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Abstract The human genome regulates dynamic patterns of
transcript expression and while studies in recent years by the
Encyclopedia of DNA Elements (ENCODE) consortium have
shown the remarkable complexity of pervasive transcription,
it is estimated that less than 2 % of the genome codes for
proteins. Multiple lines of experimental evidence now
highlight the functional importance of noncoding RNAs
(ncRNAs) that serve to control transcription that underlie
development and homeostatic control in metazoans. An
emerging theme is the modulation of transcription factor
binding governed by ncRNA-chromatin interactions. Some
of the recent discoveries of contractile function in the
heart implicate novel roles for long ncRNAs (lncRNAs),
including the primary microRNA-208b (Pri-miR-208b) as
well as antisense β-MHC (AS β-MHC). As such, this
review will focus on the signaling and regulatory functions
of ncRNAs that ensure homeostasis of mammalian myosin
motor protein expression and cardiovascular disease.
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Introduction

The Human Genome Project (HGP) is one of the largest col-
laborative programs that has uncovered an enormous wealth
of information regarding the genetic blueprint; however, it has
also raised significant debate on gene function. Surprisingly,
the estimated number of protein-coding genes in the human
genome, approximately 20,000 is in fact comparable with bi-
ologically less complex organisms [1]. The striking biological
complexity in humans is thought to have arisen from nonpro-
tein coding (noncoding) sequences that comprise almost 98 %
of the total genomic DNA in humans [2]. The contribution of
noncoding DNA to human complexity is further exemplified
by recent genome-wide association studies (GWAS) that re-
vealed that the majority (93 %) of disease-associated risk loci
are located in noncoding DNA sequences [3–5].

The ENCyclopedia of DNA Elements (ENCODE) project
led to the identification of functional elements within noncod-
ing DNA regions [6]. One of the major conclusions from
ENCODE was that almost 90 % of noncoding DNA in the
human genome is transcribed, only 1–2 % (mRNA) of tran-
scripts encode proteins and the remaining 98% represent non-
coding RNAs (ncRNAs) [7–9]. The unexpected pervasive
transcription in the human genome was initially challenged
and regarded as transcriptional noise or a technical artifact;
however, follow-up studies independently validated the orig-
inal experimental findings [10, 11, 12••]. The challenge now is
to generate a complete annotation of the ncRNA tran-
scriptome and begin interrogating the functional relevance of
ncRNAs in human health and disease. To this end, loss-of-
function approaches both in vitro and in vivo are providing
initial evidence for critical roles of long ncRNAs (lncRNAs)
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in development as well as chromatin regulation [13••, 14•,
15••, 16, 17•].

In this article, we describe some of the latest devel-
opments in ncRNA-mediated epigenetic regulation and
highlight specific roles for ncRNAs in the maintenance
of histone modifications, DNA methylation, and chro-
matin architecture. We provide specific examples from
recent studies implicating lncRNAs in epigenetic regu-
lation of cardiac gene expression. We also explore po-
tential therapeutic opportunities associated with the
treatment of heart failure.

Noncoding RNAs and Chromatin

Noncoding RNAs do not have open reading frames (ORF)
required for protein coding. Based on nucleotide (nt)
length, ncRNAs are classified as small (<200 nt) or long
(>200 nt) ncRNAs. Small ncRNAs include microRNAs
(miR), whose estimated number of genes is currently at
2000 in the human genome [18]. In contrast, lncRNA
genes are estimated to be over 60,000 and show regula-
tion in a development-specific manner [19]. About 90 %
of human genes undergo alternative splicing and at least
100,000 alternatively transcribed lncRNAs have been iden-
tified to date [19, 20]. The RNA output of the genome is
plethora of antisense RNA (asRNA) while some asRNA
have been proposed to have regulatory functions [21].
While biological roles for regulatory RNAs have been
described for several decades, the majority of ncRNA
functions were limited to post-transcriptional processing
of messenger RNA (mRNA) through spliceosome and ri-
bosome machineries.

