
and hCD59, GTKO NICCs clearly attenuated IBMIR after
intraportal transplantation into nondiabetic baboons [59].
Data from an elegant “dual islet transplant model,” which
allows comparison of different islet preparations within the
same recipient, showed that in the absence of immunosuppres-
sion, a robust inflammatory response may precede IBMIR,
masking the beneficial effect of GTKO observed in previous
studies [60¢]. The authors suggested porcine monocyte che-
motactic protein 1/chemokine (C-C motif) ligand 2
(MCP1/CCL2) produced by xenogeneic islets as a contribut-
ing factor.

Several pro-inflammatory signals released by islets have
been identified, with CCL2 being the chemokine that has been
payed most attention to (reviewed in [61]). Specifically, CCL2
released from human islets has been shown to impair their
engraftment [62] and its blocking has been demonstrated to
facilitate permanent survival of murine islet allografts [63].
CCL2 does not only stimulate attraction and activation of
innate immune cells, but acts in an autocrine or paracrine
manner to further increase the pro-inflammatory state of the
islets, e.g., by stimulating the expression of tissue factor (TF)
on the surface of islet cells [64]. TF is an important player in
IBMIR, stimulating the extrinsic pathway of the coagulation
cascade [65]. Since disruption of the Ccl2 gene in mice does
not affect their life span and fertility [66], CCL2-deficient pigs
should be viable as well. Thus, inactivation of the CCL2 gene
along with insertion of an overexpression cassette for the
prominent TF inhibitor TFPI [67] would be a reasonable strat-
egy to reduce both, pro-inflammatory as well as pro-coagulant
signals from islet xeno-grafts.

So far, mainly islets with genetic modifications designed to
combat complement mediated processes such as IBMIR have
been tested in nonhuman primates. Other strategies to prevent
immune rejection of xenoislets have been tested in mouse
models or in vitro systems.

T-cell-mediated rejection is considered as the major barrier
for long-term survival of islet xenografts [68]. We generated
transgenic pigs expressing the T-cell costimulation blocking
molecule LEA29Y under the control of the porcine INS pro-
moter. After transplantation under the kidney capsule of dia-
betic NOD-SCID I12rg”~ (NSG) mice, LEA29Y expressing
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NICCs restored glucose control and were—in contrast to WT
NICCs—mnot rejected by transplanted human blood mononu-
clear cells (PBMCs). Importantly, only very low levels of
LEA29Y were detectable in the circulation of mice grafted
with transgenic islets, supporting the concept of local immune
modulation by LEA29Y [69¢]. These findings were recently
extended in diabetic NSG mice grafted with human CD34+
hematopoietic stem cells, where LEA29Y transgenic islets
survived and maintained glucose control for more than
6 months (Lelia Wolf-van Buerck and Jochen Seissler, unpub-
lished data). In addition, intramuscular transplantation of
NICCs into NSG mice was established [70] to test the effect
of LEA29Y at this alternative transplantation site in future
studies. First primate transplantation experiments revealed
that expression of LEA29Y alone may not be sufficient to
promote engraftment upon intramuscular injection of NICCs
into nondiabetic marmosets; however, these experiments did
not give any evidence for transmission of PERV and porcine
cytomegalovirus (PCMV) [71].

A complementary strategy to blocking the CD28-CD80/
CD86 costimulatory pathway is overexpression of the nega-
tive costimulatory molecule PDL1 in the xenograft [72].
Transplantation of pig cells overexpressing human PDL1 in-
duced diminished cellular and antibody responses in vivo in a
rat model [73]. Expression of PDLI1 in xenoislets may thus
prevent their T-cell-mediated destruction.

T-cell-mediated islet xenograft rejection involves an
interferon-gamma-dependent recruitment of macrophages
and natural killer (NK) cells [74]. Vascular endothelial cells
from transgenic pigs expressing HLA-E/beta2-microglobulin
were effectively protected against human NK cell-mediated
cytotoxicity, depending on the level of CD94/NKG2A expres-
sion on the NK cells [75]. A protective effect of HLA-E/beta2-
microglobulin transgene expression in islets remains to be
shown.

Other genetic modifications of donor pigs with putative
beneficial effects on the outcome of islet xenotransplantation
include the removal of additional xenoantigens, such as
Neu5Ge (knockout of the cytidine monophosphate-N-
acetylneuraminic acid hydroxylase gene CMAH) and Sd(a),
(knockout of the beta-1, 4-N-acetyl-galactosaminyl transfer-
ase 2 gene B4GALNT?2) (reviewed in [76]). Preliminary
in vitro studies indicated that elimination of Neu5Gc in addi-
tion to «Gal may reduce early pig islet loss from IBMIR [77].
In addition, transgenic expression of inhibitors of coagulation
and/or inflammation, like tissue factor pathway inhibitor
(TFPI), human CD39, human thrombomodulin and human
endothelial protein C receptor, and of cytoprotective mole-
cules like heme oxygenase 1 and A20 has been proposed
(reviewed in [78]). A recent study showed the expression of
multiple transgenes (porcine CTLA4-Ig, TFPI, human CD39)
driven by an insulin promoter on a GTKO/human CD46 trans-
genic background did not disturb beta-cell function of the
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Fig. 1 Aims of genetic
modifications of islets donor pigs.
The relevance for free vs.
encapsulated islet transplantation
is indicated by arrows.
Established or suggested genetic
modifications to achieve these
aims are detailed in the text

genetically multimodified pigs [79]. Intraportal transplanta-
tion experiments of adult pig islets with three, four, or five
genetic modifications into diabetic NHP revealed a reduction
in early graft loss, but no improvement of long-term outcomes
compared historical experiments with human CD46 transgen-
ic or WT islets [80].