Chromatin remodeling is fundamental to several nu-
clear processes, including DNA replication and repair as
well as gene regulation [22, 23], and RNA has long
been thought to directly contribute to chromatin archi-
tecture. However, a relative paucity in techniques posed
significant challenges in exploring RNA-chromatin inter-
actions [24]. Over the past few years, this has changed:
rapid developments in chromatin-based assays coupled
with nucleic acid sequencing technologies have deep-
ened our understanding of ncRNA mechanisms of epi-
genetic regulation of chromatin [25].

Developmental Expression of NcRNAs

Spatial and temporal control of gene expression is fundamen-
tal in the course of development and differentiation. LncRNA
genes show development-specific expression pattern and re-
quired for the maintenance of pluripotency in embryonic stem
cells [15••]. Perturbations to lncRNA expression affect

transcription factor binding and global gene expression pat-
terns required for maintaining pluripotency [15••]. The two
lncRNAs BRAVEHEART and FENDRR are critical regula-
tors of mouse heart development [16, 17•]. Depletion of
BRAVEHEART in mouse embryonic stem cells impairs cardio-
myocyte differentiation and contractility, whereas FENDRR is
required for heart and body wall development [16, 17•].
Both BRAVEHEART and FENDRR coordinate actions by
interactions with the chromatin complex [16, 17•]. Recent
studies also implicate novel lncRNAs functioning as molec-
ular scaffolds that orchestrate transcription factor binding es-
sential for neuronal differentiation [26]. Together, these recent
data indicate lncRNAs as key regulators of stem cell
pluripotency as well as determinants of lineage specification
during development.

Modes of Action

To date, the best understood ncRNAmechanism of epigenetic
regulation is the RNA-Induced Silencing Complex (RISC)-
mediated post-transcriptional gene silencing by miRs [27].
MicroRNA genes are transcribed by RNA polymerase II as
primarymicroRNA transcripts (Pri-miR), which are processed
to precursor (pre-miR) and mature microRNAs (miR) by RN-
ase III enzymes, DROSHA and DICER, respectively (Fig. 1a)
[37]. MicroRNAs base pair with mRNAs of protein-coding
genes primarily in the cytoplasm and the miR-mRNA interac-
tion initiates post-transcriptional gene silencing by promoting
mRNA degradation or translational inhibition (Fig. 1a). Nev-
ertheless, ncRNA interactions with mRNA can regulate trans-
lation both positively and negatively. Besides roles in post-
transcriptional gene regulation by miRs in cytoplasm, miRs
are often detected inside nucleus and associated with tran-
scriptional regulation (Fig. 1b) [28]. In addition, since miRs
are detectable in the circulating blood stream they are thought
to regulate gene expression at distal tissues and may represent
useful clinical biomarkers (Fig. 1c) [29].

LncRNAs are dynamically regulated and often detected at
low levels. The majority of lncRNAs are retained in the nu-
cleus where they regulate transcription in cis or in trans. Cis-
acting ncRNAs affect the expression of target genes near the
same genomic locus (Fig. 1d, e). Trans-acting ncRNAs can
regulate target gene expression at distal domains (Fig. 1f). In
this way trans-acting lncRNAs can regulate patterns of gene
expression using several different mechanisms. Firstly,
lncRNAs can serve as signals to chromatin modifiers such
as the Polycomb Repressive Complex 2 (PRC2), which me-
diates H3K27me3 and gene silencing [14•]. Secondly,
lncRNAs are thought to bind DNA and establish stable
RNA-DNA hybrid at promoters of target genes [33•, 38,
39•]. Both these mechanisms coordinate epigenetic changes
to either repress or activate gene expression. Studies by our
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group reveal a novel mechanism of transcriptional regulation
by an unprocessed primary microRNA transcript in the mouse
heart (Fig. 1g). The primary microRNA-208b (pri-miR-208b)
transcript binds DNA using a 34-nucleotide long recognition
sequence that is enriched within promoters of key cardiac
genes including the bi-directional promoter (bdP) of cardiac
myosin heavy chain (MHC) genes [33•]. The pri-miR-208b