A large proportion of pancreatic islets are lost due to apo-
ptosis during isolation, culture, and transplantation.
Adenoviral transduction of human islets with X-linked inhib-
itor of apoptosis protein (XIAP), which blocks caspases 3, 7,
and 9, dramatically reduced the number of human islets re-
quired for reversing hyperglycemia in diabetic immune-
deficient mice [81]. Genetic modification of donor pigs facil-
itates permanent expression of XIAP in pancreatic islets,
which should also be beneficial for their survival, e.g., in
encapsulation devices, and thus be superior to temporal inhi-
bition of apoptosis by a small compound apoptosis inhibitor
which is currently being tested in a phase I/II clinical trial
(NCTO01653899). We thus generated transgenic pigs express-
ing XIAP under the control of the porcine /NS promoter in the
pancreatic beta-cells. Islets from these pigs are currently being
tested vs. WT islets in staurosporine-induced apoptosis assays
and transplantation experiments with reduced islet numbers.

Efficient revascularization of transplanted islets is an essen-
tial component to support their engraftment as well as long-
term survival and function. Recent attempts focus on precon-
ditioning of the transplantation site, e.g., by creating a
prevascularized, subcutaneous pouch for islet transplantation,
which supported islet graft survival and function in STZ-
induced diabetic mice, resulting in diabetes reversal in
>90 % of the treated animals [82]. Another possibility is to
stimulate revascularization of transplanted islets by local ap-
plication or expression of angiogenic factors. After transplan-
tation under the kidney capsule of syngeneic diabetic mice,
transgenic mouse islets expressing vascular endothelial
growth factor A (VEGFA) under the control of a rat insulin
promoter showed enhanced microvascular density and func-
tional blood flow to the graft compared with WT islets [83]. A
similar positive effect of increased VEGFA production on
graft angiogenesis and islet revascularization was observed
after adenoviral transduction of mouse islets with a VEFGA
expression cassette [84]. We have adapted a recently
established inducible transgene expression system based on

Prevent islet cell death
Eliminate major xeno-antigens

<« —> Encapsulated islets
€
<— Reduce proinflammatory signals —>
D
D
D

Prevent coagulation
Prevent complement activation
Prevent cellular rejection
<— Improve (peri)vascularization —>
<« Improve insulin secretion —>
<« Inactivate active PERV —_

the binary Tet-On system in pigs [85] for beta-cell specific
inducible expression of VEGFA and will test the revasculari-
zation capacity of islets from such donor pigs vs. WT islets
after transplantation into the anterior chamber of the mouse
eye [86, 87] and after transplantation under the kidney capsule
of diabetic mice [69¢].

Recently, a transgenic strategy to improve the insulin se-
cretion capacity of porcine islets, which is markedly lower
compared to human and NHP islets [88], was suggested.
Mourad et al. [89] demonstrated that glucagon-like peptide 1
(GLP1) and M3 muscarinic acetylcholine receptors expressed
from viral vectors in the beta-cells act synergistically to en-
hance insulin secretion by adult porcine islets and NICCs.
Attempts to test this concept in vivo in transgenic pigs were
announced.

For a considerable period of time, PERVs have been seen
as a major hurdle in xenotransplantation [90] but more recent
data gained from studies in primates or human beings that
received porcine grafts did not provide any evidence of
PERV transmission so far. Nonetheless, the endogenous na-
ture of these viruses in xenografts represents a permanent
scare and, thus, different strategies, such as choosing donor
animals with low PERV expression or knocking down PERV
expression by transgenic approaches, have been presented to
minimize this hazardous potential [91]. Due to the multiple
PERV loci in the porcine genome, a complete removal of
PERYV from donor pigs seemed not to be a realistic approach,
but very recently, all PERV integrants in a porcine cell line
have been disrupted in a single attempt of gene editing with
CRISPR/Cas9. This was achieved by using guide RNAs
targeting the retroviral pol gene which is highly homologous
in PERV A, B, and C [92+], opening the perspective of PERV-
free donor pigs.

The aims of genetic modifications of islet donor pigs and
their relevance for free vs. encapsulated islet transplantation
are shown in Fig. 1.

In summary, only few systematic efficacy studies of genet-
ically modified porcine islets in NHP have been performed,
with a focus on preventing complement mediated processes
such as IBMIR. Their results suggest that genetic modification
of the donor pigs will be important, perhaps essential, for the
success of clinical porcine islet xenotransplantation. High
costs and ethical constraints of NHP studies limit the number
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of recipients for testing genetically (multi-)modified pig islets.
Thus, there is a need for a hierarchical screening pipeline of
in vitro assays, improved “humanized” mouse models with all
subsets of human lymphoid and myeloid cells (e.g., [93]) and
large diabetic animal models such as the C94Y insulin mutant
“Akita” pig model [94¢] for efficacy testing.

Conclusion

Xenotransplantation of porcine islets is currently the most
advanced alternative to pancreas or islet allotransplantation
and will probably remain a relevant option for specific patient
groups even if stem cell-derived beta-cells prove to be clini-
cally effective. Genetic modification of the islet donor pigs
will result in optimized islet grafts which are protected against
immune rejection and are improved in viability and function.
The latter is not only relevant for transplantation of free islets
but also for various encapsulation strategies.
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