localizes within nucleus and regulates epigenetic silencing of
genes by binding to EZH2 component of PRC2 in the heart
[33•]. More recent work suggests a novel post-transcriptional
regulation of miR-activity by competing pre-miR transcripts
(Fig. 1h) [34•]. For example, binding of pre-miR-151 to E2F6
mRNA, which is a target of miR-151, interferes with RISC-
miR-151 complex binding and increases E2F6 protein

Fig. 1 Roles of ncRNAs in epigenetic regulation by transcriptional and
post-transcriptional mechanisms. Noncoding RNAs identified as
regulators of gene expression from gene transcription to mRNA
translation are depicted. A Post-transcriptional mRNA regulation by
miR via RISC pathway [27]. B Nuclear import and miR-directed intra-
nuclear functions [28]. C Extracellular signaling by miRs entering into
blood [29]. D Regulation of sense transcription by asRNA [30]. E
Transcriptional regulation by cis-acting lncRNAs [31••]. F Genome-

wide transcriptional regulation by trans-acting lncRNAs [32]. G
Chromatin association and transcriptional regulation by pri-miR [33•].
H Post-transcriptional mRNA regulation by pre-miR [34•]. I LncRNAs
as miR-sponges [35]. J Post-transcriptional mRNA regulation by
cytoplasmic lncRNAs [36•]. mRNA messenger RNA, lncRNA long
noncoding RNA, miR microRNA, Pri-miR primary microRNA, Pre-
miR precursor microRNA, sRNA sense RNA (mRNA), asRNA
antisense RNA, RISC RNA-induced silencing complex
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production (Fig. 1h). Post-transcriptional regulation of miR-
activity can also be mediated by lncRNAs that function as
miR-sponges [35]. LncRNAs enriched for complementary se-
quences to miRs can sequestrate miRs from mRNA target
recognition (Fig. 1i). Finally, the lncRNA TINCR controls
somatic cell differentiation by binding to mRNAs of key dif-
ferentiation genes in cytoplasm and increases mRNA stability
and protein production [36•]. TINCR binds to mRNAs direct-
ly using a 25-nucleotide long “TINCR box” motif that is
enriched in mRNAs of differentiation genes (Fig. 1j).

Regulation of Histone Modifications

Transcriptional control is fundamental to developmental reg-
ulation and tissue-specific gene expression. Eukaryotic RNA
polymerase II-mediated transcription involves complex inter-
actions of DNA-binding transcription factors as well as co-
regulatory proteins that activate or suppress the expression of
genes. Co-regulatory factors include enzymes that modify
chromatin such as histone methyltransferase and acetyltrans-
ferase activities. More than 100 post-translational chemical
modifications to lysine tails of histone core proteins have been
characterized in important nuclear functions [40]. For exam-
ple, histone H3 is subject to acetylation at lysine positions 9
and 14 (H3K9/K14ac) as well as methylation of lysine at
positions 4 (H3K4me), 9 (H3K9me), and 27 (H3K27me).
These marks coincide with transcriptional status:
H3K27me3 and H3K9me3 modifications are detected at tran-
scriptionally silent chromatin, whereas H3K9/14ac and
H3K4me3 marks associate with transcriptionally active genes
[40]. Diseases such as cancer and heart failure are often asso-
ciated with aberrant expression and/or activity of histone-
modifying enzymes [23, 41]. The challenge now is to precise-
ly understand how histone modifiers locate their target genes.
Recent studies have shown that lncRNA-dependent chromatin
interactions can guide histone modifiers including the PRC2
and lysine-specific demethylase 1 (LSD1) complexes [14•,
42]. For example, the lncRNA HOTAIR suppresses
genome-wide gene expression by binding to PRC2 and
LSD1/CoREST/REST repressor complexes to coordinate
H3K27 trimethylation as well as H3K4 demethylation on
gene promoters [32, 42]. Similarly, in the developing mouse
heart, the lncRNAs BRAVEHEART and FENDRR mediate
transcriptional silencing by PRC2 [16, 17•]. FENDRR is also
reported to associate with TrxG/MLL complex to mediate
H3K4 methylation on promoters to activate gene expression
[17•]. In a similar fashion, HOTTIP lncRNA binds the MLL
family of H3K4 methyltransferase enzymes to activate tran-
scription at the HOXA locus in human fibroblasts [43•].
Whether lncRNAs regulate disease-associated gene expres-
sion remains largely unknown, however, pri-miR-208b inter-
action with the EZH2 component of PRC2 regulates the

expression of genes implicated in the failing heart [33•]. These
recent experimental results place ncRNAs on the chromatin
template to coordinate histone modifications implicated in
regulating gene transcription.

Regulation of DNA Methylation

To date, the best-characterized epigenetic modification is the
methylation of DNA at cytosine residue within the CpG-
dinucleotide sequence to form 5-methylcytosine. DNA meth-
ylation at gene promoters interferes with transcription factor
binding and negatively regulates gene expression. While
small RNA-directed DNA methylation has been documented
for decades in plants, little is known in metazoans [39•, 44].
LncRNAs have been shown to directly bind DNA methyl-
transferases (DNMT), an example of this is the silencing of
rRNA genes in human cells as well as the one mega-base
KCNQ1 imprinted domain [39•, 44]. Long antisense RNAs
such as KHPS1A and p15-AS have been shown to change
promoter DNA methylation to regulate sense RNA expres-
sion. Whereas, KHPS1A promotes demethylation of the
SPHK1 promoter, the p15-AS transcript is associated with
methylation of p15 (CDKN2B) promoter in tumor cells [45,
46]. More recently, the extra-coding CEBPA lncRNA
(ecCEBPA) has been shown to bind directly to DNMT1 and
is implicated in gene-selective DNA demethylation [47••].
Detailed characterization of DNMT1-interacting RNAs re-
vealed the stem-loop structure within RNA as well as the
RNA-binding interface in close proximity to the catalytic do-
main of DNMT1, which is thought to interfere with DNA
methylation [47••]. In addition to DNMT-interacting RNAs,
several studies have shown lncRNA-dependent gene-specific
binding for the transcriptional coregulator, methyl CpG bind-
ing protein 2 (MECP2) [48–50]. For example, the lncRNA
EVF2 (DLX6AS) regulates DNA methylation across the en-
hancer of DLX genes to recruit MECP2 for gene silencing
[49]. Work from our laboratory indicates novel MECP2-
interacting RNAs, including the Retinal noncoding RNA 3
(RNCR3), MALAT1, XIST, and KCNQ1OT1 in regulating
brain-specific pattern of gene expression in mice [50]. Aber-
rant promoter DNA methylation is hallmark of tumor cells.
Over expression of HOTAIR has been shown to drive tumor-
igenesis and promoter DNA methylation of the tumor-
suppressor gene PTEN in models of laryngeal squamous cell
carcinoma (LSCC) [51, 52]. Conversely, the lncRNATCF21
antisense RNA including demethylation (TARID) has been
shown to activate TCF21 gene transcription by promoting
DNA demethylation [53]. In cancer cells, TCF21 is subjected
to promoter DNA methylation and epigenetic silencing [54].
Undoubtedly, deeper understanding of ncRNAs involved in
regulation of DNA methylation can offer promising avenues
to pharmacologically targeting ncRNAs to regulate gene
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expression implicated in diseases such as cancer and heart
failure.

Regulation of Chromatin Architecture

Dosage compensation in females by X-chromosomal inacti-
vation (XCI) is a prototype of ncRNA-mediated epigenetic
regulation [55]. The X-inactive-specific transcript (XIST)
encoded on the X chromosome initiates XCI in female mam-
malian cells [31••]. XIST spreads across one of the two X
chromosomes in cis to initiate heterochromatin formation by
PRC2 and H3K27me3-mediated epigenetic silencing [55].
Recent experiments by Engreitz et al. reveal mechanistic in-
sights into XIST regulation [31••]. The authors identified a
silencing domain that is critical for XIST localization at active
sites of transcription across the inactive X chromosome [31••].
For instance, XIST transcription results in accumulation of
XIST RNA to bind active genes at distal X-chromosomal
regions. The inactivation of active genes repositions XIST
and remodels new X-chromosomal regions closer to the site
of XIST transcription [31••]. Similarly, FIRRE lncRNA
encoded on the X chromosome spreads across a 5-Megabase
domain from the site of FIRRE transcription [56]. Unlike
XIST, FIRRE is a trans-acting lncRNA that localizes at five
distinct chromosomal locations that are spatially proximal to
the FIRRE transcription site [56]. In an attempt to identify
these regions, a strategy to characterize ncRNA domains
was employed using chromatin isolation by RNA purification
(dChIRP) to show a “three-fingered” ribonucleoprotein struc-
ture within the roX1 lncRNA transcript [57••]. Each roX1
RNA finger aids roX1 binding to male-specific lethal (MSL)
protein complex and chromatin to mediate X chromosome-
wide dosage compensation in Drosophila melanogaster
[57••]. The advent of dChIRP and other novel strategies will
enable researchers to unravel the complex nature of RNA-
chromatin interactions associated with gene regulation medi-
ated by epigenetic change.

Recent Emergence of NcRNA-Mediated Epigenetic
Regulation in the Heart

Cardiomyocytes are terminally differentiated cells that are the
primary determinants of heart muscle contractility. Precise
regulation of gene expression in the heart is critical because
cardiomyocyte gene deregulation can result in irreversible
myocardial damage [58, 59]. Recent studies highlight the im-
portance of chromatin modifications in regulating patterns of
gene expression in the heart [58, 60–62]. Regulatory determi-
nants include enzymes with acetylase and deacetylase activi-
ties as well as methyltransferase proteins, including SWI/SNF
chromatin remodeling complex proteins such as BRG1 [23,

62–64]. Specifically, pharmacological histone deacetylase
(HDAC) inhibition has proven beneficial in the preclinical
treatment of heart failure [33•, 65–67]. Among several chro-
matin modifiers in the heart are the EZH2 component of
PRC2 and the ATPase-dependent BRG1 protein whose con-
tributions to gene regulation in the heart have recently been
described to involve ncRNA interactions [16, 17•, 33•, 68].

Cardiac Expression of LncRNAs

Endogenous natural antisense transcripts (NATs) from key
contractile genes regulate sense mRNA transcription in the
heart [25, 69]. For example, antisense RNAs encoded by car-
diac contractile genes regulate β-MHC and TROPONIN I
mRNA translation [70, 71]. Deep sequencing of the mouse
transcriptome of the failing heart recently identified novel
lncRNAs of unknown function [72, 73]. The identification
of LIPCAR lncRNA is considered a biomarker for heart fail-
ure [74]. Identified in plasma, LIPCAR expression increases
at late stages of post-myocardial infarction (MI) and is further
elevated with chronic heart failure [74]. For many years, the
association of common variants within the chromosome 9p21
region with increased risk to coronary artery disease (CAD)
and type 2 diabetes was poorly understood [75, 76]. However,
the association of 9p21 with disease was later reported to
involve the expression of lncRNAs [75, 76]. For instance,
the 9p21 CAD risk interval flanks the lncRNA gene antisense
noncoding RNA in the INK4 locus (ANRIL) whose expres-
sion is altered and thought to regulate two tumor-suppressor
genes, CDKN2A and CDKN2B, in individuals homozygous
for the risk variant [77]. Mechanistic insights into lncRNA
actions provide miR-sponge-like functions for cardiac
lncRNAs. LncRNAs functioning as miR sponges sequester
miRs from mRNA target recognition (Fig. 1i). Cardiac
apoptosis-related lncRNA (CARL) suppresses stress-induced
mitochondrial fission and apoptosis by sequestering miR-539
[35]. In a similar fashion, cardiac hypertrophy related factor
(CHRF) lncRNAwas shown to regulate miR-489 and cardiac
hypertrophy by acting as miR-sponge [78].

Cardiac Myosin Heavy Chain Gene Expression
in the Heart

Cardiac MHC genes, MYH6 (α-MHC) and MYH7 (β-MHC),
encode proteins that complex with myosin motor, which is the
primary determinant responsible for myocardial contractility
[79]. MHC proteins confer energy driven by ATP hydrolysis
which is at least three times faster for α-MHC than β-MHC
[80]. In rodents, expression of β-MHC predominates during
heart development whereas expression of α-MHC predomi-
nates in adult hearts [79]. In adult human hearts, the
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expression of α-MHC is approximately 15 % of total MHC
and the remaining constitutes β-MHC isoform [81]. One hall-
mark of cardiac hypertrophy and heart failure is decreased α-
MHC gene expression [82, 83]. In mouse hearts, cardiac hy-
pertrophy is also associated with increased β-MHC gene ex-
pression and thought to be disadvantageous [84]. While there
is interest to attenuate the α- to β-MHC shift using pharma-
cological inhibitors, the mechanisms coordinating the regula-
tion of MHC genes during cardiac hypertrophy remain poorly
understood. The α-MHC and β-MHC genes are organized in
tandem on chromosome 14 [85]. In addition to mRNAs of
myosin ATPase proteins, α-MHC and β-MHC genes encode
microRNAs, miR-208a and miR-208b, respectively. Together
with MYH7B-encoded miR-499, these three miRs comprise
MyomiR family of miRNAs [86].MiR-208a regulates expres-
sions of miR-208b and miR-499 in the mouse heart [86].
Increased expression of β-MHC and miR-208b is hallmark
of pathological cardiac hypertrophy and inhibition of miR-
208a reduces β-MHC and miR-208b expressions in preclini-
cal models of heart failure [87]. BothmiR-208a andmiR-208b
share a common seed sequence and predicted to target
mRNAs of SOX6, PURβ, SP3, THRAP1, MYOSTATIN, and
GATA4 genes [86, 88]. Furthermore, it is not clear whether
MyomiRs can mediate extracellular signaling by entering
blood stream (Fig. 1c) [29]. For example, the levels of miR-
208b, miR-499, and miR-208a show up to 1600-, 100-, and
36-fold increased plasma detection, respectively, in patients
with acute myocardial infarction [89, 90].

Myosin Family of LncRNAs

The α- and β-MHC genes are separated by a 4.5-kilobase
intergenic region that comprises a bdP [25, 33•]. The bdP
transcribes a lincRNA, antisense β-MHC (AS β-MHC) in
the direction opposite to β-MHC gene transcription. Cardiac
expression of AS β-MHC was first reported in 1992 by
Boheler et al. in rats [70]. Later, Luther et al. reported AS β-
MHC expression in the human myocardium and proposed a
role for AS β-MHC transcript in post-transcriptional regula-
tion of sense mRNA (β-MHC) [91]. Haddad et al. provided
initial mechanistic insights on bdP regulation in hypothyroidic
and diabetic hearts [92]. Indeed, the bdP responds to pressure
overload induced by aortic-banding and the expression of AS
β-MHC is downregulated in diabetic, hypothyroidic, and hy-
pertrophic hearts [93–95]. Chromatin immunoprecipitation
experiments in mouse left ventricles subjected to pressure
overload indicate physical association between the PcG-
protein Ezh2 and the pri-miR-208b transcript in epigenetic
silencing of the bdP [33•]. The cardioprotection by pharma-
cological HDAC inhibition involves restoration of cardiac
MHC gene expression to comparable healthy levels in hearts
[65, 84]. To test whether HDAC inhibition regulates AS β-

MHC expression, we administered trichostatin A (TSA) in
mouse models subjected to transverse aortic constriction
(TAC) to induce pathological cardiac hypertrophy [33•]. Re-
markably, TSA was able to restore the expression of AS β-
MHC as well as suppress pathological β-MHC mRNA ex-
pression in hypertrophic hearts [33•]. The increased AS β-
MHC expression is consistent with increased chromatin inter-
action [33•]. More recent evidence indicates alternatively
spliced novel AS β-MHC variants originating from the
MHC bdP region [68]. The suppression of AS β-MHC during
cardiac hypertrophy has been shown to involve specific inter-
actions of BRG1-HDAC-PARP corepressor at the bdP [68]. In
turn, the AS β-MHC transcript physically associates with the
chromatin remodeler BRG1 and prevents interaction of
BRG1 at promoters of target genes, including α-MHC and
β-MHC [68]. The AS β-MHC variant, Mhrt779 in mice is
thought to be cardioprotective by mechanisms that involve
direct association of AS β-MHC with BRG1 regulating path-
ological gene expression [68].

MicroRNA-208b is encoded within intron 31 of the cardiac
β-MHC gene and is among several intronic miRs that are
expressed independent of host gene transcription [86, 96].
Recently, we have uncovered a novel mechanism of gene
regulation by the pri-miR-208b transcript in the mouse heart
(Fig. 1g) [33•]. Chromatin assays in hypertrophic left ventri-
cles indicate pri-miR-208b interactions with the PcG-protein
EZH2. HDAC inhibition by TSA attenuates interactions me-
diated by pri-miR-208b and EZH2 in regulating bdP of MHC
genes in cardiac hypertrophy [33•]. This description of prima-
ry microRNA-mediated transcriptional regulation at the chro-
matin level is in addition to mature miRNA-mediated post-
transcriptional regulation through RISC pathways in the cyto-
plasm. Taken together, these new results indicate lncRNAs as
integral components of epigenetic regulation of gene expres-
sion in the heart [33•, 68].

Conclusion

The majority of pharmacologically active compounds exhibit
inhibitory actions on target proteins or pathways. However,
compounds that can activate as well as repress specific path-
ways would be clinically advantageous. Since ncRNAs can
regulate gene expression positively or negatively, ncRNA
therapeutics offers tremendous opportunities to explore
microRNA, chromatin-associated lncRNA and circular RNA
mechanisms to willfully up- or down-regulated gene expres-
sion (Fig. 1). Targeting MyomiRs to treat cardiac hypertrophy
and heart failure has proven promising in preclinical settings
[88, 97]. Whereas, optimization of miRNAs to the treatment
of diseases, including cancer, heart failure, and neurodegener-
ative disorders have been relatively successful; the approach
has fallen short of expectations primarily because of short
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sequence specificity and off-target functions. The intrinsic
specificity of lncRNAs addresses off-target concerns making
them ideal candidates for therapeutics. In addition to specific
target recognition, the other unique feature of lncRNAs in-
cludes endogenous RISC-independent regulation of gene ex-
pression (Fig. 1). Circular RNAs or lncRNAs enriched for
miR sequences can act as miRNA sponges and tether miRs
from target mRNA recognition. This offers promise to induce
protein production in disease states. Recently, pharmacologi-
cal inhibition of the BDNF-AS transcript in mice using
antagoNAT upregulated transcription of sense BDNF, a
neurotrophin whose activation is thought to be beneficial in
treatment of neurodegeneration [98•]. Together, we envisage
that the successful clinical translation of ncRNA therapeutics
holds exciting technical and conceptual challenges that war-
rant rapid developments in chromatin-based assays coupled
with nucleic acid sequencing technologies.
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